Как снизить шумность котельной: на этапе проектирования и специальными средствами.

Источником структурного шума может быть оборудование, которое эксплуатируется на кровлях и стенах зданий (крышные котельные, наружный конденсаторные блоки, вентагрегаты антенные усилители сотовой связи и т.д.), технических этажах (вентиляционное и холодильное оборудование, трубопроводы и воздуховоды, металлические шкафы интернета), внутри зданий (мусоропроводы, лифтовое оборудование, системы отопления и водоснабжения, канализования, кондиционирования). Наряду с этим источники структурного шума могут располагаться во встроено-пристроенных нежилых помещениях зданий (электрощитовые, инженерно-технологическое оборудование, трансформаторные подстанции), в подвалах зданий (насосы и элеваторные узлы индивидуальных тепловых пунктов (ИТП), венткамеры, машинные отделения холодильных камер) и в соседних квартирах жилого дома (стиральные машины, пылесосы, различная арматура).

Обычно после обращения жителей в органы Роспотребнадзора производятся измерения уровней вибрации и шума в помещении. В случае необходимости измерения проводят в организациях, расположенных рядом с квартирами, где, например, эксплуатируется «шумящее» оборудование - источник шума (ресторан, кафе, магазин и т.д.). При обнаружении превышений уровней вибрации и шума над допустимыми значениями, согласно СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки», в адрес владельцев источников шума органы Роспотребналзора выдают предписание об устранении выявленных нарушений санитарного законодательства и необходимости выполнения специальных мероприятий по уменьшению распространяющейся вибрации и структурного шума от оборудования.

Каким образом можно снизить шум от перечисленного выше оборудования, чтобы при его эксплуатации не возникали жалобы жильцов дома? Конечно, идеальный вариант – предусмотреть необходимые меры на стадии проектирования жилого здания, тогда и разработка шумопонижающих мероприятий всегда возможна, и внедрение их при строительстве в десятки раз дешевле, чем в тех домах, которые уже построены. Как правило, при проектировании выбирают малошумное оборудование и максимально удаляют его от нормируемых по шуму помещений. Создание конструкций, изолирующих вибрацию, сводится к выбору схемы виброизоляции, подбору параметров и типа виброизоляторов по известным данным, выбору конструкции пола на упругом основании (если потребуется), расчету эффективности данной конструкции (виброизоляции).

Совсем по-другому обстоит дело, если здание уже построено и в нем имеются источники шума, которые превышают действующие нормы. Тогда чаще всего шумные агрегаты заменяют на менее шумные и реализуют мероприятия по виброизоляции агрегатов и подводящих к ним коммуникаций. Далее мы рассмотрим конкретные источники шума и меры по виброизоляции оборудования.

Шум от кондиционера

Приведем пример. После установки на кровле здания чиллера (от англ. chiller – охладитель), который используется для нагревания или охлаждения жидкости в системе кондиционирования, без мер по виброизоляции уровень проникающего шума в квартиру последнего этажа в одном из столичных жилых домов составлял 39 дБА, что выше допустимого СН 2.2.4/2.1.8.562-96 на 14 дБ, и это при наличии верхнего технического этажа! Применение трехзвенной виброизоляции, когда чиллер устанавливают на раму через виброизолятор, а раму – на железобетонную плиту через резиновые прокладки (при этом железобетонная плита устанавливается на пружинные виброизоляторы на кровлю здания), привело к снижению проникающего структурного шума до уровней, допустимых в жилых помещения в ночное время.

Еще один пример. Уровни шума, проникающего в квартиру последнего этажа, составили 35 дБА. Квартира была расположена под вентагрегатом, под расширительной камерой для агрегата и воздуховодом на техническом этаже. При удалении от вентагрегата и камеры на 3-7 м в жилых комнатах уровень шума уменьшился до 30-32 дБА. Для большего снижения шума необходимо, кроме усиления шумовиброизоляции стенок воздуховода и установки глушителя на воздуховод вентагрегата (со стороны помещений), крепить расширительную камеру и воздуховоды к перекрытию через виброизолирующие подвески и прокладки.

Шум от котельной на крыше

Для защиты от шума котельной, расположенной на крыше дома, фундаментную плиту крышной котельной устанавливают на пружинные виброизоляторы или виброизолирующий мат из специального материала. Оборудованные в котельной насосы и котлоагрегаты устанавливают на виброизоляторы и применяют мягкие вставки.

Насосы в котельной нельзя ставить двигателем вниз! Они должны быть смонтированы таким образом, чтобы нагрузка от трубопроводов не передавалась на корпус насоса. Наряду с этим уровень шума выше от насоса более высокой мощности или в случае, если установлено несколько насосов. Для снижения шума фундаментную плиту котельной также можно поставить на пружинные амортизаторы или высокопрочные многослойные резиновые и резинометаллические виброизоляторы.

Шесть ящиков с интернет-оборудованием сразу трех сотовых компаний были установлены на одном из жилых домой на кровле над квартирой. Хозяйку квартиры изводили шум и вибрация. Женщина просыпалась ночью и не могла уснуть до самого утра. Днем звуки стихали, но головная боль, ощущение полной разбитости оставались. Источник звука хозяйка «нехорошей квартиры» нашла не сразу. Как выяснилось, этот «праздник» ей устроила управляющая компания, разрешив оператору сотовой связи установить на кровле жилого дома интернет-оборудование сразу трех провайдеров.

Впрочем, жители, квартиры которых расположены на верхних этажах, при монтаже усилителей на чердаках и технических этажах могут ощущать шум и вибрацию даже при исправной системе вентиляции внутри установки. Чаще всего источником шума и вибрации в усилителе становится вентилятор. Для устранения передачи вибрации металлического шкафа с запорным устройством последний необходимо установить на виброизоляторы.

«Плавающие» полы без специальных виброизоляторов рекомендуется использовать лишь с оборудованием с рабочими частотами не менее 45-50 Гц. Это обычно небольшие машины, у которых виброизоляция может быть обеспечена и другими способами. Эффективность на упругом основании на таких низких частотах мала, поэтому применяют их исключительно в сочетании с иными видами виброизоляторов.

Запрещается проектировать пол машинного отделения лифта как продолжение плиты перекрытия потолка жилой комнаты верхнего этажа. Такой случай был выявлен по жалобе жителей одной из московских квартир. Превышение шума при работе лифта составило до 15 дБА, а эффективных мер по развязке единой плиты – пола в машиннойм отделении и перекрытия, служащего потолком в комнате, не существует.

В одном из столичных жилых домов было установлено, что на момент проведения измерений уровни шума, проникающего в квартиру на первом этаже от работы элеваторного узла в подвале, превышали допустимые для ночного времени. Оказалось, что под жилой комнатой проходили трубопроводы. Казалось бы, оборудование элеваторного узла было смонтировано с учетом виброизоляции от несущих конструкции здания, трубопроводы теплозвукоизолированы. В чем же причина? Дело в том, что элеваторные узлы не должны крепиться к стене, продолжение которой является стеной жилой комнаты. При нахождении трубопроводов систем канализации и водоснабжения в шахтах первые не должны примыкать к помещениям, требующим шумозащиты.

В настоящее время максимально экономичны, эффективны и бесшумны бустерные установки (насосы). Они выполняют роль станций повышения давления в системах пожаротушения, водоснабжения. Бустерные установки создают нужный напор воды в высотных зданиях, жилых районах с низким напором, при производственным процессах в промышленности, то есть везде, где существующий напор недостаточен. Компактная конструкция позволяет производить как оснащение строящихся объектов, так и модернизацию имеющихся, существенно сокращая монтажные площади, эксплуатационные расходы, капитальные вложения. Бустерный агрегат весьма выгоден по сравнению с аналогами. Арендаторы и жильцы нижних этажей нередко жалуются на шум и вибрацию работающих насосов. При использовании бустерного агрегата таких проблем не бывает.

Действующими нормами запрещается размещение крышной котельной на перекрытии жилых помещений (так как перекрытие не может быть основанием для котельной), а также смежно с такими помещениями. Не допускается создание крышных котельных на зданиях детских школьных и дошкольных учреждений, лечебных корпусах поликлиник и больниц с круглосуточным пребыванием пациентов, на спальных корпусах учреждений отдыха и санаториев. При установке оборудования на кровле и перекрытиях рекомендуется располагать его в местах, как можно дальше расположенных от защищаемых объектов.


Шум от интернет-оборудования

Согласно рекомендациям по проектированию систем информатизации, связи и диспетчеризации объектов жилищного строительства, антенные усилители сотовой связи рекомендуется устанавливать в металлическом шкафу с запорным устройством на чердаках, техн. этажах или лестничных клетках верхних этажей. В пункте 5.18 данных рекомендаций сказано, что при необходимости установки домовых усилителей на разных этажах многоэтажных зданий их нужно располагать в металлических шкафах в непосредственной близости от стояка под потолком, как правило на высоте более 2 м от низа шкафа до пола.

