Емкостной датчик контроля приближения своими руками. Простой датчик приближения

Сегодня стали очень модны датчики присутствия для обнаружения движения при перемещении человека по помещению.

При подключении такого устройства к осветительным приборам, вы получите автоматическую систему по включению света. Датчик присутствия для обнаружения человека самостоятельно может собрать практически любой. И здесь схема сборки будет основной. Все о процессе сборки вы узнаете из этой статьи.

Принцип работы

Первое, что нужно знать при самостоятельной сборке такого прибора – это принцип его работы.
Обратите внимание! Многие путают такие устройства с датчиками движения. Но это разные модели.
Принцип работы прибора основан на реакции сенсора на местоположение человека или крупного животного. В основе работы устройства лежит эффект Доплер – изменение длины и частоты волны. Эти изменения регистрирует сенсор и передает их на прибор, для дальнейшего включения освещения или звукового сигнала. Причем сигнал на сенсор поступает вне зависимости от того, движется ли объект или остается неподвижным. Прибор оснащен антенной и генератором. Без наличия отражающего антенной сигнала, устройство пребывает в спящем режиме. Схема устройства работы приведена ниже.

При подключении прибора к источнику света, в ситуации появления любого объекта в рабочей зоне происходит активация включения света. При этом для включения освещения как такового не нужно наличие движения (даже незначительного).

Где используется

Датчик присутствия сегодня активно применяется в следующих областях:

  • система «умный дом» для включения света в автоматическом режиме (схема подключения приведена ниже). В этой ситуации он позволяет в разы сэкономить потребление электроэнергии;

Схема подключения

  • охранные системы;
  • робототехника;
  • различные производственные линии;
  • системы видеонаблюдения;
  • для управления потребления электроэнергии и т.д.

Помимо этого все чаще появляются интерактивные игрушки, оснащенные подобными устройствами. Но в большинстве случаев при реагировании прибора нет необходимости включения света. Подобные изделия могут реагировать на температуру, ультразвук, вес объекта и многие другие параметры. Включения освещения здесь не происходит. Прибор реагирует, например, включением звука или передачей сигнала на портативное мобильное устройство (у современных моделей).
Особенно незаменимы такие разработки в охранной системе. Но не каждый человек может позволить себе приобрести такого устройство. Они достаточно дороги и могут оказаться не по карману. Поэтому некоторые делают такие устройства своими руками.

Приступаем к сборке

Для того чтобы собрать датчик, вам нужна будет приведенная ниже схема.

Помимо этого вам понадобится:

  • генератор СВЧ;
  • транзистор КТ371 (КТ368), который должен быть предварительно усилен КТ3102;
  • компаратор;
  • микросхема К554СА3.

Все необходимые компоненты для сборки можно отыскать на радиорынке или в специализированных магазинах электроники.
По этой схеме необходимо собрать и припаять вышеперечисленные элементы.
По приведенной схеме сенсор будет работать так:

  • генератор вырабатывает СВЧ сигнал;
  • далее он передается на штыревую антенну;
  • затем сигнал отражается от перемещающегося в контролируемой зоне объекта;
  • в результате получается частотный сдвиг;
  • затем происходит его возврат на антенну и СВЧ генератор.

На данном этапе он будет работать по принципу приемника прямого преобразования. Это связано с тем, что полученный сигнал преобразуется в инфразвуковой (низкой частоты).
После преобразования сигнала происходит следующее:

  • теперь уже полученные низкочастотные колебания, попадая на предварительный усилитель, усиливаются;
  • затем они передаются на компаратор и преобразуются в импульсы (прямоугольные).

Если отражение сигнала не происходит, то на выходе с компаратора получается напряжение высокого уровня.
Подстроечный конденсатор необходим для установления частоты. Она должна быть равна резонансной частоте, имеющейся у антенны.

Обратите внимание! Данный параметр надлежит подбирать по максимальной чувствительности сенсора.

С конструктивной точки зрения, прибор должен выполняться на печатной схеме, выполненной из стеклотекстолита. Плата должна размещаться на пластмассовом корпусе.

Печатная схема (пример)

В качестве антенны можно использовать кусок жесткого провода. Для ее изготовления лучше выбрать медный провод. Его припаиваем к контактной площадке полученной платы. Вывод антенны осуществляется через выход на корпусе. Специалисты рекомендуют располагать антенну вертикально.
Помните, что в непосредственной близости от собранного своими руками датчика не должны размещаться любые экранирующие предметы. Помимо этого следует знать, что для нормального функционирования спаянного изделия его общий провод должен обладать емкостной связью с землей.

Завершающий этап

После того, как вы смонтировали компактное устройство, его следует подвесить с внутренней стороны двери, максимально близко к дверной ручке и дверному замку. Также изделие можно разместить и в других местах. Главное, чтобы контролируемая зона была достаточной.
В ходе монтажа необходимо следить за тем, чтобы длина проводников и выводов элементов была минимальна. Это позволит избежать помех, в результате наличия которых прибор может начать работать не адекватно.
Следуя приведенной инструкции и схеме, собрать своими руками датчик присутствия можно относительно просто. Главное – это смонтировать все составляющие в нужном порядке.


Правильно выбираем автономные датчики для движения с сиреной Обзор и установка пульта для радиоуправления светом

Несколько схем датчиков

В январе 2007 года издательство "Наука и Техника" выпустило книгу автора А.П.Кашкарова "Электронные датчики". На этой страничке хочу познакомить Вас с некоторыми из конструкций.

Очень хочется предупредить - данные схемы я НЕ собирал - работоспособность их полностью зависит от "порядочности" г-на Кашкарова!

В начале рассмотрим схемы с применением микросхемы К561ТЛ1. Первая схема - емкостное реле:

Микросхема К561ТЛ1 (зарубежный аналог CD4093B) - одна из самых популярных цифровых микросхем этой серии. Микросхема содержит 4 элемента 2И-НЕ с передаточной характеристикой триггера Шмита (имеет определенный гистерезис).

