Дисперсия света: история открытия и описание явления.

Каждый охотник желает знать, где сидит фазан. Как мы помним, эта фраза означает последовательность цветов спектра: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Кто показал, что белый цвет это совокупность всех цветов, какое отношение имеет к этому радуга, красивые закаты и восходы солнца, блеск драгоценных камней? На все эти вопросы отвечает наш урок, тема которого: «Дисперсия света».

До второй половины XVII века не было полной ясности, что же такое цвет. Некоторые ученые говорили, что это свойство самого тела, некоторые заявляли, что это различные сочетания светлого и темного, тем самым путая понятия цвета и освещенности. Такой цветовой хаос царил до того времени, пока Исаак Ньютон не провел опыт по пропусканию света сквозь призму (рис. 1).

Рис. 1. Ход лучей в призме ()

Вспомним, что луч, проходящий через призму, терпит преломление при переходе из воздуха в стекло и потом еще одно преломление - из стекла в воздух. Траектория луча описывается законом преломления, а степень отклонения характеризуется показателем преломления. Формулы, описывающие эти явления:

Рис. 2. Опыт Ньютона ()

В темной комнате сквозь ставни проникает узкий пучок солнечного света, на его пути Ньютон разместил стеклянную трехгранную призму. Пучок света, проходя через призму, преломлялся в ней, и на экране, стоявшем за призмой, появлялась разноцветная полоса, которую Ньютон назвал спектром (от латинского «spectrum» - «видение»). Белый цвет превратился сразу во все цвета (рис. 2). Какие же выводы сделал Ньютон?

1. Свет имеет сложную структуру (говоря современным языком - белый свет содержит электромагнитные волны разных частот).

2. Свет различного цвета отличается степенью преломляемости (характеризуется разными показателями преломления в данной среде).

3. Скорость света зависит от среды.

Эти выводы Ньютон изложил в своем знаменитом трактате «Оптика». Какова же причина такого разложения света в спектр?

Как показывал опыт Ньютона, слабее всего преломлялся красный цвет, а сильнее всего - фиолетовый. Вспомним, что степень преломления световых лучей характеризует показатель преломления n. Красный цвет от фиолетового отличается частотой, у красного частота меньше, чем у фиолетового. Раз показатель преломления становится все больше при переходе от красного конца спектра к фиолетовому, можно сделать вывод: показатель преломления стекла увеличивается с возрастанием частоты света. В этом и состоит суть явления дисперсии.

Вспомним, как показатель преломления связан со скоростью света:

n ~ ν; V ~ => ν =

n - показатель преломления

С - скорость света в вакууме

V - скорость света в среде

ν - частота света

Значит, чем больше частота света, тем с меньшей скоростью свет распространяется в стекле, таким образом, наибольшую скорость внутри стеклянной призмы имеет красный цвет, а наименьшую скорость - фиолетовый.

Различие скоростей света для разных цветов осуществляется только при наличии среды, естественно, в вакууме любой луч света любого цвета распространяется с одной и той же скоростью м/с. Таким образом мы выяснили, что причиной разложения белого цвета в спектр является явление дисперсии.

Дисперсия - зависимость скорости распространения света в среде от его частоты.

Открытое и исследованное Ньютоном явление дисперсии ждало своего объяснения более 200 лет, лишь в XIX веке голландским ученым Лоренсом была предложена классическая теория дисперсии.

Причина этого явления - во взаимодействии внешнего электромагнитного излучения, то есть света со средой: чем больше частота этого излучения, тем сильнее взаимодействие, а значит, тем сильнее будет отклоняться луч.

Дисперсия, о которой мы говорили, называется нормальной, то есть показатель частоты растет, если частота электромагнитного излучения растет.

В некоторых редко встречающихся средах возможна аномальная дисперсия, то есть показатель преломления среды растет, если частота падает.