Выход – виброизоляторы и «плавающие» полы

Для вентиляционного, холодильного оборудования на технических этажах жилых зданий, гостиниц, многофункциональных комплексов или при соседстве с нормируемыми по шуму помещениями, где постоянно пребывают люди, можно установить агрегаты на заводские виброизоляторы на железобетонную плиту. Эту плиту монтируют на виброизолированном слое или пружинах на «плавающий» пол (дополнительная железобетонная плита на виброизолирующем слое) в техническом помещении. Следует учесть, что вентиляторы, наружные конденсаторные блоки, которые сейчас выпускаются, виброизоляторами комплектуют только по заявке заказчика.

Стяжку плавающего пола необходимо тщательно изолировать от несущей плиты перекрытия и стен, так как образование каких-либо даже маленьких по величине жестких мостиков между ними может сильно ухудшить его виброизолирующие свойства. С учетом этого при создании «плавающего» пола предусматривают меры, исключающие просачивание бетона в упругий слой при конструировании пола. В местах соприкосновения «плавающего» пола к стенам должен быть водонепроницаемый шов из нетвердеющих материалов.

Шум от мусоропровода

Мусоропровод – это потенциальный источник круглосуточного шума. Возникает он чаще всего при сбросе бытового мусора, содержащего мягкие и твердые предметы, в том числе бутылки и банки. Ствол мусоропровода выполняют, как правило, из труб с условным проходом примерно 400 мм. Жаловаться на шум от мусоропровода могут не только жильцы квартир, в которых комнаты примыкают к стволу и мусорокамере, но и всех квартир по всем этажам подъезда, где ствол проходит смежно с квартирой, даже без примыкания к жилым помещениям (дома серии П-44). Максимальный уровень шума, проникающего в квартиру при ударе крышкой мусоропровода и сбросе стеклотары, может достигать 58 дБА.

Для снижения шума нужно соблюдать требования норм и не проектировать ствол мусоропровода рядом с жилыми помещениями. Ствол мусоропровода не должен соприкасаться или располагаться в стенах, огораживающих жилые либо служебные помещения с нормируемыми уровнями шума.

Из мероприятий по уменьшению шума мусоропроводов наиболее распространены следующие:

  • в мусоросборных помещениях предусматривается «плавающий» пол;
  • по согласию жильцов всех квартир подъезда мусоропровод заваривается (или ликвидируется) с размещением в помещении мусорокамеры колясочных, комнаты для консьержки и т.д. (положительный момент в том, что кроме шума исчезают запахи, ликвидируется возможность появления крыс и насекомых, вероятность пожаров, грязь и т.д.);
  • ковш загрузочного клапана монтируют обрамленными резиновыми или магнитными уплотнителями;
  • декоративная облицовка ствола мусоропровода с теплошумозащитными свойствами из строительных материалов отделяется от строительных конструкций здания звукоизолирующими прокладками.

Сегодня многие строительные фирмы предлагают свои услуги, различные конструкции для увеличения звукоизоляции стен и обещают полную тишину. Следует обратить внимание на то, что на самом деле никакие конструкции не смогут снять структурный шум, передающийся по перекрытиям пола, потолка и по стенам при сбрасывании твердых бытовых отходов в мусоропровод.

Шум от лифтов

Источниками шума и вибрации при работе лифта становятся агрегаты, расположенные в шахте лифта и в машинном помещени. К первым относятся башмаки кабины и противовеса, скользящие по направляющим (особенно при проходе их через стыки направляющих), переключатели и механизмы открывания дверей кабины и шахты, ко вторым – подъемные лебедки, панели управления и трансформаторы. Шум от лифта, проникающий в служебные и жилые помещения, - это сумма воздушной и структурной составляющих.

В СП 51.13330.2011 «Защита от шума. Актуализированная редакция СНиП 23-03-2003» сказано, что шахты лифтов лучше располагать в лестничной клетке между лестничными маршами (п. 11.8). При архитектурных решениях жилых зданий нужно предусматривать, чтобы к встроенной шахте лифта примыкали помещения, не требующие повышенной защиты от вибрации и шума (коридоры, холлы, санитарные узлы, кухни). Все шахты лифтов независимо от планировочного решения должны быть самонесущими и иметь самостоятельный фундамент.

Шахты надлежит отделить от остальных конструкций здания акустическим швом 40-50 мм или виброизолирующими прокладками. В качестве материала упругого слоя рекомендованы плиты из минеральной акустической ваты на стекловолокнистой или базальтовой основе и различные полимерные вспененные рулонные материалы.

Для защиты от структурного шума установки лифта ее приводной двигатель с лебедкой и редуктором, устанавливаемые, как правило, на единой общей раме, виброизолируют от поверхности-опоры. Современные приводные агрегаты лифтов комплектуют соответствующими виброизоляторами, расположенными под металлическими рамами, на которых крепят лебедки, двигатели и редукторы, в связи с чем дополнительная виброизоляция приводного агрегата обычно не требуется. При этом дополнительно рекомендуется сделать двухкаскадную (двухзвенную) систему виброизоляции, установив опорную раму через виброизоляторы на железобетонную плиту, которая также отделена от пола виброизоляторами.

Эксплуатация лифтовых лебедок, установленных на двухкаскадных системах виброизоляции, показала, что уровни шума от них не превышают нормативные значения в ближайших жилых помещениях (через несколько стен). В практических целях нужно отслеживать, чтобы виброизоляция не нарушалась какими-либо жесткими мостиками между опорной поверхностью и металлической рамой. Тем не менее работа других элементов лифтовых установок (панели управления, трансформаторы, башмаки кабины и противовеса и т.п.) может сопровождать шумом выше нормативных значений.


Шум от трансформаторных подстанций на первых этажах

Размещать трансформаторные подстанции в проектируемых, заново строящихся и реконструируемых жилых домах запрещено. Это сказано СП 54.13330.2011 «Здания жилые многоквартирные. Актуализированная редакция СНиП 31-1-2003» (п. 4.10). В подвальном, цокольном, на 1 и 2 этажах зданий не допускается размещения пристроенных и встроенных трансформаторных подстанций, отделений (кабинетов) магнитно-резонансной томографии (п. 4.10).

Как сказано в п. 7.4 пособия к МГСН 2.04-97 «Проектирование защиты от шума и вибрации инженерного оборудования в жилых и общественных зданиях», трансформаторы, относящиеся ко встроенным в здания трансформаторным подстанциям, являются источниками вибраций, которые вызывают распространение по конструкциям структурного шума с частотой 100 Гц.

Для защиты от этого шума жилых и других помещений с нормируемыми уровнями шума нужно соблюдать следующие условия:

  • помещения встроенных трансформаторных подстанций не должны соприкасаться с защищаемым от шума помещениям;
  • встроенные трансформаторные подстанции следует располагать на первых этажах или в подвалах зданий;
  • трансформаторы необходимо устанавливать на виброизоляторы, рассчитанные соответствующим образом;
  • электрические щиты, содержащие коммуникационные электромагнитные аппараты, и отдельно установленные масляные выключатели с электрическим приводом должны монтироваться на резиновых виброизоляторах (воздушные разъединители не требуют виброизоляции);
  • вентиляционные устройства помещений встроенных трансформаторных подстанций должны быть оборудованы глушителями шума.

Другим средством снижения шума от встроенной трансформаторной подстанции является обработка ее потолка и внутренних стен звукопоглощающей облицовкой.

Сегодня имеют место «исключительные» случаи размещения пристроенных и встроенных подстанций в жилые здания с использованием сухих трансформаторов. В проектах этих встроенных подстанций выполнены акустические расчеты, которые показывают, что в смежных с трансформаторными жилых помещениях не будет повышенного структурного шума при выполнении следующих мероприятий:

  • устройство двойного перекрытия;
  • применение звукопоглощающей облицовки;
  • установка трансформаторов, шкафов и щитков на виброизоляторы;
  • монтаж шумоглушителей на вентиляционных проемах.

И даже все перечисленные меры, как правило, не дают стопроцентного снижения вибрации и структурного шума. После пуска в эксплуатацию трансформаторной подстанции в жилом доме на втором этаже тональный шум от трансформаторов может субъективно прослушиваться и круглые сутки беспокоить жильцов дома не только смежных квартир, но и всего подъезда. Обращаем ваше внимание на то, что во встроенных трансформаторных подстанциях должна быть выполнена защита от электромагнитного излучения (сетка из специального материала с заземлением для снижения уровня излучения электрической составляющей и стальной лист для магнитной).

Шум от работы магазина, ресторана или кафе в жилом доме

Подъемники, лифты, транспортеры, передвижение тележек, компрессоры холодильных установок во встроено-пристроенных магазинах и на предприятиях общественного питания на первом этаже создают структурный шум, передающийся по конструкциям здания. Шум от движения механических лифтов и подъемников старых конструкций с повышенными уровнями слышен на всех этажах, вплоть до десятого.

