Фазы фотосинтеза. Фотосинтез происходит в

Жизнь на Земле возможна благодаря световой, главным образом, солнечной энергии. Эта энергия преобразуется в энергию химических связей органических веществ, образующихся в процессе фотосинтеза.

Фотосинтезом обладают все растения и некоторые прокариоты (фотосинтезирующие бактерии и сине зелёные водоросли). Такие организмы называются фототрофами . Энергию для фотосинтеза даёт свет, который улавливается особыми молекулами –фотосинтетическими пигментами. Поскольку при этом поглощается свет лишь определённой длины волны, часть световых волн не поглощается, а отражается. В зависимости от спектрального состава отражённого света пигменты приобретают окраску – зелёную, жёлтую, красную и др.

Различают три типа фотосинтетических пигментов – хлорофиллы, каротиноиды и фикобилины . Наиболее важным пигментом является хлорофилл. Основой является плоское порфириновое ядро, образованное четырьмя пиррольными кольцами, соединёнными между собой метиловыми мостиками, с атомом магния в центре. Имеются различные хлорофиллы типа- а. У высших растений, зелёных и эвгленовых водорослей имеется хлорофилл-В, который образуется из хлорофилла - А. Бурые и диатомовые водоросли вместо хлорофилла-в содержат хлорофилл-С, а красные водоросли – хлорофилл-Д. Другую группу пигментов образуют каротиноиды, имеющие окраску от жёлтой до красной. Они содержатся во всех окрашенных пластидах (хлоропластах, хромопластах) растений. Причём в зелёных частях растений хлорофилл маскирует каротиноиды, делая их незаметными до наступления холодов. Осенью зелёные пигменты разрушаются и каротиноиды становятся хорошо заметными. Каротиноиды синтезируют фототрофные бактерии и грибы. Фикобилины присутствуют у красных водорослей и цианобактерий.

Световая стадия фотосинтеза

Хлорофиллы и другие пигменты в хлоропластах образуют специфические светособирающие комплексы . Путём электромагнитного резонанса они передают собранную энергию на особые молекулы хлорофилла. Эти молекулы под действием энергии возбуждения отдают электроны молекулам других веществ – переносчикам , а затем отнимают электроны у белков и далее, от воды. Расщепление воды в процессе фотосинтеза называется фотолизом . Это происходит в полостях тилакоидов. Протоны через специальные каналы проходят в строму. При этом выделяется энергия, необходимая для синтеза АТФ:

2Н 2 О = 4е + 4Н + + О 2

АДФ + Ф = АТФ

Участие энергии света здесь является обязательным условием, поэтому данную стадию называют световой стадией. Кислород, образующийся как побочный продукт выводится наружу и используется клеткой для дыхания.

Темновая стадия фотосинтеза

Следующие реакции протекают в строме хлоропласта. Из углекислого газа и воды происходит образование моносахаридов. Сам по себе данный процесс противоречит законам термодинамики, но поскольку при этом участвуют молекулы АТФ, то за счёт этой энергии синтез глюкозы является реальным процессом. Позже, из её молекул создаются полисахариды – целлюлоза, крахмал и другие сложные органические молекулы. Суммарное уравнение фотосинтеза можно представить в следующем виде:

6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + 6О 2

Особенно много крахмала откладывается в хлоропластах днём при интенсивном течении фотосинтетических процессов, ночью же крахмал расщепляется до растворимых форм и используется растением.

Хотите более подробно разобраться в этой или другой теме по биологии?Записывайтесь на онлайн-уроки к автору этой статьи Владимиру Смирнову.

Статья является выдержкой из труда Владимира Смирнова "Генезис", любое копирование и использование материала обязательно с указанием авторства.

Также предлагаем посмотреть видеоурок о фотосинтезе от нашего ботаника Ирины:

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Фотосинтез представляет собой совокупность процессов формирования световой энергии в энергию химических связей органических веществ с участием фотосинтетических красящих веществ.

Такой тип питания характерен для растений, прокариот и некоторых видов одноклеточных эукариот.

При природном синтезе углерод и вода во взаимодействии со светом преобразуются в глюкозу и свободный кислород:

6CO2 + 6H2O + световая энергия → C6H12O6 + 6O2

Современная физиология растений под понятием фотосинтеза понимает фотоавтотрофную функцию, которая является совокупностью процессов поглощения, превращения и применения квантов световой энергии в разных несамопроизвольных реакциях, включая преобразование углекислого газа в органику.