Мы увидели, что каждому цвету соответствует определенная длина волны и частота. Волна, соответствующая одному и тому же цвету, в разных средах имеет одну и ту же частоту, но разные длины волн. Чаще всего, говоря о длине волны, соответствующей определенному цвету, имеют в виду длину волны в вакууме или воздухе. Свет, соответствующий каждому цвету, является монохроматическим. «Моно» - один, «хромос» - цвет.

Рис. 3. Расположение цветов в спектре по длинам волн в воздухе ()

Самый длинноволновый - это красный цвет (длина волны - от 620 до 760 нм), самый коротковолновый - фиолетовый (от 380 до 450 нм) и соответствующие частоты (рис. 3). Как видите, белого цвета в таблице нет, белый цвет - это совокупность всех цветов, этому цвету не соответствует какая-то строго определенная длина волны.

Чем же объясняются цвета тел, которые нас окружают? Объясняются они способностью тела отражать, то есть рассеивать падающее на него излучение. Например, на какое-то тело падает белый цвет, который является совокупностью всех цветов, но это тело лучше всего отражает красный цвет, а остальные цвета поглощает, то оно нам будет казаться именно красного цвета. Тело, которое лучше всего отражает синий цвет, будет казаться синего цвета и так далее. Если же тело отражает все цвета, оно в итоге будет казаться белым.

Именно дисперсией света, то есть зависимостью показателя преломления от частоты волны, объясняется прекрасное явление природы - радуга (рис. 4).

Рис. 4. Явление радуги ()

Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды, дождя или тумана, парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов, в результате белый цвет разлагается в спектр, то есть происходит дисперсия, наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по концентрическим дугам.

Также дисперсией объясняется и замечательная игра цвета на гранях драгоценных камней.

1. Явление дисперсии - это разложение света в спектр, обусловленное зависимостью показателя преломления от частоты электромагнитного излучения, то есть частоты света. 2. Цвет тела определяется способностью тела отражать или рассеивать ту или иную частоту электромагнитного излучения.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Какие выводы сделал Ньютон после опыта с призмой?
  2. Дать определение дисперсии.
  3. Чем определяется цвет тела?
  1. Интернет-портал B -i-o-n.ru ().
  2. Интернет-портал Sfiz.ru ().
  3. Интернет-портал Femto.com.ua ().

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн от их частоты .

Дисперсия света представляется в виде зависимости:

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом .

Рис. 10.1 Рис. 10.2

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

Предположим, что углы А и малы, тогда углы , , будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому , , а т.к. , то или .

Отсюда следует, что

, (10.1.1)

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы .

Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n , а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы . Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим , что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн , поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или .

· Составные цвета в дифракционном и призматическом спектрах располагаются различно . Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее . Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина (или ), называемая дисперсией вещества , показывает, как быстро меняется показатель преломления с длиной волны .

Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной . Вблизи линий и полос поглощения, ход кривой дисперсии будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией . Рассмотрим подробнее эти виды дисперсии.

Дисперсия света - это зависимость показателя преломления n вещества от длины волны света (в вакууме)

или, что то же самое, зависимость фазовой скорости световых волн от частоты:

Дисперсией вещества называется производная от n по

Дисперсия - зависимость показателя преломления вещества от частоты волны – особенно ярко и красиво проявляет себя совместно с эффектом двойного лучепреломления (см. Видео 6.6 в предыдущем параграфе), наблюдаемом при прохождении света через анизотропные вещества. Дело в том, что показатели преломления обыкновенной и необыкновенной волн различно зависят от частоты волны. В результате цвет (частота) света прошедшего через анизотропное вещество помещенное между двумя поляризаторами зависит как от толщины слоя этого вещества, так и от угла между плоскостями пропускания поляризаторов.