Данное устройство имеет высокую чувствительность, что позволяет использовать его в охранных устройствах, а также в устройствах, предупреждающих о небезопасном нахождении человека в опасной зоне (например в распиловочных станках). Принцип устройства основан на изменении емкости между штырем антенны (используется стандартная автомобильная антенна) и полом. По утверждению автора, данная схема срабатывает при приближении человека среднего размера на расстояние около 1,5 метров. В качестве нагрузки транзистора может использоваться, например, электромагнитное реле с током срабатывания не более 50 миллиампер, которое своими контактами включает исполнительное устройство (сирену и проч.). Конденсатор С1 служит для снижения вероятности срабатывания устройства от помех.

Следующее устройство - датчик влажности:

Особенностью схемы является применение в качестве датчика переменного конденсатора С2 типа 1КЛВМ-1 с воздушным диэлектриком. Если воздух сухой - сопротивление между пластинами конденсатора составляет более 10 Гигаом, а уже при небольшой влажности сопротивление уменьшается. По сути этот конденсатор представляет собой высокоомный резистор с изменяющимся в зависимости от внешних условий абсорбированной атмосферной влажности сопротивлением. При сухом климате сопротивление датчика велико, и на выходе элемента D1/1 присутствует низкий уровень напряжения. при увеличении влажности сопротивление датчика уменьшается, возникает генерация импульсов, на выходе схемы присутствуют короткие импульсы. При увеличении влажности частота генерации импульсов увеличивается. В определенный момент влажности генератор на элементе D1/1 превращается в генератор импульсов. на выходе устройства появляется непрерывный сигнал.

Схема сенсорного датчика показана ниже:

Принцип действия этого устройства заключается в реагировании на "наводки" в теле человека или животного от различных электрических устройств. Чувствительность устройства очень велика - оно реагирует даже на прикосновение к пластине Е1 человека в матерчатых перчатках. При первом прикосновении устройство включается, при втором - выключается. Конденсатор С1 служит для защиты от помех и его в отдельном случае может и не быть...

Следующее устройство - индикатор влажности почвы. Это устройство может быть использовано, например, для автоматизации полива теплицы:


Устройство, на мой взгляд, весьма оригинально. Датчиком служит катушка индуктивности L1, закопанная в почву на глубину 35-50 сантиметров.
Транзистор Т2 и катушка индуктивности совместно с конденсаторами С5 и С6 образуют автогенератор на частоту около 16 килогерц. При сухой почве амплитуда импульсов на коллекторе транзистора VT2 равна 3 вольтам. Увеличение влажности почвы приводит к понижению амплитуды этих импульсов. Реле включено. При некотором значении влажности генерация срывается, что приводит к выключению реле. Реле своими контактами выключает, например, насос или электромагнитный вентиль в цепи полива.
О деталях: Самой ответственной частью схемы является катушка. Эта катушка наматывается на отрезок пластмассовой трубы, диаметром 100 , длиной 300 миллиметров и содержит 250 витков, провода ПЭВ, диаметром 1 миллиметр. Намотка - виток к витку. Снаружи обмотка изолируется двумя - тремя слоями ПХВ изоляционной ленты. Транзисторы можно заменить на КТ315. Конденсаторы - типа КМ. Диоды VD1-VD3 - типа КД521 - КД522.
Вся конструкция питается от стабилизированного источника, напряжением 12 вольт. Ток потребления схемой равен (в режимах "влажно-сухо") 20-50 миллиампер.
Электронная схема собирается в небольшой герметичной коробке. Для возможности регулировки напротив движка R5 следует предусмотреть отверстие, которое после настройки также герметично закрывается. Для питания использован маломощный трансформатор с выпрямителем и стабилизатором на КР142ЕН8Б. Реле должно нормально срабатывать при токе не более 30 миллиампер и напряжении 8-10 вольт. Для примера - можно применить РЭС10, паспорт 303. Для питания насоса контакты этого реле непригодны. В качестве промежуточного реле можно использовать автомобильное. Контакты такого реле выдерживают ток не менее 10 ампер. Можно применить и реле типа КУЦ от цветных телевизоров. Оба из рекомендованных реле имеют обмотку на 12 вольт и их можно включать до микросхемы стабилизатора (после выпрямителя и сглаживающего конденсатора), либо после стабилизатора (но тогда микросхему стабилизатора следует установить на небольшой теплоотвод). Также на корпусе следует установить два герметичных разъема (например типа РША). Один разъем используется для подключения сети и исполнительного устройства (насос), другой - для подключения катушки.
Настройка схемы сводится к регулированию чувствительности устройства при помощи переменного резистора R5. Окончательная настройка производится на месте работы устройства более точной подстройкой резистора. Следует иметь в виду, что данное устройство несколько изменяет порог включения при изменении температуры почвы (но это не очень существенно, поскольку на глубине в 35-50 сантиметров температура почвы изменяется незначительно).
Весной у владельцев овощных ям и гаражей появляется еще одна забота - талые воды. Если вовремя не откачать воду - овощи приходят в негодность... Можно процедуру откачки воды поручить автоматике. Схема получается простенькой, а сэкономит Вам множество времени и нервов (эта схема не из книжки! ) :