Фазы

Фотосинтез у растений происходит в листьях через хлоропласты - полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.

Хлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.

Фотосинтез протекает при участии пигментов , которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент - каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.

Фотосинтез проходит две фазы - световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.

Световая

Первая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель. В конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.

Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).

Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.

Описание процесса световой фазы:

  1. При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
  2. В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
  3. Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;
  4. Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
  5. Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой - отрицательный за счет электронов;
  6. С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
  7. С освободившимся из воды атомным водородом происходит восстановление НАДФ + в НАДФ·Н2;

Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.

Темновая

Обязательный компонент для этой стадии - углекислый газ , который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.

Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:

  1. Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
  2. Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар - глюкозу. Этот процесс называют циклом Кальвина;

Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.

Суть фотосинтеза

Из таблицы сравнений световой и темновой фаз природного синтеза можно вкратце описать суть каждой из них. Световая фаза происходит в гранах хлоропласта с обязательным включением в реакции световой энергии. В реакциях задействованы такие компоненты как белки, переносящие электроны, АТФ-синтетаза и хлорофилл, которые при взаимодействии с водой образуют свободный кислород, АТФ и НАДФ·Н2. Для темновой фазы, происходящей в строме хлоропласта, солнечный свет не является обязательным. Получившиеся на прошлом этапе АТФ и НАДФ·Н2 при взаимодействии с углекислотой формируют природный сахар (глюкозу).

Как видно из вышеизложенного, фотосинтез предстает довольно сложным и многоступенчатым явлением, включающим множество реакций, в которых задействуются разные вещества. В итоге природного синтеза получается кислород, необходимый для дыхания живых организмов и защиты их от ультрафиолетовой радиации с помощью образования озонового слоя.

Фотосинтезом называют процесс, результатом которого является образование и выделение кислорода клетками растений и некоторыми видами бактерий.

Основное понятие

Фотосинтез - это не что иное, как цепочка уникальных физико-химических реакций. В чем же он заключается? Зеленые растения, а также некоторые бактерии поглощают солнечные лучи и преобразовывают их в электромагнитную энергию. Конечным результатом фотосинтеза является энергия химических связей разнообразных органических соединений.

В растении, которое осветили солнечные лучи, в определенной последовательности происходят окислительно-восстановительные реакции. Вода и водород, представляющие собой доноров-восстановителей, перемещаются в виде электронов к акцептору-окислителю (углекислому газу и ацетату). В результате образуются восстановленные соединения углеводов, а также кислород, который и выделяют растения.

История изучения фотосинтеза

На протяжении многих тысячелетий человек был убежден в том, что питание растения происходит по его корневой системе через почву. В начале шестнадцатого века голландским натуралистом Яном Ван Гельмонтом был проведен эксперимент с выращиванием растения в горшке. После взвешивания почвы до посадки и после того как растение достигло определенных размеров, им был сделан вывод о том, что все представители флоры получают питательные вещества в основном из воды. Этой теории придерживались ученые в течение двух последующих столетий.

Неожиданное для всех, но правильное предположение о питании растений было сделано в 1771 г. химиком из Англии Джозефом Пристли. Поставленные им опыты убедительно доказали, что растения способны очистить воздух, который ранее был не пригоден для дыхания человека. Несколько позже был сделан вывод о том, данные процессы невозможны без участия солнечного света. Ученые выяснили, что зеленые листочки растений не просто превращают полученный ими углекислый газ в кислород. Без этого процесса невозможна их жизнь. В совокупности с водой и минеральными солями углекислый газ служит пищей растениям. В этом заключено основное значение фотосинтеза для всех представителей флоры.

Роль кислорода для жизни на Земле

Опыты, которые были проведены английским химиком Пристли, помогли человечеству объяснить, почему воздух на нашей планете остается пригодным для дыхания. Ведь жизнь поддерживается, несмотря на существование огромного количества живых организмов и горение бесчисленного количества огней.

Возникновение жизни на Земле миллиарды лет назад было попросту невозможно. Атмосфера нашей планеты не содержала в себе свободного кислорода. Все изменилось с появлением растений. Весь находящийся сегодня в атмосфере кислород - это результат фотосинтеза, происходящего в зеленых листьях. Данный процесс изменил облик Земли и дал толчок к развитию жизни. Это бесценное значение фотосинтеза было до конца осознано человечеством лишь в конце 18 века.