В СП 2.3.6.1066-01 «Санитарно-эпидемиологические требования к организациям торговли и обороту в них продовольственного сырья и пищевых продуктов» (с изменениями и дополнениями) указано, что в организациях торговли, расположенных в жилых или иного назначения зданиях, не разрешается оборудовать машинные отделения, грузоподъемники, холодильные камеры непосредственно рядом (под) с жилыми помещениями (п. 5.1). Так, например, в одной из московских квартир структурный шум передавался из торгового зала магазина через смежную стену жилой квартиры. По жалобе жильцов на круглосуточный шум в помещениях магазина на первом этаже был проведен комплекс мероприятий по увеличению звукоизоляции смежной стены. Облицовка стены звукопоглощающим материалом и увеличение ее толщины дали незначительный эффект снижения шума. Только при виброизоляции всего технологического оборудования магазина – прилавков, холодильных шкафов, колес тележек и т.д. – уровни проникающего шума в жилой квартире снизились до допустимого уровня в ночное время суток.

В другом магазине при движении тележек для покупателей без виброизоляции уровень шума в жилой квартире второго этажа составлял 48 дБА, что выше нормативного на 3 дБА (45 дБА для максимального шума). После применения резины на колесах тележек уровень шума в квартире снизился на 6 дБА. О шумозащитных мероприятиях в магазинах, кафе и ресторанах, расположенных на первых этажах жилых домов или рядом с ними, журнал «СЭС» подробно рассказывал в № 5 за 2014 год.

Шум от пристроенных котельных, подвальных насосов и труб

Пристроенные котельные применяются для теплоснабжения общественных, бытовых, производственных, административных и жилых зданий. Оборудование котельных (насосы и трубопроводы, вентагрегаты, воздуховоды, газовые котлы и т.д.) должно быть виброизолировано с применением виброфундаментов и мягких вставок. Вентиляционные установки оснащают глушителями.

Чтоб виброизолировать расположенные в подвалах насосы, элеваторные узлы в индивидуальных тепловых пунктах (ИТП), вентагрегаты, холодильные камеры, указанное оборудование устанавливают на виброфундаменты. Трубопроводы и воздуховоды виброизолируются от конструкций дыма, так как преобладающим шумом в квартирах, расположенных выше, может оказаться не базовый шум от оборудования в подвале, а тот, который передается ограждающим конструкциям через вибрацию трубопроводов и фундаменты оборудования. Устраивать встроенные котельные в жилых зданиях запрещается.

В системах трубопроводов, подсоединенных к насосом, необходимо применять гибкие вставки – резинотканевые рукава или резинотканевые рукава, армированные металлическими спиралями. При наличии участков труб между гибкой вставкой и насосом участки нужно крепить к перекрытиям и стенам помещения на виброизолирующих опорах, подвесках или же через амортизирующие прокладки. Гибкие вставки нужно располагать на самом близком расстоянии к насосной установке как на всасывающей линии, так и на нагнетательной.

Для снижения уровней вибрации и шума в жилых домах от работы систем тепловодоснабжения необходимо изолировать распределительные трубопроводы всех систем от строительных конструкций в местах их прохождения через несущие конструкции (ввода в жилые дома и вывода из них). Зазор между трубопроводом и фундаментом на вводе и выводе должен быть не менее 30 мм.

Также во встроенных насосных, ИТП рекомендуется установить регуляирующий механизм частоты вращения электродвигателя. Эта мера даст ощутимый эффект в том случае, если подобран насос с запасом мощности или же на максимальной мощности работа необходима лишь в пиковые часы.

Очень важно, какие насосы эксплуатируются в системах водоснабжения. Многонасосные, консольные и консольно-моноблочные агрегаты используются для увеличения напора потока жидкости и обеспечения ее циркуляции при холодном и горячем водоснабжении в промышленных сооружениях и жилых домах достаточно давно, однако имеют ряд недостатков. Чтобы установить такой агрегат, необходимо соорудить массивный фундамент в целях снижения уровня вибрации. Агрегаты формируют повышенный шум. Для нормальной эксплуатации такого оборудования нужно монтировать дренажную систему для отвода воды, которая с течением времени начинает просачиваться через сальники, нуждающиеся в регулярной замене и контроле. При их износе смазка попадает в перекачиваемую воду, что недопустимо по санитарным нормам. Эксплуатация агрегата требует систематического технического контроля и штата обученного обслуживающего персонала.

Шум от стиральных машин, пылесосов и холодильников

Шум от эксплуатируемых соседями агрегатов – стиральных машин, пылесосов, холодильников и от работы строительных инструментов при ремонте является временным и не подлежит нормированию и ограничению при их работе. Виброизоляцию указанных агрегатов и контроль за их исправностью проводят хозяева.

Интересный пример самостоятельно проведенной виброизоляции холодильника привел один из пользователей интернета. В частности, его беспокоили сильные «содрогания» компрессора холодильника при отключении, поэтому он под все четыре «ноги» агрегата подложил несолько слоев пенополиэтилена. Результат – вибрация стала почти незаметна, зато шум увеличился, то есть закон сохранения энергии остался законом: если раньше «до амортизаторов» звук образовывался и уходил к соседу по плите пола, то после создания своеобразных амортизаторов половина энергии стала уходит в «воздушную» среду помещения, где стоит холодильник.

Страница 7 из 21

В связи с тем, что на современных электростанциях шум, как правило, превышает допустимые уровни, в последние годы широко развернулись работы по шумоглушению.
Известны три основных метода уменьшения производственного шума: снижение шума в самом источнике; снижение шума на путях его распространения; архитектурно-строительные и планировочные решения.
Метод уменьшения шума в источнике его возникновения заключается в усовершенствовании конструкции источника, в изменении технологического процесса. Наиболее эффективно применение этого метода при разработке нового энергооборудования. Рекомендации по снижению шума в источнике даны в § 2-2.
Для звукоизоляции различных помещений электростанции (особенно машинного и котельного залов) как наиболее шумных используют строительные решения: утолщение наружных стен зданий, применение окон со сдвоенными стеклами, пустотелых стеклянных блоков, двойных дверей, многослойных акустических панелей, уплотнение окон, дверей, проемов, правильный выбор мест забора и выпуска воздуха вентиляционных установок. Необходимо также обеспечивать хорошую звукоизоляцию между машинным залом и подвальными помещениями, тщательной заделкой всех отверстий и проемов.
При проектировании машинного зала избегают небольших помещений с гладкими, непоглощающими звук стенами, потолком, полом. Обшивка стен звукопоглощающими материалами (ЗПМ) может дать снижение уровня шума приблизительно на 6-7 дБ в средних по величине помещениях (3000-5000 м3). Для больших помещений экономичность этого метода становится спорной.
Некоторые авторы, такие как Г. Кох и X. Шмидт (ФРГ), а также Р. Френч (США), считают, что акустическая обработка стен и потолков помещений станций мало эффективна (1-2 дБ). Данные же, опубликованные энергетическим управлением Франции (ЭДФ), говорят о перспективности этого метода шумоглушения. Обработка потолков и стен в помещениях котельных на электростанциях Сен-Депи и Шеневье позволила получить снижение звука на 7-10 дБ А.
На станциях часто сооружают отдельные звукоизолированные помещения щитов управления, уровень звука в которых не превышает 50-60 дБ А, что удовлетворяет требованиям ГОСТ 12.1.003-76. Обслуживающий персонал проводит в них 80-90% рабочего времени.
Иногда в машинных залах устанавливают акустические кабины для размещения обслуживающего персонала (дежурные электрики и др.). Эти звукоизолирующие кабины представляют собой самостоятельный каркас на опорах, к которому прикрепляют пол, потолок, стены. Окна и двери кабины должны иметь повышенную звукоизоляцию (двойные двери, сдвоенные стекла). Для проветривания предусматривается вентиляционная установка с глушителями на входе и выходе воздуха.
Если необходимо иметь быстрый выход из кабины, ее выполняют полузакрытой, т. е. одна из стенок отсутствует. При этом акустическая эффективность кабины снижается, однако отпадает необходимость в устройстве вентиляции. По данным предельное значение средней звукоизоляции для полузакрытых кабин составляет 12-14 дБ.
Применение отдельных кабин закрытого или полузакрытого типа в помещениях станций можно отнести к индивидуальным средствам защиты обслуживающего персонала от шума. К индивидуальным средствам защиты относятся также различные типы вкладышей и наушников. Акустическая эффективность вкладышей и, особенно, наушников в области высоких частот довольно велика и составляет не менее 20 дБ. Недостатками этих средств является то, что наряду с шумом уменьшается уровень полезных сигналов, команд и т. п., а также возможно раздражение кожного покрова, главным образом, при повышенных температурах окружающей среды. Тем не менее рекомендуется использовать вкладыши и наушники при работе в условиях шума, превышающего допустимые уровни, особенно в области высоких частот. Безусловно, целесообразным является их применение при кратковременных выходах из звукоизолированных кабин или щитов управления в зоны повышенного шума.