Схема автоматической "водооткачки" работает на принципе электропроводности воды. Основным элементом контроля уровня является блок из трех пластин из нержавеющей стали. Пластины 1 и 2 имеют одинаковую длину, пластина 3 - датчик верхнего уровня воды. Пока уровень воды ниже уровня 3 пластины - на входе логического элемента D1 уровень логической еденицы, на выходе элемента уровень логического нуля - транзистор заперт, реле обесточено. При увеличении уровня воды датчик 3 через воду соединяется с общим проводом схемы (пластина 1) - на входе элемента уровень логического нуля, на выходе элемента - уровень логической еденицы - транзистор открывается - реле своими контактами включает насос. Одновременно с насосом на вход схемы подключается пластина 2 датчика. Эта пластина является датчиком нижнего уровня воды. Насос будет работать до тех пор, пока уровень воды не опустится ниже уровня пластин. После этого насос отключается и схема переходит в дежурный режим...
В схеме можно применить практически любые логические элементы КМОП технологии серий 176, 561,564. Реле РЭС22 используется на напряжение срабатывания 10-12 вольт. Данное реле имеет довольно мощные контакты, что позволяет непосредственно управлять насосом типа "Водолей" мощностью до 250 ватт. Для увеличения надежности работы полезно свободные группы контактов реле (их всего четыре) соединить параллельно и параллельно контактам реле включить цепочку из последовательно соединенных резистора на 100 ом (мощностью не менее 2 ватт) и конденсатора на 0,1 микрофарады (с рабочим напряжением не менее 400 вольт). Эта цепочка служит для уменьшения искрения на контактах в моменты коммутации. Если у Вас насос большей мощности - придется применить дополнительное промежуточное реле с контактами большей мощности (например пускатель ПМЕ 100 - 200...), обмотку которого (обычно на 220 вольт) коммутировать при помощи реле РЭС22. В этом случае обычно хватает одной пары контактов и искрогасящую цепочку параллельно контактам реле можно не ставить. Трансформатор питания использован на 12 вольт (был готовый) с мощностью около 5 ватт. При самостоятельном изготовлении следует учитывать тот факт что трансформатор будет работать непрерывно, поэтому лучше увеличить (для надежности) на 15-20 процентов количество витков первичной и вторичной обмоток по сравнению с расчетными. Использовать Китайские трансформаторы я бы Вам не советовал - при работе они очень сильно греются - может произойти пожар, либо трансформатор попросту сгорит, а Вы будете уверены в надежности работы схемы и перестанете наведываться в гараж... Результат - овощи испорчены...
Данное устройство эксплуатируется автором на протяжении 5 лет и показало высокую надежность. Соседи по гаражному кооперативу тоже высоко оценили этот "девайс" - уровень воды в их ямах также значительно понизился...

Можно подобное устройство изготовить и без микросхемы:



Реле в данной конструкции используется типа КУЦ (от цветных телевизоров). Этот тип реле имеет две пары замыкающих контактов. Одна пара используется для переключения пластин датчика, другая - для управления насосом. Следует иметь в виду, что реле типа КУЦ нежелательно использовать совместно с микросхемой - могут появиться ложные срабатывания от наводок!

Схема каких либо особенностей не имеет. Возможно, во время настройки придется подобрать резистор R2 в цепи смещения транзистора VT2, добиваясь четкого срабатывания реле при контакте датчика с водой.


На оставшихся элементах микросхемы можно собрать еще одно полезное устройство - имитатор охранной сигнализации:



Устройство предназначено для имитации системы охраны гаража. Для обеспечения бесперебойности работы схема снабжена автономным питанием из батареи аккумуляторов с напряжением 5 вольт. Для экономичности устройства в целом - служит фоторезистор R2. В темное время суток на фоторезистор свет не попадает - сопротивление его велико - на входе элемента присутствует напряжение логической еденицы - генератор вырабатывает импульсы. Светодиод - "моргает". В светлое время суток сопротивление фоторезистора уменьшается, что приводит к уменьшению напряжения на выводе 10 микросхемы до уровня логического нуля - генератор перестает возбуждаться. Частота импульсов зависит от номиналов конденсатора С1 и резистора R2. В качестве резервного источника использована батарея из 4 аккумуляторов типа КНГ-1,5. Емкости аккумуляторной батареи хватает для непрерывной работы схемы примерно на 20-30 суток (при пропадании сетевого напряжения).
Настройка сводится к подбору с помощью сопротивления резистора R1 уровня чувствительности схемы. Резистором R2 можно изменять частоту генератора.
Данное устройство относится к так называемому "пассивному" устройству защиты, но оно реально работает! Эксплуатация "моргасика" в течении более 5 лет показала его довольно высокую эффективность. За это время не было зафиксировано ни одной попытки вскрытия гаража (у соседей такие случаи бывали). Понятно, что серьезного жулика подобным устройством не напугаешь - (но где они, серьезные жулики - так, одна шпана...).

В настоящем справочном пособии приведены сведения об использовании тайников различных типов. В книге рассматриваются возможные варианты тайников, способы их создания и необходимые при этом инструменты, описываются приспособления и материалы для их сооружения. Даны рекомендации по устройству тайников дома, в автомобилях, на приусадебном участке и т. п.

Особое место уделено способам и методам контроля и защиты информации. Приведено описание специального промышленного оборудования, используемого при этом, а также устройств, доступных для повторения подготовленными радиолюбителями.

В книге дано подробное описание работы и рекомендации по монтажу и настройке более 50 устройств и приспособлений, необходимых при изготовлении тайников, а также предназначенных для их обнаружения и обеспечения сохранности.

Книга предназначена для широкого круга читателей, для всех, кто пожелает ознакомиться с этой специфической областью творения рук человеческих.

Если учесть тот факт, что человеческое тело в основном состоит из воды, которая является электрическим проводником, то можно предположить, что емкостной датчик для обнаружения человека - наиболее оптимальное решение. Емкостной датчик можно использовать в качестве сторожевого, реагирующего на проникновение злоумышленников в помещение, двери или на прикосновение к замкам либо ручкам входных дверей, металлическим шкатулкам, сейфам и т. п.

Простое емкостное реле

Радиус действия реле зависит от точности настройки конденсатора C1, а также от конструкции датчика. Максимальное расстояние, на которое реагирует реле, равно 50 см.

Принципиальная схема емкостного реле приведена на рис. 2.85, а конструкция индуктивной катушки с размещением ее и датчика на плате - на рис. 2.86.


Рис. 2.85. Простое емкостное реле


Рис. 2.86. Конструкция индуктивной катушки емкостного реле

Катушка L1 намотана на многосекционном полистироловом каркасе от контуров транзисторных радиоприемников и содержит 500 витков (250 + 250) с отводом от середины провода ПЭЛ 0,12 мм, намотанного внавал.

Датчик устанавливается перпендикулярно плоскости печатной платы. Он представляет собой отрезок изолированного монтажного провода длиной от 15 до 100 см, либо квадрат, выполненный из такого же провода, со сторонами от 15 см до 1 и.

Конденсатор С1 - типа КПК-М, остальные - типа К50-6. В качестве реле выбрано РЭС-10, паспорт РС4.524.312, можно также применить РЭС-10, паспорт РС4.524.303, либо РЭС-55А, паспорт 0602. Диод VD1 можно исключить, так как он необходим лишь для предохранения схемы от случайного изменения полярности питания.