Не является преувеличением утверждение, что само существование людей на нашей планете зависит от того, каково состояние растительного мира. Значение фотосинтеза заключено в его ведущей роли для протекания различных биосферных процессов. В глобальных масштабах эта удивительная физико-химическая реакция приводит к образованию органических веществ из неорганических.

Классификация процессов фотосинтеза

В зеленом листе происходит три важных реакции. Они и представляют собой фотосинтез. Таблица, в которую заносят данные реакции, применяется при изучении биологии. В ее строки вносят:

Фотосинтез;
- газообмен;
- испарение воды.

Те физико-химические реакции, которые происходят в растении при свете дня, позволяют зеленым листикам выделять двуокись углерода и кислород. В темное время суток - только первый из этих двух компонентов.

Синтез хлорофилла в некоторых растениях происходит даже при слабом и рассеянном освещении.

Основные этапы

Различают две фазы фотосинтеза, которые тесно связаны между собой. На первом этапе энергия лучей света преобразуется в высокоэнергетические соединения АТФ и универсальные восстановители НАДФН. Эти два элемента являются первичными продуктами фотосинтеза.

На втором (темновом) этапе полученные АТФ и НАДФН используются для фиксации углекислоты вплоть до ее восстановления в углеводы. Две фазы фотосинтеза имеют различия не только во времени. Они происходят и в различном пространстве. Тому, кто изучает по биологии тему "фотосинтез", таблица с точным указанием характеристик двух фаз поможет в более точном понимании процесса.

Механизм выработки кислорода

После поглощения растениями углекислого газа в них происходит синтез питательных веществ. Данный процесс осуществляется в зеленых пигментах, называемых хлорофиллами, под воздействием солнечных лучей. Основными составляющими этой удивительной реакции являются:

Свет;
- хлоропласты;
- вода;
- углекислый газ;
- температура.

Последовательность фотосинтеза

Выработка растениями кислорода осуществляется поэтапно. Основными стадиями фотосинтеза являются следующие:

Поглощение света хлорофиллами;
- разделение хлоропластами (внутриклеточными органоидами зеленого пигмента) полученной из почвы воды на кислород и водород;
- перемещение одной части кислорода в атмосферу, а другой - для осуществления дыхательного процесса растениями;
- образование молекул сахара в белковых гранулах (пиреноидах) растений;
- производство крахмалов, витаминов, жиров и т.д. в результате смешивания сахара с азотом.

Несмотря на то, что для осуществления фотосинтеза необходим солнечный свет, данная реакция способна протекать и при искусственном освещении.

Роль растительного мира для Земли

Основные процессы, происходящие в зеленом листе, уже достаточно полно изучила наука биология. Значение фотосинтеза для биосферы огромно. Это единственная реакция, приводящая к росту количества свободной энергии.

В процессе фотосинтеза каждый год происходит образование ста пятидесяти миллиардов тонн вещества органического типа. Кроме того, за указанный период растениями выделяется практически 200 млн. тонн кислорода. В связи с этим можно утверждать, что роль фотосинтеза огромна для всего человечества, так как данный процесс служит основным источником энергии на Земле.

В процессе уникальной физико-химической реакции происходит круговорот углерода, кислорода, а также многих других элементов. Из этого вытекает еще одно немаловажное значение фотосинтеза в природе. Данной реакцией поддерживается определенный состав атмосферы, при котором возможна жизнь на Земле.

Процесс, происходящий в растениях, ограничивает количество углекислого газа, не позволяя ему скапливаться в увеличенных концентрациях. Это также немаловажное значение фотосинтеза. На Земле благодаря зеленым растениям не создается так называемого парникового эффекта. Флора надежно защищает нашу планету от перегрева.

Растительный мир как основа питания

Немаловажна роль фотосинтеза для лесного и сельского хозяйства. Растительный мир является питательной базой для всех гетеротрофных организмов. Однако значение фотосинтеза кроется не только в поглощении зелеными листьями углекислого газа и получения такого готового продукта уникальной реакции, как сахар. Растения способны преобразовывать азотистые и серные соединения в вещества, из которых слагаются их тела.