Для всех прозрачных бесцветных веществ в видимой части спектра с уменьшением длины волны показатель преломления увеличивается, то есть дисперсия вещества отрицательна: . (рис. 6.7, области 1-2, 3-4)

Если вещество поглощает свет в каком-то диапазоне длин волн (частот), то в области поглощения дисперсия

оказывается положительной и называется аномальной (рис. 6.7, область 2–3).

Рис. 6.7. Зависимость квадрата показателя преломления (сплошная кривая) и коэффициента поглощения света веществом
(штриховая кривая) от длины волны
l вблизи одной из полос поглощения ()

Изучением нормальной дисперсии занимался ещё Ньютон. Разложение белого света в спектр при прохождении сквозь призму является следствием дисперсии света. При прохождении пучка белого света через стеклянную призму на экране возникает разноцветный спектр (рис. 6.8).


Рис. 6.8. Прохождение белого света через призму: вследствие различия значений показателя преломления стекла для разных
длин волн пучок разлагается на монохроматические составляющие - на экране возникает спектр

Наибольшую длину волны и наименьший показатель преломления имеет красный свет, поэтому красные лучи отклоняются призмой меньше других. Рядом с ними будут лучи оранжевого, потом желтого, зеленого, голубого, синего и, наконец, фиолетового света. Произошло разложение падающего на призму сложного белого света на монохроматические составляющие (спектр).

Ярким примером дисперсии является радуга. Радуга наблюдается, если солнце находится за спиной наблюдателя. Красные и фиолетовые лучи преломляются сферическими капельками воды и отражаются от их внутренней поверхности. Красные лучи преломляются меньше и попадают в глаз наблюдателя от капелек, находящихся на большей высоте. Поэтому верхняя полоса радуги всегда оказывается красной (рис. 26.8).


Рис. 6.9. Возникновение радуги

Используя законы отражения и преломления света, можно рассчитать ход световых лучей при полном отражении и дисперсии в дождевых каплях. Оказывается, что лучи рассеиваются с наибольшей интенсивностью в направлении, образующем угол около 42° с направлением солнечных лучей (рис. 6.10).


Рис. 6.10. Расположение радуги

Геометрическое место таких точек представляет собой окружность с центром в точке 0. Часть ее скрыта от наблюдателя Р под горизонтом, дуга над горизонтом и есть видимая радуга. Возможно также двойное отражение лучей в дождевых каплях, приводящее к радуге второго порядка, яркость которой, естественно, меньше яркости основной радуги. Для нее теория дает угол 51 °, то есть радуга второго порядка лежит вне основной. В ней порядок цветов заменен на обратный: внешняя дуга окрашена в фиолетовый цвет, а нижняя - в красный. Радуги третьего и высших порядков наблюдаются редко.

Элементарная теория дисперсии. Зависимость показателя преломления вещества от длины электромагнитной волны (частоты) объясняется на основе теории вынужденных колебаний. Строго говоря, движение электронов в атоме (молекуле) подчиняется законам квантовой механики. Однако для качественного понимания оптических явлений можно ограничиться представлением об электронах, связанных в атоме (молекуле) упругой силой. При отклонении от равновесного положения такие электроны начинают колебаться, постепенно теряя энергию на излучение электромагнитных волн или передавая свою энергию узлам решетки и нагревая вещество. В результате этого колебания будут затухающими.

При прохождении через вещество электромагнитная волна воздействует на каждый электрон с силой Лоренца:

где v - скорость колеблющегося электрона. В электромагнитной волне отношение напряженностей магнитного и электрического полей равно

Поэтому нетрудно оценить отношение электрической и магнитной сил, действующих на электрон:

Электроны в веществе движутся со скоростями, много меньшими скорости света в вакууме:

где - амплитуда напряженности электрического поля в световой волне, - фаза волны, определяемая положением рассматриваемого электрона. Для упрощения вычислений пренебрежем затуханием и запишем уравнение движения электрона в виде

где, - собственная частота колебаний электрона в атоме. Решение такого дифференциального неоднородного уравнения мы уже рассматривали ранее и получили

Следовательно, смещение электрона из положения равновесия пропорционально напряженности электрического поля. Смещениями ядер из положения равновесия можно пренебречь, так как массы ядер весьма велики по сравнению с массой электрона.