Одним из способов снижения шума на путях его распространения в помещениях станций являются акустические экраны. Акустические экраны изготавливаются из тонколистового металла или другого плотного материала, который может иметь звукопоглощающую облицовку с одной или двух сторон. Обычно акустические экраны имеют небольшие размеры и обеспечивают локальные снижения прямого звука от источника шума, не оказывая существенного влияния на уровень отраженного звука в помещении. При этом акустическая эффективность не очень велика и зависит, главным образом, от соотношения прямого и отраженного звука в расчетной точке. Повышения акустической эффективности экранов можно достичь путем увеличения их площади, которая должна составлять, по крайней мере, 25-30% от площади сечения ограждений помещения в плоскости экрана. При этом эффективность экрана возрастает за счет снижения плотности энергии отраженного звука в экранируемой части помещения. Применение экранов больших размеров позволяет также существенно увеличить число рабочих мест, на которых обеспечивается снижение шума.

Наиболее эффективно применение экранов совместно с установкой на ограждающих поверхностях помещений звукопоглощающих облицовок. Подробное изложение методик расчета акустической эффективности и вопросов проектирования экранов дано в и
Для снижения шума во всем помещении машинного зала установки, излучающие интенсивный звук, закрывают кожухами. Звукоизолирующие кожухи обычно изготавливают из листового металла, облицованного с внутренней стороны ЗПМ. Можно поверхности установок сплошь или частично обшивать звукоизолирующим материалом.
По данным, приведенным американскими специалистами по шумоглушению на Международной конференции по энергетике в 1969 г., полное оснащение турбоагрегатов большой мощности (500-1000 МВт) звукоизолирующими кожухами позволяет уменьшить уровень излучаемого звука на 23-28 дБ А, При помещении же турбоагрегатов в специальные изолированные боксы эффективность возрастает до 28-34 дБ А.
Ассортимент материалов, применяемых для звукоизоляции, весьма широк и, например, для изоляции 143 паровых агрегатов, которые введены в США после 1971 г., распределяется следующим образом: алюминий -30%, листовая сталь - 27%, гелбест-18%, асбоцемент-11%, кирпич-10%, фарфор с наружным покрытием - 9%, бетон - 4%.
В сборных акустических панелях применяются следующие материалы: звукоизолирующие - сталь, алюминий, свинец; звукопоглощающие - пенопласты, минеральная вата, стекловолокно; демпфирующие - битумные компаунды; уплотняющие- резина, замазка, пластмассы.
Широкое применение получили пенополиуретан, стекловолокно, листовой свинец, винил, армированный свинцовым порошком.
Швейцарская фирма ВВС для уменьшения шума щеточного аппарата и возбудителей турбоагрегатов большой мощности покрывает их сплошным защитным кожухом с толстым слоем звукопоглощающего материала, в стенки которого встроены глушители на входе и выходе охлаждающего воздуха.

Конструкция обшивки обеспечивает свободный доступ к этим узлам для проведения текущего ремонта. Как показали исследования этой фирмы, звукоизолирующий эффект обшивки передней части турбины наиболее сильно проявляется на высоких частотах (6- 10 кГц), где он составляет 13-20 дБ, на низких частотах (50- 100 Гц) он незначителен - до 2-3 дБ.

Рис. 2-10. Уровни звукового давления на расстоянии 1 м от корпуса ГТУ типа ГТК-10-З
1- с декоративным кожухом; 2- со снятым корпусом

Особенно большое внимание надо уделять звукоизоляции на энергопредприятиях с газотурбинными приводами. Расчеты указывают, что на газотурбинных электростанциях размещение газотурбинных двигателей (ГТД) и компрессоров наиболее экономично в индивидуальных боксах (если число ГТД меньше пяти). При размещении в общем здании четырех ГТД строительная стоимость здания на 5% выше, чем при использовании индивидуальных боксов, а при двух ГТД разница в стоимости составляет 28%· Поэтому, когда установок больше пяти экономичнее размещать их в общем здании. Например, фирма «Вестингауз» устанавливает пять газовых турбин типа 501 -АА в одном акустически изолированном здании.

Обычно для индивидуальных боксов используются панели листового металла, с внутренней стороны которых находится звукопоглощающая облицовка. Звукопоглощающая облицовка может быть выполнена из минеральной ваты или минераловатных полужестких плит в оболочке из стеклоткани и покрывается со стороны источника шума перфорированным листом или металлической сеткой. Панели между собой соединяются болтами, в месте стыков - упругие прокладки.
Весьма эффективны применяемые за рубежом многослойные панели из внутреннего стального перфорированного и наружного свинцового листов, между которыми помещается пористый звукопоглощающий материал. Применяются также панели с многослойной внутренней облицовкой из слоя винила, армированного свинцовым порошком и расположенного между двумя слоями стекловолокна - внутреннего, толщиной 50 мм, и наружного, толщиной 25 мм.
Однако даже простейшие декоративно-звукоизолирующие обшивки дают существенное уменьшение шумового фона в машинных залах. На рис. 2-10 приведены уровни звукового давления в октавных полосах частот, измеренные на расстоянии 1 м от поверхности декоративного кожуха газоперекачивающего агрегата типа ГТК-10-3. Для сравнения там же приведен спектр шума, измеренный при снятом кожухе в тех же точках. Видно, что эффект кожуха из стального листа толщиной 1 мм, облицованного внутри стекловолокном толщиной 10 мм, составляет 10- 15 дБ по высокочастотной области спектра. Измерения производились в цехе, построенном по типовому проекту, где установлено 6 агрегатов ГТК-10-3, закрытых декоративной обшивкой.
Общей и весьма важной проблемой для энергопредприятий любого типа является звукоизоляция трубопроводов. Трубопроводы современных установок образуют сложную протяженную систему с громадной поверхностью тепло- и звукоизлучения.

Рис. 2-11. Звукоизоляция газопровода на ТЭС «Кирхлеигери»: а - схема изоляции; б - компоненты многослойной панели
1- металлическая обшивка из листовой стали; 2- маты из каменной шерсти толщиной 20 мм; 3- алюминиевая фольга; 4- многослойная панель толщиной 20 мм (масса I м2 равна 10,5 кг); 5- битумизироваиный войлок; 6- слои теплоизоляции; 7- слой пенопласта

Особенно это касается электростанций с комбинированным циклом, имеющим подчас сложную разветвленную сеть трубопроводов и систему шиберов.

Для уменьшения шума трубопроводов, транспортирующих сильно возмущенные потоки (например, на участках за редукционными клапанами), может быть рекомендована усиленная звукоизоляция, показанная на рис. 2-11.
Звукоизолирующий эффект такого покрытия составляет около 30 дБ А (снижение уровня звука по сравнению с «голым» трубопроводом) .
Для облицовки трубопроводов большого диаметра применяется многослойная теплозвукоизоляция, которая укрепляется с помощью ребер и крючков, привариваемых к изолируемой поверхности.
Изоляция состоит из слоя мастичной совелитовой изоляции толщиной 40-60 мм, поверх которого укладывается проволочная панцирная сетка толщиной 15-25 мм. Сетка служит для укрепления совелитового слоя и создания воздушной прослойки. Внешний слой образуется минераловатными матами толщиной 40-50 мм, поверх которых наносится слой асбоцементной штукатурки толщиной 15-20 мм (80% асбеста 6-7 сорта и 20% цемента марки 300). Этот слой закрывается (оклеивается) какой-либо технической тканью. При необходимости поверхность окрашивается. Подобный способ звукоизоляции с использованием ранее имевшихся элементов теплоизоляции позволяет заметно уменьшить шум. Дополнительные расходы, связанные с введением новых элементов звукоизоляции, по сравнению с обычной теплоизоляцией незначительны.
Как уже отмечалось, наиболее интенсивен аэродинамический шум, возникающий при работе вентиляторов, дымососов, газотурбинных и парогазовых установок, сбросных устройств (линий продувки, предохранительные линии, линии антипомпажных клапанов компрессоров ГТУ). Сюда же можно отнести и РОУ.