Как же это происходит? Каково значение фотосинтеза в жизни растений? Данный процесс осуществляется посредством получения растением ионов нитратов. Эти элементы находятся в почвенной воде. В растение они попадают благодаря корневой системе. Клеточки зеленого организма перерабатывают ионы нитратов в аминокислоты, из которых слагаются белковые цепочки. В процессе фотосинтеза образуются и компоненты жиров. Они для растений являются важными запасными веществами. Так, в семенах многих плодов находится питательное масло. Этот продукт важен и для человека, так как находит применение в пищевой и сельскохозяйственной промышленности.

Роль фотосинтеза в получении урожая

В мировой практике работы сельскохозяйственных предприятий широко используются результаты изучения основных закономерностей развития и роста растений. Как известно, основой формирования урожая является фотосинтез. Его интенсивность, в свою очередь, зависит от водного режима культур, а также от их минерального питания. Каким же образом человек добивается увеличения плотности посевов и размеров листьев для того, чтобы растение максимально использовало энергию Солнца и забирало углекислый газ из атмосферы? Для этого оптимизируются условия минерального питания и водоснабжения сельскохозяйственных культур.

Научно доказано, что урожайность зависит от площади зеленых листьев, а также от интенсивности и длительности протекающих в них процессов. Но в то же время увеличение плотности посевов приводит к затенению листьев. К ним не может пробиться солнечный свет, и из-за ухудшения вентиляции воздушных масс в малых объемах поступает углекислый газ. В итоге происходит снижение активности процесса фотосинтеза и уменьшается продуктивность растений.

Роль фотосинтеза для биосферы

По самым приблизительным подсчетам, только автотрофные растения, обитающие в водах Мирового океана, ежегодно превращают от 20 до 155 млрд. тонн углерода в органическое вещество. И это при том, что энергия солнечных лучей используется ими лишь на 0,11%. Что касается наземных растений, то они ежегодно поглощают от 16 до 24 млрд. тонн углерода. Все эти данные убедительно говорят о том, насколько велико значение фотосинтеза в природе. Только в результате данной реакции атмосфера восполняется необходимым для жизни молекулярным кислородом, который необходим для горения, дыхания и разнообразной производственной деятельности. Некоторые ученые полагают, что в случае повышения содержания углекислого газа в атмосфере происходит увеличение скорости фотосинтеза. При этом атмосфера пополняется недостающим кислородом.

Космическая роль фотосинтеза

Зеленые растения являются посредниками между нашей планетой и Солнцем. Они улавливают энергию небесного светила и обеспечивают возможность существования жизни на нашей планете.

Фотосинтез представляет собой процесс, о котором можно говорить в космических масштабах, так как он в свое время способствовал преображению образа нашей планеты. Благодаря реакции, проходящей в зеленых листьях, энергия солнечных лучей не рассеивается в пространстве. Она переходит в химическую энергию вновь образованных органических веществ.

Человеческому обществу продукты фотосинтеза нужны не только для пищи, но и для осуществления хозяйственной деятельности.

Однако человечеству важны не только те лучи солнца, которые падают на нашу Землю в настоящее время. Крайне необходимы для жизни и осуществления производственной деятельности те продукты фотосинтеза, которые были получены миллионы лет назад. Они находятся в недрах планеты в виде пластов каменного угля, горючего газа и нефти, торфяных месторождений.

Любой зеленый листик – это миниатюрная фабрика питательных веществ и кислорода, который необходим животным и человеку для нормальной жизнедеятельности. Процесс выработки данных веществ из воды и углекислоты из атмосферы называют фотосинтезом. Фотосинтез – это сложнейший химический процесс, который происходит с участием света. Конечно же, всем интересно как происходит фотосинтез. Сам процесс состоит из двух этапов: первый - это поглощение квантов света, а второй - использование их энергии в разных химических реакциях.

Как происходит процесс фотосинтеза

Растение поглощает свет при помощи зеленого вещества, которое называется хлорофилл. Хлорофилл содержится в хлоропластах, которые находятся в стеблях или плодах. Особенно большое их количество в листьях, потому что из-за своей очень плоской структуры листок может притянуть много света, соответственно, получить намного больше энергии для процесса фотосинтеза.