Атом со смещенным электроном приобретает дипольный момент

(для простоты положим пока, что в атоме имеется только один «оптический» электрон, смещение которого вносит определяющий вклад в поляризацию). Если в единице объема содержится N атомов, то поляризованность среды (дипольный момент единицы объема) можно записать в виде

В реальных средах возможны разные типы колебаний зарядов (групп электронов или ионов), вносящих вклад в поляризацию. Эти типы колебаний могут иметь разные величины заряда е i и массы т i , а также различные собственные частоты (мы будем обозначать их индексом k), при этом число атомов в единице объема с данным типом колебаний N k пропорционально концентрации атомов N:

Безразмерный коэффициент пропорциональности f k характеризует эффективный вклад каждого типа колебаний в общую величину поляризации среды:

С другой стороны, как известно,

где - диэлектрическая восприимчивость вещества, которая связана с диэлектрической проницаемостью e соотношением

В результате получаем выражение для квадрата показателя преломления вещества:

Вблизи каждой из собственных частот функция , определяемая формулой (6.24), терпит разрыв. Такое поведение показателя преломления обусловлено тем, что мы пренебрегли затуханием. Аналогично, как мы видели ранее, пренебрежение затуханием приводит к бесконечному росту амплитуды вынужденных колебаний при резонансе. Учет затухания избавляет нас от бесконечностей, и функция имеет вид, изображенный на рис. 6.11.

Рис. 6.11. Зависимость диэлектрической проницаемости среды от частоты электромагнитной волны

Учитывая связь частоты с длиной электромагнитной волны в вакууме

можно получить зависимость показателя преломления вещества п от длины волны в области нормальной дисперсии (участки 1–2 и 3–4 на рис. 6.7):

Длины волн, соответствующие собственным частотам колебаний , - постоянные коэффициенты.

В области аномальной дисперсии () частота внешнего электро­маг­нитного поля близка к одной из собственных частот колебаний молекулярных диполей, то есть возникает резонанс. Именно в этих областях (например, участок 2–3 на рис. 6.7) наблюдается существенное поглощение электромагнитных волн; коэффициент поглощения света веществом показан штриховой линией на рис. 6.7.

Понятие о групповой скорости. С явлением дисперсии тесно связано понятие о групповой скорости. При распространении в среде с дисперсией реальных электромагнитных импульсов, например известных нам цугов волн, испускаемых отдельными атомными излучателями, происходит их «расплывание» - расширение протяженности в пространстве и длительности во времени. Это связано с тем, что такие импульсы представляют собой не монохроматическую синусоидальную волну, а так называемый волновой пакет, или группу волн - совокупность гармонических составляющих с разными частотами и с разными амплитудами, каждая из которых распространяется в среде со своей фазовой скоростью (6.13).

Если бы волновой пакет распространялся в вакууме, то его форма и пространственно-временная протяженность оставались бы неизменными, а скоростью распространения такого цуга волн была бы фазовая скорость света в вакууме

Из-за наличия дисперсии зависимость частоты электромагнитной волны от волнового числа k становится нелинейной, и скорость распространения цуга волн в среде, то есть скорость переноса энергии, определяется производной

где - волновое число для «центральной» волны в цуге (обладающей наибольшей амплитудой).

Мы не будем выводить эту формулу в общем виде, но на частном примере поясним ее физический смысл. В качестве модели волнового пакета примем сигнал, состоящий из двух плоских волн, распространяющихся в одном направлении с одинаковыми амплитудами и начальными фазами , но различающихся частотами, сдвинутыми относительно «центральной» частоты на небольшую величину . Соответствующие волновые числа сдвинуты относительно «центрального» волнового числа на небольшую величину . Эти волны описываются выражениями.