Настраивается емкостное реле конденсатором С1. Сначала ротор C1 необходимо установить в положение минимальной емкости, при этом сработает реле К1. Затем ротор медленно поворачивают в сторону увеличения емкости до выключения реле К1. Чем меньше емкость подстроечного конденсатора, тем чувствительнее емкостное реле и больше расстояние, на котором датчик способен реагировать на объект. При настройке конденсатора корпус тела и руку с диэлектрической отверткой необходимо держать на возможно большем удалении от платы.

Емкостный датчик

Большинство схем емкостных датчиков состоят из двух генераторов и схемы, контролирующей нулевые биения или промежуточную частоту. При этом частота одного генератора стабилизируется кварцевым резонатором, а на настройку контура другого влияет внешняя емкость.

Схема, приведенная на рис. 2.87, содержит один генератор, работающий на частоте 460–470 кГц, воздействие на датчик приводит к тому, что изменяется ток, потребляемый генератором (внешняя емкость не столько изменяет частоту, сколько дополнительно нагружает контур).


Рис. 2.87. Емкостный датчик

При увеличении внешней емкости ток потребления возрастает, что приводит к открыванию второго транзистора.

Генератор собран на полевом транзисторе VT1. Частота настройки определяется параметрами контура на катушке L1. Датчик может быть произвольной формы, например кусок монтажного провода, сетка, квадрат со стороной от 150 до 1000 мм или кольцо. Если датчик устанавливать в автомобиле, то для охраны стекла достаточно провода длиной 150 мм, можно установить сетку в сидениях или расположить провод в щелях приборной панели.

Ключ выполнен на транзисторе VT2. При воздействии на датчик ток, потребляемый генератором, увеличивается и транзистор VT2 открывается, при этом напряжение на его коллекторе становиться близким к напряжению питания (схема питается от параметрического стабилизатора на стабилитроне VD1 и резисторе R6).

Исполнительное устройство выполнено на микросхеме DD1 по схеме одновибратора. Цепь R5C5 нужна для задержки срабатывания устройства после включения. Если задержка не нужна, конденсатор С5 можно исключить. Можно сделать вариант с задержкой и контрольным светодиодом. В этом случае нужно уменьшить сопротивление R6 до 150 Ом, a R4 до 620 Ом, и включить последовательно с R4 светодиод типа АЛ307 в прямом направлении. Теперь первые пять-десять секунд после включения реакция датчика приведет только к зажиганию светодиода. Затем, после окончания этого времени, каждое срабатывание будет приводить к появлению на выходе схемы положительного импульса длительностью около 10 с. Длительность импульса можно регулировать, изменяя сопротивление R7 или емкость С6.

Емкостный датчик собран на одной печатной плате из одностороннего фольгированного стеклотекстолита. Подстроечный конденсатор - тина КПК, полевой транзистор VT1 может быть с любым буквенным индексом, что же касается VT2 - здесь подойдет любой p-n-p транзистор малой мощности, включая и МП39 -МП42. Микросхему К176ЛА7 можно заменить на К561ЛА7 или даже на К561ЛЕ5, но в этом случае нужно поменять местами R5 и С5, изменить полярность включения С6 на противоположную; вывод R7, соединенный с общим проводом, подключить к катоду стабилитрона, а выходной сигнал снимать с вывода 3 DD1, включив элемент с выводами 12, 13 и 11 между коллектором VT2 и выводом 9 DD1.

Катушка намотана на стандартном четырехсекционном каркасе от катушки гетеродина средневолнового радиоприемника. Ферритовый сердечник (и броневой, если имеется) удаляется. Катушка имеет 1000 витков с отводом от середины провода ПЭВ 0,06 мм. Стабилитрон можно выбрать любой соответствующей мощности с напряжением стабилизации 7…10 В.

Для настройки подключите датчик и расположите плату там, где она будет находиться (или недалеко от этого места). Подключив питание, диэлектрической отверткой установите ротор конденсатора С1 в состояние минимальной емкости. При этом схема должна сработать. Затем, постепенно поворачивая его на небольшой угол и удаляясь после этого на расстояние недосигаемости (около полуметра), установите ротор С1 в такое положение, при котором схема перестает срабатывать, пока вы не приблизитесь на такое расстояние, которое хотите установить.

Емкостное реле на LC-контуре

Принцип действия описываемого варианта емкостного реле (рис. 2.88) основан на изменении частоты LC-генератора под влиянием воздействия на его элементы внешних предметов - эффекта, знакомого вам по реакции радиоприемника на поднесение руки к его антенне.


Рис. 2.88. Емкостное реле на LC-контуре

Такой генератор емкостного реле образуют катушка L1, емкость датчика Е1, конденсаторы C1, С2, полевой транзистор VT1 и, конечно, незначительная емкость монтажа устройства.

Если напряжение питания транзистора стабилизировано и емкость датчика неизменна, то и частота генератора тоже неизменна (в нашем случае примерно 100 кГц). Но стоит приблизиться или коснуться датчика рукой, его емкость увеличивается, а частота электрических колебаний генератора уменьшается.

Резкое изменение частоты LC-генератора - это и есть сигнал о нарушении исходных параметров чувствительного элемента емкостного реле.

Но этот сигнал надо еще обнаружить. Решить задачу помогает второй LC-контур, образованный катушкой L2, конденсатором С4 и слабо связанный (чтобы не упала добротность) с генератором через резистор R1. Используется знакомое вам свойство резонансного контура - зависимость напряжения на нем от частоты колебаний поступающего сигнала. Выделенное контуром напряжение сигнала выпрямляется диодом VD1, фильтруется конденсатором С5 и далее поступает на инвертирующий вход (вывод 2) операционного усилителя (ОУ) DA1, выполняющего функцию компаратора.

Конденсатором С4 резонансный контур настраивают на исходную частоту F 0 генератора. При этом на инвертирующем входе компаратора действует постоянное напряжение U вх. мах. Резисторами R2 и R3 устанавливают на неинвертирующем входе (вывод 3) ОУ пороговое напряжение U пор. Несколько меньшее, чем U вх. мах. В этом случае напряжение на выходе ОУ мало и светодиод HL1, подключенный к нему через ограничительный резистор R5, не горит.