Для ограничения распространения такого шума по потоку транспортируемой среды и выхода его в окружающую атмосферу применяются шумоглушители. Глушители занимают важное место в общей системе мероприятий по снижению шума на энергопредприятиях, ибо через заборные или сбросные устройства звук из рабочих полостей может непосредственно передаваться в окружающую атмосферу, создавая наибольшие уровни звукового давления (по сравнению с другими источниками звукоизлучения). Также полезно ограничивать распространение шума по транспортируемой среде, чтобы предупредить чрезмерное проникновение его через стенки трубопровода наружу путем установки глушителей шума (например, участок трубопровода за редукционным клапаном).
На современных мощных паротурбинных блоках шумоглушители ставятся на всасе дутьевых вентиляторов. При этом падение давления строго лимитируется верхним пределом порядка 50-f-100 Па. Требуемая эффективность этих глушителей составляет по эффекту установки обычно от 15 до 25 дБ на участке спектра 200-1000 Гц.
Так, на ТЭС «Робинсон» (США) мощностью 900 МВт (два блока по 450 МВт) для уменьшения шума дутьевых вентиляторов, производительностью 832 000 м3/ч, установлены глушители на всасе. Глушитель состоит из корпуса (стальные листы толщиной 4,76 мм), в котором расположена решетка звукопоглощающих пластин. Корпус каждой пластины выполнен из перфорированных листов оцинкованной стали. Звукопоглощающий материал - минеральная вата, защищенная стеклотканью.
Фирма «Копперс» производит стандартные шумоглушащие блоки, используемые в глушителях шума вентиляторов, применяемых для просушки распыленного угля, подачи воздуха к горелкам котла, вентиляции помещений.
Шум дымососов зачастую представляет значительную опасность, так как по дымовой трубе он может выйти в атмосферу и распространиться на значительные расстояния.
Например, на ТЭС «Кирхленгерн» (ФРГ) уровень звука вблизи дымовой трубы составлял 107 дБ при частоте 500- 1000 Гц. В связи с этим было принято решение - установить в дымовой трубе котельного здания активный глушитель (рис. 2-12). Глушитель состоит из двадцати кулис 1 диаметром 0,32 м, длиной 7,5 м. Учитывая сложность транспортировки и монтажа, кулисы по длине разделены на части, которые соединяются друг с другом и с помощью болтов крепятся к несущей конструкции. Кулиса состоит из корпуса, изготовленного из листовой стали, и поглотителя (минеральная вата), защищенного стеклотканью. После установки глушителя уровень звука у дымовой трубы составил 89 дБ А.
Сложная задача снижения шума ГТУ требует комплексного подхода. Ниже приводится пример комплекса мероприятий по борьбе с шумом ГТУ, существенной частью которого являются шумоглушители в газовоздушных трактах .
Для уменьшения уровня шума ГТУ с ТРД «Олимпус 201» мощностью 17,5 МВт был проведен анализ необходимой степени шумоглушения установки. Требовалось, чтобы октавный спектр шума, измеренный на расстоянии 90 м от основания стальной дымовой трубы, не превышал бы ПС-50. Компоновка, представленная на рис. 2-13, обеспечивает ослабление шума всасывания ГТУ различными элементами (дБ):


Среднегеометрическая частота октавной полосы, Гц........................................

1000 2000 4000 8000

Уровни звукового давления на расстоянии 90 м от всасывания ГТУ до шумоглушения...................................................

Затухание в необлицованном повороте (колене) на 90° ................................

Затухание в облицованном повороте (колене) на 90°.................................

Ослабление за счет воздушного фильтра. . . .·.........................................................

Ослабление за счет жалюзей..............

Затухание в высокочастотной части глушителя................................................

Затухание в низкочастотной части глушителя.............................................................

Уровни звукового давления на расстоянии 90 м после шумоглушения....

На входе воздуха в ГТУ установлен двухступенчатый глушитель пластинчатого типа со ступенями высоких и низких частот. Ступени глушителя установлены вслед за фильтром очистки циклового воздуха.
На выхлопе ГТУ установлен кольцевой низкочастотный глушитель. Результаты анализа шумового поля ГТУ с ТРД на выхлопе до и после установки глушителя (дБ):


Среднегеометрическая частота октавной полосы, Гц........

Уровень звукового давления, дБ: до установки глушителя. . .

после установки глушителя. .

Для снижения шума и вибраций газогенератор ГТУ был заключен в кожух, а на входе воздуха в системе вентиляции установлены глушители. В результате шум, замеренный на расстоянии 90 м, составил:

Подобные системы шумоглушения используют для своих ГТУ и американские фирмы «Солар», «Дженерал электрик», японская фирма «Хитачи».
Для ГТУ большой мощности глушители на воздухозаборе зачастую представляют собой весьма громоздкие и сложные инженерные сооружения. Примером может служить система глушения шума на газотурбинной ТЭЦ «Вар» (ФРГ), на которой установлены две ГТУ фирмы «Броун - Бовери» мощностью по 25 МВт.


Рис. 2-12. Установка глушителя в дымовой трубе ТЭС «Кирхленгеря»

Рис. 2-13. Система шумоглушения для промышленной ГТУ с авиационным ГТД в качестве газогенератора
1- наружное звукопоглощающее кольцо; 2- внутреннее звукопоглощающее кольцо; 3- крышка байпаса; 4 - воздушный фильтр; 5- выхлоп турбины; 6- пластины высокочастотного глушителя на всасывании; 7- пластины низкочастотного глушителя на всасывании

Станция расположена в центральной части населенной зоны. На всасывании ГТУ установлен глушитель, состоящий из трех последовательно расположенных ступеней. Звукопоглощающим материалом первой ступени, предназначенной для глушения шума низких частот, служит минеральная вата, покрытая синтетической тканью и защищенная перфорированными металлическими листами. Вторая ступень аналогична первой, но отличается меньшими зазорами между пластинами. Третья ступень
состоит из металлических листов, покрытых звукопоглощающим материалом, и служит для поглощения шума высоких частот. После установки глушителя, шум электростанции даже в ночное время не превышал норму, принятую для этой местности (45 дБ Л).
Аналогичные сложные двухступенчатые глушители установлены на ряде мощных отечественных установок, например, на Краснодарской ТЭЦ (ГТ-100-750), Невинномысской ГРЭС (ПГУ-200). Описание их конструкции приведено в § 6-2.
Стоимость мероприятий по глушению шума на этих станциях составила 1,0-2,0% общей стоимости станции или около 6% от стоимости самой ГТУ. Кроме того, использование шумоглушителей связано с определенной потерей мощности и к. п. д. Строительство глушителей требует применения больших количеств дорогостоящих материалов и довольно трудоемко. Поэтому особо важное значение приобретают вопросы оптимизации конструкций шумоглушителей, что невозможно без знания наиболее совершенных методов расчета и теоретической базы этих методов.

14. Защита от вибраций

Допустимый уровень звука А (шум) от оборудования, установленного в теплопунктах или насосных

Согласно PN-87/8-02151/02 п. 3, уровень звука А (шум) от насосов или запорной арматуры, измеренный на расстоянии 1 м от оборудования, не должен превышать 65 дБ.

В книге “Технические условия строительства и приемки газовой или жидкотопливной котельной”, выпущенной Польской корпорацией санитарной, отопительной, газовой техники и кондиционирования (издание ІІ), приводятся допустимые значения уровней звука:

для котлов мощностью 30-120 кВт с атмосферными горелками – ниже 65 дБ (А);

для котлов мощностью 30-120 кВт с вентиляторными горелками – ниже 85 дБ (А);

для котлов мощностью более 120 кВт – не выше 85 дБ (А).

При установке котла мощностью менее 30 кВт в помещении отдельной кухни, уровень звука не должен превышать 51 дБ (А), а в кухне, совмещенной с другим помещением – 45 дБ (А). Источники, на основании которых приводятся указанные величины, авторам не известны. Предположительно их цитируют из инструкций, изданных

в западных странах.

В связи с тем, что польские нормы не содержат указаний относительно значений уровня звука, источником которого является котельная, запаздывая с изменениями на теплотехническом рынке, авторы ссылаются на немецкие указания VDI 2715 относительно понижения шума отопительного оборудования. Эти указания комплексно охватывают проблемы шума, создаваемого котельной.

Несмотря на очень строгие ограничения (даже ниже 25 дБ (А)) к шуму, производимому котельной (как к уровню звука, излучаемого в окружающую среду, так и к уровню звука, проникающего в прилегающие помещения), допустимый уровень звука в самом помещении котельной зависит от номинальной мощности котла и установленной горелки. Для котлов с вентиляторными горелками его значение можно определить по формуле:

Минимальные значения индекса изоляции воздушного шума перекрытием между котельной

и жилыми помещениями

Значение индекса изоляции воздушного шума перекрытием (с учетом всех путей косвенной звукопередачи) между помещением котельной и помещениями квартиры, в соответствии с нормами PN-B-02151-3 от 1999 г., не может быть меньше R’A1 = 55 дБ. Значение индекса приведенного уровня ударного шума, проникающего от пола котельной в квартиры, не должно превышать L’n.w = 58 дБ.

14.4. Шум, создаваемый группой “котел – горелка”

14.4.1. Влияние мощности котла на уровень излучаемого шума

На рис. 14.4 показаны корректированные уровни звука в дБ (А) для котлов различной мощности с вентиляторными горелками. На графике показаны кривые изменения уровня звука по октавным полосам в зависимости от мощности котла. Представленные характеристики получены опытным путем, в результате многочисленных экспериментов с котельными установками. Конечно, могут случаться отклонения, и их нужно учитывать при проектировании защиты от шума. Приведены данные фирмы RAICHLE.