Дисперсия света

Каждый из нас когда-нибудь видел, как переливаются лучи на граненых изделиях из стекла или, например, на бриллиантах. Наблюдать это можно благодаря такому явлению, как дисперсия света. Это эффект, отражающий зависимость показателя преломления предмета (вещества, среды) от длины (частоты) световой волны, которая проходит через этот предмет. Следствием такой зависимости является разложение луча на цветовой спектр, например, при прохождении через призму.

Дисперсия света выражается следующим равенством:

где n – показатель преломления, ƛ – частота, а ƒ – длина волны. Показатель преломления увеличивается с ростом частоты и уменьшением длины волны. Дисперсию мы нередко наблюдаем в природе.

Самым красивым ее проявлением является радуга, которая образуется благодаря рассеиванию солнечных лучей при прохождении их через многочисленные капли дождя.

История открытия и исследований.

В 1665-1667 годах в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от неё в своём родном Вулсторпе. Перед отъездом в деревню он приобрёл стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов».

Уже в 1 веке новой эры было известно, что при прохождении через прозрачный монокристалл с формой шестиугольной призмы солнечный свет разлагается в цветную полоску – спектр. Ещё раньше, в 4 веке до новой эры, древнегреческий учёный Аристотель выдвинул свою теорию цветов. Он полагал, что основным является солнечный (белый) свет, а все остальные цвета получаются из него добавлением к нему различного количества тёмного света. Такое представление о свете господствовало в науке вплоть до 17 века, несмотря на то, что были проведены многочисленные опыты по разложению солнечного света с помощью стеклянных призм.

Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Некоторые из них без существенных изменений в методике, используются в физических лабораториях до сих пор.



Первый опыт по дисперсии был традиционным. Проделав небольшое отверстие в ставне окна затемнённой комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов. Полученный таким образом спектр солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый.

Установление именно семи основных цветов спектра в известной степени произвольно: Ньютон стремился провести аналогию между спектром солнечного света и музыкальным звуковым рядом. Если же рассматривать спектр без подобного предубеждения, то полоса спектра возникающего из-за дисперсии распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными. Вообще же человеческий глаз способен различать в спектре солнечного света до 160 различных цветовых оттенков.

В последующих опытах по дисперсии Ньютону удалось соединить цветные лучи в белый свет.

В результате своих исследований Ньютон, в противоположность Аристотелю, пришёл к выводу, что при смешивании «белизны и черноты никакого цвета не возникает…». Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.

Впоследствии учёные установили то факт, что, рассматривая свет как волну, каждому цвету следует сопоставить свою длину волны. Очень важно, что эти длины волн меняются непрерывным образом, соответствуя различным оттенкам каждого цвета.

Изменение показателя преломления среды в зависимости от длины распространяющейся в ней волны называется дисперсией (от латинского глагола «рассеивать»). Показатель преломления обычного стекла близок к 1.5 для всех длин волн видимого света.

Опыты Ньютона и других учёных показывали, что с увеличением длины волны света показатель преломления исследуемых веществ монотонно уменьшается. Однако в 1860 году, измеряя показатель преломления паров йода, французский физик Леру обнаружил, что красные лучи преломляются этим веществом сильнее, чем синие. Это явление он назвал аномальной дисперсией света. В дальнейшем аномальная дисперсия была обнаружена во многих других веществах.

В современной физике как нормальная, так и аномальная дисперсия света объясняются единым образом. Отличие нормальной дисперсии от аномальной заключается в следующем. Нормальная дисперсия происходит с лучами света, длина волны которых далека от области поглощения волн данным веществом. Аномальная дисперсия наблюдается только в области поглощения.

