Координаты и координатная плоскость. Координатная плоскость — Гипермаркет знаний

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В речи взрослых вы могли слышать такую фразу: «Оставьте мне ваши координаты». Это выражение означает, что собеседник должен оставить свой адрес или номер телефона, по которым его можно найти. Те из вас, кто играл в «морской бой», пользовались при этом соответствующей системой координат. Аналогичная система координат используется в шахматах. Места в зрительном зале кинотеатра задают двумя числами: первым числом обозначают номер ряда, а вторым — номер кресла в этом ряду. Идея задавать положение точки на плоскости с помощью чисел зародилась ещё в древности. Система координат пронизывает всю практическую жизнь человека и имеет огромное практическое применение. Поэтому мы решили создать данный проект, чтобы расширить свои познания по теме «Координатная плоскость»

Задачи проекта :

    ознакомиться с историей возникновения прямоугольной системой координат на плоскости;

выдающимися деятелями, занимающимися данной темой;

    найти интересные исторические факты;

    хорошо воспринимать на слух координаты; четко и аккуратно выполнять построения;

    подготовить презентацию.

ГлаваI. Координатная плоскость

Идея задавать положение точки на плоскости с помощью чисел зародилась ещё в древности - прежде всего у астрономов и географов при составлении звёздных и географических карт, календарей.

§1. Зарождение координат. Система координат в географии

За 200 лет до нашей эры греческий ученый Гиппарх ввёл географические координаты. Он предложил нарисовать на географической карте параллели и меридианы и обозначить числами широту и долготу. С помощью этих двух чисел можно точно определить положение острова, поселка, горы или колодца в пустыне и нанести их на карту или глобус, Научившись определять в открытом мире широту и долготу местонахождения корабля, моряки получили возможность выбирать нужное им направление.

Восточную долготу и северную широту обозначают числами со знаком «плюс», а западную долготу и южную широту — со знаком «минус». Таким образом, пара чисел со знаками однозначно определяет точку на земном шаре.

Географическая широта? - угол между отвесной линией в данной точке и плоскостью экватора, отсчитываемый от 0 до 90 в обе стороны от экватора. Географическая долгота? - угол между плоскостью меридиана, проходящего через данную точку, и плоскостью начала меридиана(см. Гринвичский меридиан). Долготы от 0 до 180 к востоку от начала меридиана называют восточными, к западу - западными.

Чтобы найти некоторый объект в городе, в большинстве случаев достаточно знать его адрес. Трудности возникают, если нужно объяснить, где находится, например, дачный участок, место в лесу. Универсальным средством указания местоположения служат географические координаты.

При попадании в аварийную ситуацию, человек первым делом должен уметь ориентироваться на местности. Иногда необходимо определить географические координаты своего местоположения, например, чтобы передать спасательной службе или для других целей.

В современной навигации стандартно используется всемирная система координат WGS-84. В этой системе координат работают все GPS навигаторы и основные картографические проекты в Интернете. Координаты в системе WGS-84 столь же общеупотребимы и понятны всем, как всемирное время. Общедоступная точность при работе с географическими координатами составляет 5 - 10 метров на местности.

Географические координаты представляют собой числа со знаком (широта от -90° до +90°, долгота от -180° до +180°) и могут записываться в различных формах: в градусах (ddd.ddddd°); градусах и минутах (ddd° mm.mmm"); градусах, минутах и секундах (ddd° mm" ss.s"). Формы записи могут быть элементарно пересчитаны одна в другую (1 градус = 60 минут, 1 минута = 60 секунд). Для обозначения знака координат часто используются буквы, по названию сторон света: N и E - северная широта и восточная долгота - положительные числа, S и W - южная широта и западная долгота - отрицательные числа.

Форма записи координат в ГРАДУСАХ наиболее удобна для ручного ввода и совпадает с математической записью числа. Форма записи координат в ГРАДУСАХ И МИНУТАХ является предпочтительной во многих случаях, такой формат установлен по умолчанию в большинстве GPS навигаторов и стандартно используется в авиации и на море. Классическая форма записи координат в ГРАДУСАХ, МИНУТАХ И СЕКУНДАХ в действительности не находит большого практического применения.