14. Защита от вибраций

давлениязвуковогоУровень

Мощность

звукового

давления, дБ (A)

Рис. 14.4. Распределение уровня звукового давления по октавным полосам для группы “котел – вентиляторная горелка”

различной мощности

14.4.2. Уровень звука котлов различного типа

В настоящее время все чаще применяются котлы с вентиляторными горелками. В пользу такого решения говорит много факторов, но, как правило, решающим оказывается более высокий КПД. Кроме ряда преимуществ, группа “котел – вентиляторная горелка” имеет и недостаток – повышенный уровень шума. Основным источником шума вентиляторной горелки являются завихрения, возникающие в перекачиваемом газе. Интенсивность этого звука прямо пропорциональна средней скорости лопастей в степени, величина которой находится в пределах <5, 6>. Интенсивность звука примерно одинаковая как на всасывании, так и на нагнетании вентилятора.

Согласно , уровень звуковой мощности для вентиляторов, определенный в полупространстве, можно ориентировочно рассчитать по формуле:

14. Защита от вибраций

При известной мощности W двигателя вентилятора (кВт), можно использовать следующие формулы:

L N = 85 + 10logW + 10log∆p

L N = 125 + 20logW – 10log

Для определения точных значений уровня звуковой мощности в зависимости от типа вентилятора и условий его работы можно использовать указания VDI 2081.

Уровни звуковой мощности, производимой вентилятором в зависимости от расходаи разности давлений

∆p , рассчитанные по формуле , представлены на рис. 14.5.

Рис. 14.5. Зависимость звуковой мощностиL N вентилятора от объемного расходаи разности давлений∆p

Как видно из графика, звуковая мощность L N прямо пропорциональна объемному расходупри определенной разности давлений∆p . Для сравнения на рис. 14.6 показан уровень звука А только для вентиляторных горелок различной мощности. Максимальные значения уровня звука для данной мощности котла колебаются в диапазоне частот от 500 до 2000 Гц. Сравнение графиков на рис. 14.4 и 14.6 позволяет сделать вывод о том, что уровень звука группы “котел – горелка” ненамного выше уровня звука одной вентиляторной горелки. Максимальные значения уровня звука группы “котел – горелка” отмечаются в диапазоне более низких частот 63-500 Гц. В этом случае имеем дело с низкочастотным шумом.

Упрощенно можно утверждать, что котел влияет на структуру и уровень звука, производимого вентиляторной горелкой, только качественно, но не количественно.

14. Защита от вибраций

Проведенные авторами исследования показали, что значения звука для котлов малой мощности, как с вентиляторными, так и с атмосферными горелками, практически одинаковые. Разница в излучении шума отмечалась для котлов мощностью выше 100 кВт. Повышение уровня звукового давления связано с ростом производительности вентилятора.

На рис. 14.6 показан уровень звуковой мощности А для вентиляторных горелок в зависимости от мощности котла.

Рис. 14.6. Уровень звуковой мощности А для вентиляторных горелок в зависимости от мощности котла

14.5. Акустическая модель отопительной установки

Изучение путей распространения упругих волн необходимо начать с анализа главного акустического механизма, связанного с отдельными элементами отопительной установки. Сначала нужно локализовать источники, которые генерируют колебания и шум. В отопительных установках – это группа “котел – горелка”, насосы и запорная арматура. Первоначально нужно оценить уровень генерируемого шума. Несмотря на то, что каждое из этих устройств может соответствовать требованиям действующих в этой области норм, суммарное воздействие шума от всего оборудования часто превышает допустимые значения для смежных помещений или окружающей среды.

Следующий этап – определение путей передачи звука. В отопительных установках существует несколько основных путей распространения звука. К ним относятся трубопроводы вместе с теплоносителем (преимущественно водой), дымоходы, вентиляционные каналы и отдельные устройства, которые через точки соприкосновения или крепления участвуют в распространении шума.

Последним этапом является локализация зон, излучающих звук. В результате такого анализа разработана причинно-следственная цепь генерации и распространения шума, представленная на рис. 14.7.

14. Защита от вибраций

Рис. 14. 7. Причинно-следственная цепь генерации и распространения шума

Шум, который возникает в одном из источников, распространяется дальше в виде колебаний частиц среды, с которой данный источник контактирует. В отопительной установке источники, генерирующие упругие волны, контактируют, в большинстве случаев, с веществом во всех физических состояниях – воздухом, жидкостью и твердым телом. Поэтому распространение возникающих колебаний необходимо рассматривать для всех этих трех категорий.

Общая модель отопительной установки представлена на рис. 14.8. Она разделена на динамические факторы, которые активно участвуют в процессе генерации упругих колебаний, и статические факторы, которые распространяют вибрацию и шумы. Динамические факторы – это главные источники шума, перечисленные выше: группа “котел – горелка”, насосы и запорная арматура.

К статическим факторам относятся трубопроводы систем отопления, вентиляционные каналы, дымоходы, корпуса и кожухи оборудования, перегородки и, конечно, конструкция дома в целом.

В зависимости от того, в какой среде происходит генерация или распространение шума, он и носит соответствующее название: воздушные шумы, шумы, распространяющиеся в воде, ударные шумы. Как показано на рис.14.8, не все источники создают упругие волны во всех трех категориях, как и не каждая среда играет ключевую роль в распространении шума от данного источника. Целью выделения факторов шума является идентификация доминирующих источников, путей передачи и излучающих поверхностей.

Конечным эффектом вибрации оборудования являются звуки (шумы), которые распространяются в воздушном пространстве и могут также побуждать вибрацию (колебания) перегородок и других строительных конструкций, находящиеся в окружающей среде.

14. Защита от вибраций

Вентиляци-

оборудования

Конструкции

Дымоходы

Трубопроводы

Перегородки

отопления

Запорная

арматура

Статические

Динамические

Статические

факторы шума

факторы шума

факторы шума

звук, распространяющийся в воздухе

звук, распространяющийся в жидкостизвук ударный

Рис. 14.8. Акустическая модель котельной и системы отопления

Источники шума

Шум при перемещении газов (продуктов сгорания, воздуха) возникает вследствие турбулентных явлений, ударов или пульсаций. Турбулентность является механизмом генерации шума, который может принимать различные формы. Например, может состоять из простых фоновых составляющих, связанных в основном с истечением газов из отверстий, или иметь широкополосный спектр при протекании их по каналам с острыми кромками, с запорными элементами или другими местными сопротивлениями.

Поток с большой скоростью, например на концах лопастей вентилятора или сопла, создает завихрения, способствующие возникновению шума в широком звуковом диапазоне. Его уровень и спектр зависят от скорости потока, вязкости среды и геометрии сопла.

Жидкость, как и воздух, генерирует шум вследствие турбулентности, пульсаций и ударов. Перечисленные выше принципы относятся и к жидкости. Кроме того, в ней может возникать явление кавитации, когда статическое давление опускается ниже давления насыщения пара. Возникновение кавитации – явление, характерное для запорной арматуры и насосов. В зоне падения давления ниже давления насыщения пара появляются кавитационные пузырьки пара. Во время повторного сжатия пузырьки лопаются, создавая зоны значительного повышения давления. В связи с тем, что повторное сжатие (компрессия) часто происходит в пристенном слое потока, кавитация является причиной эрозии. Кавитация генерирует шум обширного диапазона.

Удар является причиной структурного (ударного) шума в трубопроводах системы отопления. Наиболее важными параметрами, влияющими на возникновение ударного шума, являются масса и скорость частиц, которые сталкиваются, и продолжительность удара. Частотный анализ удара показывает, что высокие частоты преобладают над широкополосным шумом в связи с короткой продолжительностью самого удара.

14. Защита от вибраций

Каждый источник звука имеет определенную характеристику, специфический путь распространения и опреде-

ленное возбуждение излучающей поверхности. В современных котельных основным источником шума является

группа “котел – горелка” (особенно вентиляторная горелка). На рис. 14.9 показана котельная, в которой главным

источником шума является группа “котел – горелка”, пути распространения и методы снижения шума.

звук, распространяющийся

в воздухе

Шумоглушитель на

звук, распространяющийся

вытяжной вентрешетке

в жидкости

звук ударный

крепление

Группа "котел – горелка"

как источник

колебаний и шума

Шумоглушитель

на приточной

Шумоглушитель

вентрешетке

на дымоходе

компенсатор

Виброоснование

Рис. 14.9. Пути распространения и методы снижения шума от группы “котел-горелка”

Группа “котел – горелка” генерирует звук всех ранее перечисленных категорий. Пути распространения звука тоже разные: движущаяся жидкость, точки крепления, дымоходы, облицовка и кожухи оборудования. Общая звуковая мощность, излучаемая группой “котел – горелка”, – это сумма всех вышеперечисленных составляющих.