Если изменение частоты генератора будет таким, что напряжение U вх станет меньше U пор,компаратор сработает и включит светодиод. При удалении от датчика частота генератора вновь станет исходной, напряжение U вх увеличится, компаратор переключится в первоначальное состояние и светодиод погаснет.

Катушки L1 и L2 идентичные по конструкции и намотаны на кольцах из феррита 2000НМ с внешним диаметром 20 мм (можно 15 мм) и содержат 100 витков провода ПЭВ-2 0,2 мм. Намотка виток к витку, в один слой. Отвод катушки L1 сделан от 20-го витка, считая от вывода, соединенного общим проводом, L2 - от середины. Расстояние между началом и концом катушек должно быть не менее 3…4 мм. Транзистор VT1 - КПЗОЗБ, операционный усилитель DA1 - К140УД7, К140УД8, диод VD1 - КД503Б, КД521, КД522Б. Конденсаторы С1 и С2 - типа КТ, КД, КМ, СЗ и С5 - КЛС, KM, С4 - КПК-1, резисторы R2 и R3 - типа СПЗ-3, остальные - ВС, МЛТ.

После сборки реле проводят предварительную регулировку (цепочку R5HL1 пока не подключают). Роль датчика могут временно выполнять два отрезка провода диаметром 0,5… 1 мм длиной по 1…1,5 м, расположенные параллельно на расстоянии 15…20 см один от другого. К конденсатору С5 подключают вольтметр постоянного тока с относительным входным сопротивлением менее 10 кОм/В и подстроечным конденсатором С4 добиваются максимального показания напряжения вольтметра. Если при этом емкость конденсатора С4 окажется наибольшей, то параллельно ему подключают дополнительный конденсатор емкостью 10… 15 пФ и подстройку повторяют. Вольтметр должен фиксировать напряжение 2,5…5 В. Если оно меньше, подбирают резистор R1, но его сопротивление должно быть более 500 кОм. После каждой замены резистора подстройку повторяют.

Далее, к выходу ОУ подключают последовательно соединенные резистор R5 светодиод НL1. Движок резистора R3 устанавливают в нижнее по схеме положение, резистор R2 - в среднее. При этом светодиод должен гореть. Медленно перемещая движок резистора R3, добиваются погасания светодиода. Если теперь к датчику поднести руку или коснуться провода, соединенного с конденсатором С1, светодиод должен загореться. На этом предварительную регулировку емкостного реле можно считать законченной.

Схема исполнительного устройства приведена на рис. 2.89.


Рис. 2.89. Исполнительное устройство

К выходу емкостного реле через делитель R1R2 подключают электронный ключ на транзисторе VT1, управляющий электромагнитным реле К1, контакты К1.1 которого включают осветительную лампу EL1 или сирену. Блок питания включает в себя понижающий трансформатор Т1, выпрямитель на диодах VD3-VD6 и фильтрующий конденсатор С2. Напряжение питания самого емкостного реле (9 В) стабилизируется параметрическим стабилизатором R3VD1.

При срабатывании емкостного реле на его выходе появляется постоянное напряжение 7…8 В, часть которого поступает на базу транзистора VT1. Транзистор открывается, реле К1 срабатывает и замыкающимися контактами К1.1 подключает к сети лампу EL1 или сирену. После восстановления исходного режима работы емкостного реле транзистор закрывается и лампа гаснет.

Транзистор VT1 может быть КТ315Б - КТ315Д, КТ312А - КТ312В или другой аналогичный. Диоды VD3 - VD6 - любые выпрямительные с допустимым прямым током не менее 40…50 мА. Оксидные конденсаторы - типа К50-6 или другие на соответствующие поминальные напряжения, резисторы - типа ВС, МЛТ. Реле К1 - РЭС22, паспорт РФ4.500.129 или аналогичное, срабатывающее при напряжении 9…11 В.

Налаживание автомата сводится к окончательной настройке его емкостного реле. Для этого параллельно конденсатору С5 (см. рис. 2.88) подключают высокоомный вольтметр постоянного тока и подстроечным конденсатором С4 устанавливают на нем максимальное напряжение - оно должно быть примерно таким же, как и при предварительной настройке. Если добиться этого не удается, параллельно С4 подключают дополнительный конденсатор емкостью 20…30 пФ и настройку повторяют.

Для повышения чувствительности устройства контур L2C4 следует настраивать не на максимум напряжения, а немного меньше - примерно на уровне 0,7 U вх. мах. А так как возможны две точки настройки (выше и ниже F o), правильна будет та, которая соответствует меньшей емкости конденсатора С4. После этого резисторами R2, R3 добиваются четкого срабатывания электромагнитного реле.

Высоковольтный емкостной датчик (далее датчик) – устройство для снятия формы вторичного напряжения системы зажигания и последующей передачи его на один из входов регистрирующего оборудования.

Датчик состоит из держателя, емкостной пластины, которая гальванически соединена с сигнальным проводом, экранированного кабеля и соответствующего разъема для подключения датчика к входу регистрирующего оборудования.

Из чего следует:

1. Сигнал на выходе датчика будет тем больше чем ближе емкостная пластина к токопроводящей жиле ВВ провода.

2. Влияние электромагнитных наводок с соседних ВВ проводов будет тем меньше чем меньше размер емкостной пластины и чем меньше не экранированный участок сигнального провода.

4. Емкостная связь представляет собой дифференцирующую цепочку (ФВЧ) пропускающую высокочастотные колебания (область пробоя), и не пропускающую низкочастотные колебания (область горения), т.е. форма вторичного напряжения на выходе датчика будет искажена.

Сд – емкость между токопроводящей жилой ВВ провода и емкостной пластиной датчика
Rвх – входное сопротивление регистрирующего оборудования
Свх – входная емкость не учитывается, так как она фактически в данном случае ни на что не влияет

На графике красного цвета изображен исходный сигнал (меандр 1 КГц, скважность 10%, амплитуда 1 В)
На графике синего цвета изображен сигнал, полученный на выходе дифференцирующей цепочки


Сигнал с выхода датчика без использования компенсационной емкости

Для устранения искажения формы вторичного напряжения на выходе датчика, необходимо использовать дополнительную компенсационную емкость, которая с емкостью датчик-жила образует емкостной делитель:

Без учета входного сопротивления регистрирующего оборудования, коэффициент передачи емкостного делителя определяется следующим соотношением: Kп = Сд / (Сд + Ск) . Как видно из соотношения, чем больше значение емкости Ск тем меньше будет значение напряжения на выходе емкостного делителя. Для идеального емкостного делителя без учета входного сопротивления регистрирующего оборудования Ск можно взять сколь угодно малое, при этом форма сигнала на выходе делителя в точности будет соответствовать форме сигнала на его входе.