После поглощения хлорофилл находится в возбужденном состоянии и передает энергию другим молекулам организма растения, особенно, тем, которые непосредственно участвуют в фотосинтезе. Второй этап процесса фотосинтеза проходит уже без обязательного участия света и состоит в получении химической связи с участием углекислого газа, получаемого из воздуха и воды. На данной стадии синтезируются разные очень полезные для жизнедеятельности вещества, такие как крахмал и глюкоза.

Эти органические вещества используют сами растения для питания разных его частей, а также для поддержания нормальной жизнедеятельности. Кроме того, эти вещества также получают и животные, питаясь растениями. Люди тоже получают эти вещества, употребляя в пищу продукты животного и растительного происхождения.

Условия для фотосинтеза

Фотосинтез может происходить как под действием искусственного света, так и солнечного. Как правило, на природе растения интенсивно «работают» в весенне-летний период, когда необходимого солнечного света много. Осенью света меньше, день укорачивается, листья сначала желтеют, а потом опадают. Но стоит появиться весеннему теплому солнцу, как зеленая листва вновь появляется и зеленые «фабрики» снова возобновят свою работу, чтобы давать кислород, такой необходимый для жизни, а также множество других питательных веществ.

Где происходит фотосинтез

В основном фотосинтез, как процесс, происходит, как это уже было сказано, в листьях растений, потому как они способны принять на себя больше солнечного света, который очень необходим для процесса фотосинтеза.

Как итог можно сказать то, что процесс фотосинтеза является неотъемлемой частью жизнедеятельности растений.

Фотосинтез является очень сложным биологическим процессом. Его изучает наука биология на протяжении многих лет, но, как показывает история изучения фотосинтеза, некоторые этапы до сих пор непонятны. В научных справочниках последовательное описание этого процесса занимает несколько страниц. Цель этой статьи - описать такое явление, как фотосинтез, кратко и понятно для детей, в виде схем и объяснения.

Научное определение

Для начала важно узнать, что такое фотосинтез. В биологии определение звучит так: это процесс образования органических веществ (пищи) из неорганических (из углекислого газа и воды) в хлоропластах с помощью энергии света.

Чтобы понять это определение, можно представить совершенную фабрику - это любое зеленое растение, которое является фотосинтетиком. «Топливом» для этой фабрики служит солнечный свет, растения используют воду, углекислый газ и минералы , чтобы производить пищу почти для всех форм жизни на земле. Эта «фабрика» совершенная, потому что она, в отличие от других заводов, не приносит вред, а, наоборот, по ходу производства выделяет в атмосферу кислород и поглощает углекислый газ. Как видно, для фотосинтеза необходимы определенные условия.

Этот уникальный процесс можно представить в виде формулы или уравнения:

солнце +вода+углекислый газ = глюкоза+вода+кислород

Строение листа растения

Для того чтобы охарактеризовать сущность процесса фотосинтеза, необходимо рассмотреть строение листа. Если рассмотреть под микроскопом, можно увидеть прозрачные клетки, в которых находятся от 50 до 100 зеленых пятнышек. Это хлоропласты, где находится хлорофилл - основной фотосинтетический пигмент, и в которых осуществляется фотосинтез.

Хлоропласт похож на маленькую сумочку, а внутри него - сумочки еще меньше. Они называются тилакоидами. Молекулы хлорофилла находятся на поверхности тилакоидов и расположены по группам, которые называются фотосистемами. У большинства растений существует два вида фотосистем (ФС): фотосистемаI и фотосистемаII. К фотосинтезу способны только клетки, имеющие хлоропласт.

Описание световой фазы

Какие реакции происходят во время световой фазы фотосинтеза? В группе ФСII энергия солнечного света предается электронам молекулы хлорофилла, вследствие чего электрон заряжается, то есть «возбуждается настолько», что выпрыгивает из группы фотосистемы и «подхватывается» молекулой-переносчиком в мембране тилакоида. Этот электрон переходит от переносчика к переносчику, пока не разрядится. После этого он может использоваться в другой группе ФСI для замены электрона.

В группе фотосистемы II недостает электрона, и теперь она положительно заряженная и требует новый электрон. Но где взять такой электрон? Область в группе, известная как комплекс выделения кислорода, поджидает беззаботно «прогуливающуюся» молекулу воды.