Если внимательно присмотреться к дисперсии света, то можно обнаружить её связь с проникающей способностью электромагнитных излучений. Действительно, чем короче длина волны электромагнитного излучения, тем больше шансов у излучения проникнуть сквозь вещество, в пространстве между атомами. Именно поэтому, рентгеновское и гамма-излучение обладают очень большой проникающей способностью.

Дисперсия света в природе и искусстве

Из-за дисперсии можно наблюдать разные цвета света.

Радуга, чьи цвета обусловлены дисперсией, – один из ключевых образов культуры и искусства.

Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметов или материалов.

В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.

Разложение света в спектр (вследствие дисперсии) при преломлении в призме – довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

Открытие дисперсии стало в истории науки весьма значительным. На надгробии ученого есть надпись с такими словами: «Здесь покоится сэр Исаак Ньютон, дворянин, который… первый с факелом математики объяснил движения планет, пути комет и приливы океанов.

Он исследовал различие световых лучей и проявляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. …Пусть смертные радуются, что существовало такое украшение рода человеческого ».

Иногда, когда после сильного ливня вновь проглядывает солнце, можно увидеть радугу. Это происходит потому, что воздух насыщен мельчайшей водяной пылью. Каждая капля воды в воздухе выполняет роль крохотной призмы, дробящей свет на разные цвета.

Около 300 лет назад И.Ньютон пропустил солнечные лучи через призму. Он открыл, что белый свет – это «чудесная смесь цветов».

Это интересно… Почему в спектре белого света выделяют только 7 цветов?

Так, например, Аристотель указывал всего три цвета радуги: красный, зеленый, фиолетовый. Ньютон вначале выделил в радуге пять цветов, а позднее – десять. Однако, впоследствии, он остановился на семи цветах. Выбор объясняется, скорее всего, тем, что число семь считалось «магическим» (семь чудес света, семь недель и т.д.).

Дисперсия света впервые была экспериментально обнаружена Ньютоном в 1666 г., при пропускании узкого пучка солнечного света через стеклянную призму. В полученном им спектре белого света он выделил семь цветов: Из этого опыта Ньютон сделал вывод, что «световые пучки, отличающиеся по цвету, отличаются по степени преломления». Наиболее сильно преломляются фиолетовые лучи, меньше всех – красные.

Белый свет является сложным светом, состоящим из волн различной длины (частоты). Каждой цветности соответствует своя длина и частота волны: красного, оранжевого, зеленого, голубого, синего, фиолетового – такое разложение света называется спектром.

Волны различной цветности по-разному преломляются в призме: меньше красного, больше – фиолетового. Призма отклоняет волны разной цветности на разные углы . Такое их поведение объясняется тем, что при переходе световых волн из воздуха в стеклянную призму скорость волн «красного цвета» изменяется меньше, чем «фиолетового цвета». Таким образом, чем меньше длина волны (больше частота), тем показатель преломления среды для таких волн больше.

Дисперсией называется зависимость показателя преломления света от частоты колебаний (или длины волны).

Для волн различной цветности показатели преломления данного вещества различны; вследствие этого при отклонении призмой белый свет разлагается в спектр .

При переходе монохроматической световой волны из воздуха в вещество длина световой волны уменьшается, частота колебаний остается неизменной . Неизменным остается цвет.

При наложении всех цветов спектра образуется белый свет.

Почему же мы видим предметы окрашенными? Краска не создает цвета , она избирательно поглощает или отражает свет.

Опорный конспект:

Вопросы для самоконтроля по теме «Дисперсия света»

  1. Что называют дисперсией света?
  2. Нарисуйте схемы получения спектра белого света с помощью стеклянной призмы.
  3. Почему белый свет, проходя через призму, дает спектр?
  4. Сравните показатели преломления для красного и фиолетового света.
  5. Какой свет распространяется в призме с большей скоростью – красный или фиолетовый?
  6. Как объяснить многообразие цветов в природе с точки зрения волновой оптики?
  7. Какого цвета будут видны через красный светофильтр окружающие предметы? Почему?