14.6. Снижение уровня шума в воздушном пространстве

В воздушное пространство шум проникает через приточные и вытяжные отверстия. По своей природе шум имеет направление, а наибольшая его интенсивность наблюдается вдоль оси канала. Отсюда следует вывод, что

в отверстии направление шума следует изменить, например с помощью экрана, или в отверстии или канале установить шумоглушитель.

Излучение шума с поверхностей оборудования зависит от размера, формы, упругости, массы и звукопоглощающих свойств поверхности. Поэтому желательно, чтобы оборудование имело компактную конструкцию, так как незначительные размеры, большая жесткость и масса уменьшают излучение шума.

14. Защита от вибраций

Шум, распространяющийся в воздушном пространстве, можно ограничить с помощью:

звукоизолирующих кожухов;

акустических экранов;

шумоглушителей;

звукопоглощающих покрытий.

Звукоизолирующий кожух

Под понятием кожух подразумевается оболочка, внутри которой находится источник шума (рис.14.10). Звукоизолирующий кожух представляет собой пассивное средство, ограничивающее распространение шума. Часто это единственная возможность снижения уровня шума от активных акустических источников – движущихся механизмов или их частей. Особенность кожуха состоит в том, что уровень шума снижается уже в непосредственной близости от источника. Это позволяет защитить также рабочие места, расположенные вблизи источника шума.

Кожух изготавливают преимущественно из тонколистовой стали. Для улучшения звукоизолирующих свойств его покрывают изнутри слоем пористого звукопоглощающего материала. Толщина слоя такого материала зависит от наиболее низкой частоты звука.

Уменьшение передачи ударного шума от источника к кожуху происходит за счет применения материалов, амортизирующих колебания в узлах крепления.

источник

Звукоизоляционный материал

Звукопоглощающий материал

Шумоглушитель на

вентиляционном отверстии

Виброоснование

Рис. 14.10. Разрез звукоизолирующего кожуха и пример звукоизолирующего кожуха горелки котла Vitoplex

Принципы проектирования оболочек вокруг источников звука:

плотная изоляция источника звука; даже небольшие щели или отверстия необходимо закрыть;

использование металла в качестве звукоизоляционного материала с внешней стороны кожуха;

применение звукопоглощающего материала внутри кожуха;

использование шумоглушителей в вентиляционных отверстиях, отверстиях для прохода кабелей, труб и т. п.;

отсутствие жестких соединений между оборудованием и кожухом, уменьшение количества точек крепления.

14. Защита от вибраций

Мерой эффективности звукоизолирующего кожуха является величина звукоизолирующей способности кожуха D кож – разность между средним уровнем звукового давления во всех точках измерения при работающем механизме или оборудовании без кожухаL m1 (дБ) и средним значением уровня звукового давления в тех же точках при работающем механизме, но уже со звукоизолирующим кожухомL m2 (дБ) на среднегеометрических частотах октавных полос от 63 до 8000 Гц. Значение звукоизолирующей способности кожухаD кож в дБ определяется по формуле:

D кож= L m1– L m2[дБ]

Изучая акустическую эффективность кожуха, не нужно смешивать понятия звукоизолирующей способности кожуха и удельной звукоизолирующей способности перегородки R w , определяемой акустическими свойствами элементов, из которых она изготовлена.

Экраны можно устанавливать возле небольших елементов оборудования с высоким уровнем излучения шума. Эффективность их значительно ниже эффективности звукоизолирующих кожухов и зависит от направления и расстояния от источника шума. Вместе с тем экраны могут быть полезны для снижения шума в ограниченных зонах, например на рабочем месте оператора.

Эффективность экранов ограничена частотами, при которых высота и длина экрана такие же, как и длина звуковой волны, передаваемой в воздухе, или больше.

Принципы проектирования экранов:

экраны применяются для защиты от шума рабочих мест операторов;

для изготовления экранов используются плотные звукоизоляционные материалы;

экраны со стороны источника шума покрываются звукопоглощающим слоем.

Шумоглушители

Шумоглушители – это элементы, которые препятствуют прохождению звука, передаваемого воздуховодами. Абсорбционные шумоглушители выполняются в виде “пористого канала”. Они часто встроены в кожухи вентиляторов для обеспечения охлаждения двигателей без снижения эффективности звукоизолирующих свойств.

Принципы проектирования шумоглушителей:

использование абсорбционных шумоглушителей для снижения широкополосного шума;

недопущение скорости движущейся среды выше 12 м/сек в абсорбционных глушителях;

применение реактивных шумоглушителей, действующих по принципу отражения для снижения шума на низких частотах;

использование шумоглушителей-расширителей на выходе сжатого воздуха.

Количество обращений граждан, поступающих в УправлениеРоспотребнадзора по Тюменской области, об ухудшении условий проживания вследствие воздействия сверхнормативных уровней шума ежегодно возрастает.

За 2013 год поступило 362 обращения (суммарно по фактам нарушения тишины и покоя, размещения и шума), в 2014 – 416 обращений, за 2015 год уже поступило 80 обращений.

Согласно сложившейся практике, после обращения жителей Управлением назначаются измерения уровней шума и вибрации в жилом помещении. В случае необходимости измерения проводят в организациях, расположенных рядом с квартира­ми, где, например, эксплуатируется «шумящее» оборудование - источник шума (ресторан, кафе, магазин и т.д.). При обнару­жении превышений уровней шума и вибрации над допусти­мыми значениями, согласно СН 2.2.4/2.1.8.562-96 «Шум на ра­бочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки», в адрес владельцев источ­ников шума - юридических лиц, индивидуальных предпри­нимателей - Управление выдает предписание об устранении выявленных нарушений санитарного законо­дательства.

Каким образом можно снизить шум от перечисленного выше оборудования, чтобы при его эксплуатации не возни­кали жалобы жильцов дома? Конечно, идеальный вариант -предусмотреть необходимые меры на стадии проектирова­ния жилого здания, тогда и разработка шумопонижающих мероприятий всегда возможна, и внедрение их при стро­ительстве в десятки раз дешевле, чем в тех домах, которые уже построены.

Совсем по-другому обстоит дело, если здание уже постро­ено и в нем имеются источники шума, которые превышают действующие нормы. Тогда чаще всего шумные агрегаты за­меняют на менее шумные и реализуют мероприятия по виб­роизоляции агрегатов и подводящих к ним коммуникаций. Далее мы рассмотрим конкретные источники шума и меры по виброизоляции оборудования.

ШУМ ОТ КОНДИЦИОНЕРА

Применение трехзвенной виброизоляции, когда кондиционер устанавливают на раму через виброизолятор, а раму - на железобетонную плиту через резиновые прокладки (при этом железобетонная плита устанавливается на пружинные виброизоляторы на кровлю здания), приводит к снижению проникающего структурного шума до уровней, допустимых в жилых по­мещениях.

Для снижения шума необходимо, кроме усиления шумовиброизоляции стенок воздуховода и установки глушителя на воздуховод вентагрегата (со стороны помещений), крепить расширительную камеру и воздуховоды к перекрытию через виброизолирующие подвески или прокладки.

ШУМ ОТ КОТЕЛЬНОЙ НА КРЫШЕ

Для защиты от шума котельной, расположенной на кры­ше дома, фундаментную плиту крышной котельной устанав­ливают на пружинные виброизоляторы или виброизоли­рующий мат из специального материала. Оборудованные в котельной насосы и котлоагрегаты устанавливают на ви­броизоляторы и применяют мягкие вставки.

Насосы в котельной нельзя ставить двигателем вниз! Они должны быть смонтированы таким образом, чтобы на­грузка от трубопроводов не передавалась на корпус насоса. Наряду с этим уровень шума выше от насоса более высокой мощности или в случае, если установлено несколько насосов. Для снижения шума фундаментную плиту котельной также можно поставить на пружинные амортизаторы или высоко­прочные многослойные резиновые и резинометаллические виброизоляторы.

Действующими нормами не допускается размеще­ние крышной котельной непосредственно на перекры­тии жилых помещений (перекрытие жилого помещения не может служить основанием пола котельной), а также смежно с жилыми помещениями. Не допускается про­ектирование крышных котельных на зданиях детских дошкольных и школьных учреждений, лечебных кор­пусах поликлиник и больниц с круглосуточным пре­быванием пациентов, на спальных корпусах санатори­ев и учреждений отдыха. При установке оборудования на кровле и перекрытиях желательно размещать его в местах, наиболее удаленных от защищаемых объектов.


ШУМ ОТ ИНТЕРНЕТ-ОБОРУДОВАНИЯ

Согласно рекомендациям по проектированию систем связи, информатизации и диспетчеризации объектов жи­лищного строительства, антенные усилители сотовой связи рекомендуется устанавливать в металлическом шкафу с за­порным устройством на технических этажах, чердаках или лестничных клетках верхних этажей. При необходимости установки домовых усилителей на разных этажах многоэтажных зданий их следует устанавливать в металлических шкафах в непо­средственной близости от стояка под потолком, как правило на высоте не менее 2 м от низа шкафа до пола.