В молекулу воды входит один атом кислорода и два атома водорода . Комплекс выделения кислорода в ФСII имеет марганца четыре иона, которые забирают электроны у атомов водорода. В результате происходит расщепление молекулы воды на два положительных иона водорода, два электрона и один атом кислорода. Молекулы воды расщепляются , и атомы кислорода распределяются по парам, образуя при этом молекулы газа кислорода, который возвращает растение в воздух. Ионы водорода начинают собираться в сумочке тилакоида, отсюда растение сможет их использовать, а с помощью электронов решается проблема потери в комплексе ФС II, который готов повторить этот цикл много раз в секунду.

В тилакоидном мешочке происходит скопление ионов водорода, и они начинают искать выход. Два иона водорода, образующиеся всегда при распаде молекулы воды, это далеко не всё: проходя путь из комплекса ФС II в комплекс ФС I, электроны притягивают в мешочек и другие ионы водорода. Затем эти ионы скапливаются в тилакоиде. Как им оттуда выбраться?

Оказывается, у них имеется «турникет» с одним выходом - фермент, который используется при выработке клеточного «топлива», называемого АТФ (аденозинтрифосфат). Проходя через этот «турникет», ионы водорода предоставляют энергию, которая необходима для перезарядки уже используемых молекул АТФ. Молекулы АТФ - это клеточные «батареи». Они отдают энергию для реакций внутри клетки.

При сборе сахара нужна еще одна молекула. Она называется НАДФ (никотинамидадениндинуклеотидфосфат). Молекулы НАДФ - это «грузовики», каждый из них доставляет по атому водорода к ферменту молекулы сахара. Образование НАДФ происходит в комплексе ФС I. Пока фотосистема (ФС II) расщепляет молекулы воды и создает из них АТФ, фотосистема (ФС I) поглощает свет и выдает электроны, которые потом будут нужны при образовании НАДФ. Молекулы АТФ и НАДФ находятся на хранении в строме и потом будут использованы для образования сахара.

Продукты световой фазы фотосинтеза:

  • кислород
  • НАДФ*Н 2

Схема ночной фазы

После световой фазы протекает темновая стадия фотосинтеза. Впервые эту фазу открыл Кальвин. Впоследствии это открытие было названо с3 - фотосинтезом. У некоторых видов растений наблюдается вид фотосинтеза - с4.

В процессе фотосинтеза световой фазы сахар не производится. При свете образуется только АТФ и НАДФ. Ферменты используются в строме (пространстве вне тилакоида) для производства сахара. Хлоропласт можно сравнить с фабрикой, на которой бригады (ФС I и ФС II) внутри тилакоида производят грузовики и батареи (НАДФ и АТФ) для работы третьей бригады (особых ферментов) стромы.

Эта бригада образовывает сахар путем присоединения атомов водорода и молекулы углекислого газа благодаря химическим реакциям, используя при этом ферменты, находящиесяся в строме. Все три бригады работают днем, а «сахарная» и днем, и ночью, до того пока не израсходуется АТФ и НАДФ, которые остались после дневной смены.

В строме много атомов и молекул соединяются с помощью ферментов. Некоторые ферменты - это молекулы белка, имеющие особую форму, и это позволяет им брать те атомы или молекулы, которые нужны для определенной реакции. После того как произойдет соединение, фермент отпускает новообразованную молекулу, и такой процесс повторяется постоянно. В строме ферменты пускают по цепочке молекулы сахара, которые собрали, перестраивают их, заряжают с помощью АТФ, присоединяют углекислоту, добавляют водород, затем отправляют трехуглеродный сахар в другую часть клетки, где его преобразуют в глюкозу и множество других веществ.

Итак, темновая фаза характеризуется образованием молекул глюкозы. А из глюкозы синтезируются углеводы.

Фотосинтез световая и темновая фазы (таблица)

Роль в природе

Каково же значение фотосинтеза в природе? Можно смело сказать, что жизнь на Земле зависит от фотосинтеза.

  • С его помощью растения вырабатывают кислород, который так необходим для дыхания.
  • В процессе дыхания выделяется углекислый газ. Если бы его не поглощали растения, то в атмосфере бы возник парниковый эффект. С появлением парникового эффекта может меняться климат, таять ледники, в результате может затопить много земельных участков.
  • Процесс фотосинтеза помогает питать все живые существа, а также осуществляет снабжение человечества топливом.
  • Благодаря выделяемому с помощью фотосинтеза кислороду в виде кислородно-озонового экрана атмосферы происходит защита всего живого от ультрафиолетового излучения.