При учете входного сопротивления соотношение для определения коэффициента передачи становится гораздо объемнее, но зависимость Kп от Ск остается той же. Входное сопротивление регистрирующего оборудования на прямую не влияет на Kп, оно определяет “степень вносимого искажения”.

При увеличении входного сопротивления искажения формы вторичного напряжения значительно уменьшаются. В большинстве случаев входное сопротивления практических все осциллографов используемых для автодиагностики находится в диапазоне 1 МОм, за исключением специализированных входов предназначенных исключительно для подключения ВВ датчиков. По этому при непосредственном подключении датчика к входу осциллографа (без специализированного адаптера) Rвх также можно принять за константу, и ограничится варьированием только Ск.

Примечание!
Подключение датчика к входу осциллографа просто через резистор 10 МОм приведет к увеличению входного сопротивления и соответственно уменьшению искажения формы вторичного напряжения, но при этом примерно в десять раз уменьшиться коэффициент передачи входного тракта канала. Для увеличения входного сопротивления без уменьшения коэффициента передачи необходимо использовать промежуточный буфер (повторитель – простейший адаптер) с высоким входным сопротивлением и низким выходным сопротивлением.
Для текущих Сд (точно не известно) и Rвх (обычно 1 МОм) значение Ск подбирается исходя из компромисса:
1. Чем меньше Ск тем больше амплитуда напряжения на выходе емкостного делителя
2. Чем больше Ск тем меньше степень искажения формы вторичного напряжения

Практически значение Ск возможно увеличивать до тех пор, пока “амплитуда” напряжения на выходе емкостного делителя будет достаточно выделяться на фоне шума.

Местоположение подключения Ск: в начале кабеля (ближе к емкостной пластине) или в конце кабеля (ближе к входу регистрирующего оборудования) – практически не влияет на форму и амплитуду сигнала с выхода датчика.

На графике красного цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной на входе осциллографа, на графике синего цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной непосредственно возле емкостной пластины. Как видно форма сигналов практически одинакова, а амплитуда различается в пределах разброса номинала используемых емкостей +/- 20%.

Примеры осциллограмм вторичного напряжения снятого одним и тем же датчиком с емкостной пластиной в виде круга диаметром ~10 мм при разных значениях Ск, на стенде с DIS катушки 2112-3705010 (форма вторичного напряжения несколько отличается от привычной из-за разряда на открытом воздухе).


Ск = 470 пФ. Область горения значительно проседает, но амплитуда пробоя достигает 5 Вольт.


Ск = 1.8 нФ. Область горения также значительно проседает, амплитуда пробоя уменьшилась до 2 Вольт.


Ск = 3.3 нФ. Область горения не много проседает, амплитуда пробоя уменьшилась до 1 Вольта.


Ск = 10 нФ. Область горения практически не проседает, но и амплитуда пробоя уменьшилась до 0.4 Вольт.

Как видно при Ск = 10 нФ форма вторичного напряжения практически не искажена, а шум довольно не значительный.

Для сравнения приведены осциллограммы вторичного напряжения снятые с одного и того же ВВ провода без использования адаптера и с использованием специализированного адаптера зажигания.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 10 нФ) непосредственно подключенного к входу осциллографа. На графике синего цвета изображен сигнал, полученный с адаптера Постоловского, к которому подключен “родной” ВВ датчик Постоловского.

Как видно форма обеих сигналов практически совпадает, но с адаптера содержащего промежуточные усилители, сигнал имеет в 3 раза большую амплитуду.

Примечание!
Все адаптеры, использующие емкостные датчики искажают форму вторичного напряжения, но при высоком входном сопротивлении и достаточной Ск, вносимое искажение крайне не значительно.

В простейшем случае емкостной съемник это любой металлический предмет расположенный рядом с ВВ проводом, т.е. в роли емкостной пластины могут выступать зажим типа “крокодил”, фольга намотаня на ВВ провод, монетка и т.д.

Практически в качестве высоковольтного емкостного датчика рекомендуется использовать конструкцию, которая удовлетворяет следующим требованием:
1. Высокая степень защиты от пробоя
2. Малая подверженность электромагнитным наводкам от соседних ВВ проводов
3. Удобное конструктивное исполнение для быстрого подключения датчика к ВВ проводу

Примеры конструкции ВВ емкостных датчиков:


Жестяная пластинка 20x70 мм, выгибается, так что бы плотно прижиматься к ВВ проводу.


По сути, та же пластина только в изоляции.


ВВ датчик типа “прищепка”.


ВВ датчик аналогичный одной из конструкций Бош (поставляется по цене $7 / шт).

В качестве примера рассмотрим процесс изготовления ВВ датчика на основании выше приведенной конструкции компании Бош.

Для изготовления датчика необходимо:

1. Выше рассмотренная ручка ВВ датчика.

2. Экранированный кабель 1-3 м. Желательно использовать мягкий микрофонный кабель, так как при эксплуатации он намного удобнее жесткого коаксиального кабеля. Волновое сопротивление кабеля 50 или 75 Ом, значения не имеет, так как все исследуемые сигналы находятся в области низких частот.

3. Разъемы для подключения датчика к осциллографу или адаптеру зажигания BNC-FJ / BNCP / FC-022 Переходник гнездо F / BNC под F-ку (разъем один и тот же только у разных производителей / продавцов он по-разному называется).

BNC-M / FC-001 / RG58 / F разъем

Примечание!
При покупке F разъема и кабеля обращайте внимание на соответствие диаметра кабеля к диметру разъема для накрутки на кабель, иначе либо придется срезать часть изоляции кабеля для уменьшения его диаметра, либо наматывать ленту на кабель для увеличения его диаметра.
4. Сальник / гермоввод / кабельный ввод PG-7 с дюймовой резьбой

5. Емкостная пластина “пятачок” диаметром 9-10 мм

“Пятачок” возможно либо вырезать из жести, либо использовать специальный пробойник (лучше всего использовать пробойник на 8 мм, после развальцовки получится “пятачок” диаметром чуть больше 9 мм):

Также в качестве “пяточка” возможно, использовать подходящие по диаметру канцелярские кнопки.