При монтаже усилителей на технических этажах и чердаках для устранения передачи вибрации металлическо­го шкафа с запорным устройством последний необходимо установить на виброизоляторы.

ВЫХОД - ВИБРОИЗОЛЯТОРЫ И «ПЛАВАЮЩИЕ» ПОЛЫ

Для вентиляционного, холодильного оборудования на верхних, нижних и промежуточных технических этажах жилых зданий, гостиниц, многофункциональных комплексов или при соседстве с нормируемыми по шуму помещениями, где постоянно пребывают люди, можно установить агрегаты на заводские виброизоляторы на железобетонную плиту. Эту плиту монтируют на виброизолированном слое или пружинах на «плавающий» пол (дополнительная железобе­тонная плита на виброизолирующем слое) в техническом помещении. Следует учесть, что вентиляторы, наружные конденсаторные блоки, которые сейчас выпускаются, вибро­изоляторами комплектуют только по заявке заказчика.

«Плавающие» полы без специальных виброизоляторов можно использовать лишь с оборудованием, имеющим ра­бочие частоты более 45-50 Гц. Это, как правило, небольшие машины, виброизоляция которых может быть обеспечена и другими способами. Эффективность полов на упругом осно­вании на столь низких частотах невелика, поэтому применяют их исключительно в сочетании с другими видами виброизоля­торов, что обеспечивает высокую виброизоляцию на низких частотах (за счет виброизоляторов), а также на средних и вы­соких (за счет виброизоляторов и «плавающего» пола).

Стяжку плавающего пола необходимо тщательно изоли­ровать от стен и несущей плиты перекрытия, так как образо­вание даже небольших жестких мостиков между ними может существенно ухудшить его виброизолирующие свойства. В мес­тах примыкания «плавающего» пола к стенам должен быть шов из нетвердеющих материалов, не пропускающий воду.

ШУМ ОТ МУСОРОПРОВОДА

Для снижения шума необходимо соблюдать требования норм и не проектировать ствол мусоропровода смежно с жилыми помещениями. Ствол мусоропровода не должен примыкать или располагаться в стенах, ограждающих жи­лые либо служебные помещения с нормируемыми уровнями шума.

Из мероприятий по уменьшению шума мусоропроводов наиболее распространены следующие:

  • в помещениях для сбора мусора предусматривается «плавающий» пол;
  • по согласию жильцов всех квартир подъезда мусоро­провод заваривается (или ликвидируется) с размещением в помещении мусорокамеры колясочных, комнаты для кон­сьержки и т.д. (положительной момент в том, что кроме шума исчезают запахи, ликвидируется возможность появления крыс и насекомых, вероятность пожаров, грязь и т.д.);
  • ковш загрузочного клапана монтируют обрамленными резиновыми или магнитными уплотнителями;
  • декоративная теплошумозащитная облицовка ствола мусоропровода из строительных материалов отделяется от строительных конструкций здания звукоизолирующими прокладками.

Сегодня многие строительные фирмы предлагают свои услуги, различные конструкции для увеличения звукоизоля­ции стен и обещают полную тишину. Следует обратить вни­мание на то, что на самом деле никакие конструкции не смо­гут снять структурный шум, передающийся по перекрытиям пола, потолка и по стенам при сбрасывании твердых быто­вых отходов в мусоропровод.

ШУМ ОТ ЛИФТОВ

В СП 51.13330.2011 «Защита от шума. Актуализирован­ная редакция СНиП 23-03-2003» сказано, что лифтовые шах­ты целесообразно располагать в лестничной клетке между лестничными маршами (п. 11.8). При архитектурно-планиро­вочном решении жилого здания следует предусматривать, чтобы к встроенной лифтовой шахте примыкали помещения, не требующие повышенной защиты от шума и вибрации (хол­лы, коридоры, кухни, санитарные узлы). Все лифтовые шахты независимо от планировочного решения должны быть само­несущими и иметь самостоятельный фундамент.

Шахты надлежит отделить от других конструкций здания акустическим швом 40-50 мм или виброизолирующими про­кладками. В качестве материала упругого слоя рекомендова­ны плиты из акустической минеральной ваты на базальтовой или стекловолокнистой основе и различные вспененные по­лимерные рулонные материалы.

Для защиты от структурного шума лифтовой установки ее приводной двигатель с редуктором и лебедкой, устанав­ливаемые обычно на одной общей раме, виброизолируют от опорной поверхности. Современные лифтовые привод­ные агрегаты комплектуют соответствующими виброизо­ляторами, установленными под металлическими рамами, на которых жестко крепят двигатели, редукторы и лебедки, в связи с чем дополнительная виброизоляция приводного агрегата, как правило, не требуется. При этом дополнительно рекомендуется сделать двухкаскадную (двузвенную) систему виброизоляции, установив опорную раму через виброизоля­торы на железобетонную плиту, которая также отделена от пола виброизоляторами.

Эксплуатация лифтовых лебедок, установленных на двухка-скадных системах виброизоляции, показала, что уровни шума от них не превышают нормативные значения в ближайших жи­лых помещениях (через 1-2 стены). В практических целях не­обходимо следить за тем, чтобы виброизоляция не была нару­шена случайными жесткими мостиками между металлической рамой и опорной поверхностью. Подводящие электрокабели должны иметь достаточно длинные гибкие петли. Тем не менее работа других элементов лифтовых установок (панели управ­ления, трансформаторы, башмаки кабины и противовеса и т.п.) может сопровождаться шумом выше нормативных значений.

Запрещается проектировать пол машинного отделения лифта как продолжение плиты перекрытия потолка жилой комнаты верхнего этажа.

ШУМ ОТ ТРАНСФОРМАТОРНЫХ ПОДСТАНЦИЙ НА ПЕРВЫХ ЭТАЖАХ

Для защиты от шума трансформаторных подстанций жилых и иных помещений с нормируемыми уровнями шума необходимо соблюдать следующие условия:

  • помещения встроенных трансформаторных подстанций;
  • не должны примыкать к защищаемым от шума помещениям;
  • встроенные трансформаторные подстанции следует
  • располагать в подвалах или на первых этажах зданий;
  • трансформаторы необходимо устанавливать на вибро­изоляторы, рассчитанные соответствующим способом;
  • электрические щиты, содержащие электромагнитные коммуникационные аппараты, и отдельно установленные масляные выключатели с электрическим приводом должны монтироваться на резиновых виброизоляторах (воздушные разъединители не требуют виброизоляции);
  • вентиляционные устройства помещений встроенных трансформаторных подстанций должны быть оборудованы глушителями шума.

Для дополнительного снижения шума от встроенной трансформаторной подстанции целесообразно обработать ее потолки и внутренние стены звукопоглощающей облицовкой.

Во встроенных трансформаторных подстанциях должна быть выполнена за­щита от электромагнитного излучения (сетка из специально­го материала с заземлением для снижения уровня излучения электрической составляющей и стальной лист для магнитной).

ШУМ ОТ ПРИСТРОЕННЫХ КОТЕЛЬНЫХ, ПОДВАЛЬНЫХ НАСОСОВ И ТРУБ

Оборудование котельных (на­сосы и трубопроводы, вентагрегаты, воздуховоды, газовые котлы и т.д.) должно быть виброизолировано с применением виброфундаментов и мягких вставок. Вентиляционные уста­новки оснащают глушителями.

Чтобы виброизолировать расположенные в подвалах на­сосы, элеваторные узлы в индивидуальных тепловых пунктах (ИТП), вентагрегаты, холодильные камеры, указанное обору­дование устанавливают на виброфундаменты. Трубопроводы и воздуховоды виброизолируются от конструкций дома, так как преобладающим шумом в квартирах, расположенных выше, может оказаться не базовый шум от оборудования в подвале, а тот, который передается ограждающим конструкциям через вибрацию трубопроводов и фундаменты оборудования. Устра­ивать встроенные котельные в жилых зданиях запрещается.

В системах трубопроводов, соединенных с насосом, необ­ходимо применять гибкие вставки - резинотканевые рукава или резинотканевые рукава, армированные металлическими спиралями, в зависимости от гидравлического давления в сети, длиной 700-900 мм. При наличии трубных участков меж­ду насосом и гибкой вставкой участки следует крепить к сте­нам и перекрытиям помещения на виброизолирующих опо­рах, подвесках или через амортизирующие прокладки. Гибкие вставки нужно располагать как можно ближе к насосной уста­новке как на нагнетательной линии, так и на всасывающей.

Для снижения уровней шума и вибрации в жилых домах от работы систем тепловодоснабжения необходимо изоли­ровать распределительные трубопроводы всех систем от строительных конструкций здания в местах их прохождения через несущие конструкции (ввода в жилые дома и вывода из них). Зазор между трубопроводом и фундаментом на вво­де и выводе должен быть не менее 30 мм.


Подготовлено по материалам журнала Санитарно-эпидемиологический собеседник (№1(149), 2015