6. Компенсационная емкость – не полярный (лучше керамический) конденсатор номиналом от 2.2 нФ до 10 нФ на напряжение 50 Вольт (если использовать конденсатор на 1 КВ то в случае пробоя ВВ провода он все равно сгорит). Возможно использовать как выводные конденсаторы так и планарные в корпусе 1206 или 0805.

Порядок изготовления:

1. Удалить изоляцию с экранированного кабеля до оплетки, на участке 12-13 мм. Часть оплетки под снятой изоляцией вывернуть наружу и равномерно расположить вдоль кабеля. С сигнального провода снять изоляцию на участке 10-11 мм и залудить его.

2. Накрутить на кабель F разъем, так что бы он плотно держался на кабеле и хорошо контактировал с частью вывернутой оплетки. При этом сигнальный провод должен выступать на достаточную длину из F разъема для надежного контакта с центральным стержнем разъема BNC-FJ.

3. Накрутить разъем BNC-FJ на F разъем. После чего проверить наличие контакта (прозвонить тестером) между сигнальным проводом и центральным стержнем разъема BNC-FJ, между оплеткой кабеля и экраном разъема BNC-FJ и отсутствие контакта между сигнальным проводом и оплеткой кабеля.

4. Если есть сальник PG-7 то предварительно надеть его на кабель открутив с него гайку.

5. Удалить изоляцию и оплетку с противоположного конца кабеля, на участке 3-5 мм. С сигнального провода снять изоляцию на участке 2-3 мм. Припаять к залуженному сигнальному проводу емкостную пластину.

При необходимости припаять компенсационную емкость между сигнальным проводом и оплеткой.

6. Обмотать участок сигнального провода и припаеную компенсационную емкость изолентой, так что бы емкостная пластина не болталась и была поджата краем изоленты. После чего емкостную пластину обильно смазывать солидолом.

Солидол “улучшает” диэлектрическую проницаемость и устраняет скачки области горения.

На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) без солидола. На графике синего цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) с использованием солидола. Без использования солидола область горения иногда “подскакивает” на 20-30%.

7. Надеть ручку ВВ датчика так, что бы емкостная пластина упиралась в дно колпачка датчика. После чего зажать кабель либо с помощью сальника PG-7 либо закрепить изолентой (при этом с датчиком нужно обращаться крайне осторожно, что бы случайно не вырвать кабель из ручки датчика).

В результате должен получится высоковольтный емкостной датчик, который возможно непосредственно подключать к одному из аналоговых (с наличием Ск) или к логическому (без Ск) входов осциллографа.

Сегодня никого не удивишь различными по назначению и эффективности электронными устройствами превентивного предупреждения, которые оповещают людей или включают охранную сигнализацию задолго до непосредственного контакта нежелательного гостя с охраняемым рубежом (территорией). Многие из таких узлов, описанных в литературе, на мой взгляд, интересны, но усложнены. В противовес им простая электронная схема бесконтактного емкостного датчика (рис.1), собрать которую в силах даже начинающий радиолюбитель. Устройство имеет многочисленные возможности, одну из которых - высокую чувствительность по входу - используют для предупреждения о приближении какого-либо одушевленного объекта (к примеру, человека) к сенсору Е1.
В основе схемы - два элемента микросхемы К561ТЛ1 включенных как инверторы. Эта микросхема имеет в своем составе четыре однотипных элемента с функцией 2И-НЕ с триггера Шмитта с гистерезисом (задержкой) на входе и инверсией по выходу. Функциональное обозначение - петля гистерезиса показывает

Рис. 1. Электрическая схема бесконтактного емкостного датчика в таких элементах внутри их обозначения. Применение К561ТЛ1 в данной схеме оправдано тем, что она (и К561 серия микросхем, в частности) имеет очень малые рабочие токи, высокую помехозащищенность (до 45% от уровня напряжения питания), работает в широком диапазоне питающего напряжения (от 3 до 15 В), имеет защищенность по входу от потенциала статического электричества и кратковременного превышения входных уровней и многие другие преимущества, которые позволяют широко использовать ее в радиолюбительских конструкциях, не требуя каких-либо особых мер предосторожности и защиты.
Кроме того, К561ТЛ1 позволяет включать свои независимые логические элементы параллельно, в качестве буферных элементов, вследствие чего мощность выходного сигнала кратно увеличивается. Триггеры Шмита - это, как правило, бистабильные схемы, способные работать с медленно возрастающими входными сигналами, в том числе с примесью помех, при этом обеспечивающие по выходу крутые фронты импульсов, которые можно передавать в последующие узлы схемы для стыковки с другими ключевыми элементами и микросхемами.
Микросхема К561ТЛ1 (как, впрочем, и К561ТЛ2) может выделять Управляющий сигнал (в том числе цифровой) для других устройств с нечеткого входного импульса. Зарубежный аналог К561ТЛ1 - CD4093B.
Предельное состояние, близкое к низкому логическому уровню. На выходе DD1.1 - высокий уровень, на выходе DD1.2 - опять низкий. Транзистор VT1, выполняющий роль усилителя тока, закрыт. Пьезоэлектрический капсюль НА1 (с внутренним генератором 3Ч) неактивен.
К сенсору Е1 подключена антенна - в ее качестве используют автомобильную телескопическую антенну. При нахождении человека рядом с антенной изменяется емкость между штырем антенны и полом. От этого переключаются элементы DD1.1, DD1.2 в противоположное состояние. Для переключения узла человек среднего роста должен находиться (проходить) рядом с антенной длиной 35 см на расстоянии до 1,5 м.
На выводе 4 микросхемы появляется высокий уровень напряжения, вследствие этого транзистор VT1 открывается и звучит капсюль НА1.
Подбором емкости конденсатора С1 можно изменить режим работы элементов микросхемы. Так, при уменьшении емкости С1 до 82-120 пФ узел работает иначе. Теперь звуковой сигнал звучит, только пока на вход DD1.1 воздействует наводка переменного напряжения - прикосновение человека.
Электрическую схему (рис.1) можно использовать и как основу для триггерного сенсорного узла. Для этого исключают постоянный резистор R1, экранированный провод, а сенсором являются контакты микросхемы 1 и 2.
Последовательно с R1 подключают экранированный провод (кабель РК-50, РК-75, экранированный провод для сигналов 34 - подходят все типы) длиной 1-1,5 м, экран соединяется с общим проводом. Центральный (неэкранированный) провод на конце соединяется со штырем антенны.
При соблюдении указанных рекомендаций, применении указанных в схеме типов и номиналов элементов узел генерирует звуковой сигнал частотой около 1 кГц (зависит от типа капсюля НА1) при приближении человека к штырю антенны на расстояние 1,5-1 м. Триггерного эффекта нет. При отходе человека от антенны звук в капсюле НА1 прекращается.
Эксперимент проводился также с животными - кошкой и собакой: на их приближение к сенсору - антенне - узел не реагирует.Принцип действия в данном устройстве основан на изменении емкости сенсора-антенны Е1 между ней и «землей» (общим проводом, всем тем, что относится к заземляющему контуру, - в данном случае это пол и стены помещения). При приближении человека эта емкость существенно изменяется, что оказывается достаточным для срабатывания микросхемы К561ТЛ1.
Практическое применение узла трудно переоценить. В авторском варианте устройство смонтировано рядом с дверной коробкой многоквартирного жилого дома. Входная дверь - металлическая.
Громкость сигнала 34, излучаемого капсюлем НА1, достаточна для того, чтобы услышать его на закрытой лоджии (она сопоставима с громкостью квартирного звонка).
Источник питания - стабилизированный с напряжением 9-15 В, с хорошей фильтрацией напряжения пульсаций по выходу. Ток потребления ничтожно мал в режиме ожидания (несколько микроампер) и увеличивается до 22-28 мА при активной работе излучателя НА1.Бестрансформаторный источник применять нельзя из-за вероятности поражения электрическим током. Оксидный конденсатор С2 действует как дополнительный фильтр по питанию, его тип К50-35 или аналогичный, на рабочее напряжение не ниже напряжения источника питания.
При эксплуатации узла выявлены интересные особенности. Так, напряжение питания узла влияет на его работу. При увеличении напряжения питания до 15 В в качестве сенсора-антенны используется только обыкновенный многожильный неэкранированный электрический медный провод сечением 1-2 мм длиной 1 м. Никакого экрана и резистора R1 в таком случае не надо. Электрический медный провод подсоединяется непосредственно к выводам 1 и 2 элемента DD1.1. Эффект оказывается тем же.
При изменении фазировки сетевой вилки источника питания узел катастрофически теряет чувствительность и способен работать только как сенсор (реагирует на прикосновение к Е1). Это актуально при любом значении напряжения источника питания в диапазоне 9-15 В. Очевидно, что второе назначение данной схемы - обыкновенный сенсор (или сенсор-триггер).
Эти нюансы следует учитывать при повторении узла. Однако при правильном подключении, описанном здесь, получается важная и стабильная часть охранной сигнализации, обеспечивающей безопасность жилищу, предупреждающей хозяев еще до возникновения нештатной ситуации.
Монтаж элементов осуществляется компактно на плате из стеклотекстолита.
Корпус для устройства любой из диэлектрического (непроводящего) материала. Для контроля включения питания устройство может быть снабжено индикаторным светодиодом, подключенным параллельно источнику питания.


Рис. 2. Фото готового устройства с автомобильной антенной в виде емкостного датчика
Налаживание при точном соблюдении рекомендаций не требуется. Возможно, при других вариантах сенсоров и антенн узел проявит себя в ином качестве. Если экспериментировать с длиной экранирующего кабеля, длиной и площадью сенсора-антенны Е1 и изменением напряжения питания узла, возможно, потребуется скорректировать сопротивление резистора R1 в широких пределах от 0,1 до 100 МОм. Для уменьшения чувствительности узла увеличивают емкость конденсатора С1. Если это не приносит результатов, параллельно С1 включают постоянный резистор сопротивлением 5-10 МОм.
Неполярный конденсатор С1 типа КМ6. Постоянный резистор R2 - МЛТ-0,25. Резистор R1 типа ВС-0,5, ВС-1. Транзистор VT1 необходим для усиления сигнала с выхода элемента DD1.2. Без этого транзистора капсюль НА1 звучит слабо. Транзистор VT1 можно заменить на КТ503, КТ940, КТ603, КТ801 с любым буквенным индексом-
Капсюль-излучатель НА1 может быть заменен на аналогичный с встроенным генератором 34 и рабочим током не более 50 мА, например FMQ-2015B, КРХ-1212В и аналогичными.
Благодаря применению капсюля со встроенным генератором узел проявляет интересный эффект - при близком приближении человека к сенсору-антенне Е1 звук капсюля монотонный, а при удалении (или дальнем приближении человека на расстоянии более 1,5 м) капсюль издает стабильный по характеру, прерывистый звук в соответствии с изменением уровня потенциала на выходе элемента DD1.2.
Если в качестве НА1 применить капсюль со встроенным генератором прерываний 34, например KPI-4332-12, звук будет напоминать сирену при относительно большом расстоянии человека от сенсора-антенны и прерывистый сигнал стабильного характера при максимальном приближении.
Некоторым минусом устройства можно считать отсутствие избирательности «свой/чужой» - так, узел будет сигнализировать о приближении к Е1 любого лица, в том числе вышедшего «за булкой хлеба» хозяина квартиры.
Основа работы узла - электрические наводки и изменение емкости максимально полезны при эксплуатации в больших жилых массивах с развитой сетью электрических коммуникаций. Возможно, что такой прибор будет бесполезен в лесу, в поле и везде, где нет электрических коммуникаций осветительной сети 220 В. Такова особенность устройства.
Экспериментируя с данным узлом и микросхемой К561ТЛ1 (даже в штатном ее включении), можно получить бесценный опыт и реальные, простые в повторении, но оригинальные по сути и функциональным особенностям электронные устройства.