§2. Система координат в астрономии. Мифы о созвездиях

Как было сказано выше идея задавать положение точки на плоскости с помощью чисел зародилась в древности у астрономов при составлении звездных карт. Людям нужно было считать время, предсказывать сезонные явления (приливы, отливы, сезонные дожди, затопления), нужно было ориентироваться на местности во время путешествий.

Астрономия - это наука о звёздах, планетах, небесных телах, их строении и развитии.

Прошли тысячи лет, наука шагнула далеко вперёд, а человек по-прежнему не может оторвать восхищённого взгляда от красоты ночного неба.

Созвездия - участки звёздного неба, характерные фигуры, образуемые яркими звёздами. Всё небо разделено на 88 созвездий, которые облегчают ориентирование среди звёзд. Большинство названий созвездий пришло из древности.

Самое известное созвездие - Большая Медведица. В Древнем Египте его называли “Гиппопотам”, а казахи называли “Конь на привязи”, хотя внешне созвездие не напоминает ни одного, ни другого животного. Какое же оно?

У древних греков существовала легенда о созвездиях Большой и Малой Медведиц. Всемогущий бог Зевс решил взять себе в жены прекрасную нимфу Калисто, одну из служанок богини Афродиты, вопреки желанию последней. Чтобы избавить Калисто от преследований богини, Зевс обратил Калисто в Большую медведицу, ее любимую собаку - в Малую Медведицу и взял их на небо. Перенести созвездия Большой и Малой Медведиц со звездного неба на координатную плоскость. . Каждая из звёзд “ Ковша большой медведицы” имеет свое название.

МЕДВЕДИЦУ БОЛЬШУЮ

Узнаю по КОВШУ я!

Семь звёзд сверкают тут,

А вот как их зовут:

ДУБХЕ освещает мрак,

Рядом с ним горит МЕРАК,

Сбоку ФЕКДА с МЕГРЕЦОМ,

Разудалым молодцом.

От МЕГРЕЦА на отлёт

Расположен АЛИОТ,

А за ним - МИЦАР с АЛЬКОРОМ

(Эти двое светят хором).

Замыкает ковшик наш

Бесподобный БЕНЕТНАШ.

Он указывает глазу

Путь в созвездье ВОЛОПАСА,

Где АРКТУР прекрасный светит,

Всяк теперь его заметит!

Не менее красивая легенда о созвездиях « Цефея», «Кассиопеи» и «Андромеды» .

Когда-то Эфиопией правил царь Цефей. Однажды его супруга, царица Кассиопея, имела неосторожность похвастать своей красотой перед обитательницами моря - нереидами. Последние, обидевшись, пожаловались богу моря Посейдону, и разгневанный дерзостью Кассиопеи властитель морей напустил на берега Эфиопии морское чудовище - Кита. Чтобы избавить свое царство от разрушений, Цефей, по совету оракула, решил принести жертву чудовищу и отдать ему на съедение свою любимую дочь Андромеду. Он приковал Андромеду к прибрежной скале и оставил ее в ожидании решения своей участи.

А в это время на другом краю света мифический герой Персей совершил смелый подвиг. Он проник на уединенный остров, где жили горгоны - удивительные чудовища в образе женщин, у которых на головах вместо волос кишели змеи. Взгляд горгон был так ужасен, что каждый на кого они смотрели, мгновенно превращался в камень.

Воспользовавшись сном этих чудовищ, Персей отсек голову одной из них -Горгоне Медузе. В этот момент из отрубленного тела Медузы выпорхнул конь Пегас. Персей схватил голову медузы, вскочил на Пегаса и по воздуху помчался к себе на родину. Когда он пролетал над Эфиопией, то увидел прикованную к скале Андромеду. В этот момент Кит уже вынырнул из морских пучин, готовясь проглотить свою жертву. Но Персей, ринувшись в смертельный бой с Китом, победил чудовище. Он показал Киту еще не потерявшую силу голову медузы, и чудовище окаменело, превратившись в остров. Что же касается Персея, то, расковав Андромеду, он вернул ее отцу, а растроганный от счастья Цефей отдал Андромеду в жены Персею. Так благополучно закончилась эта история, главные герои которой были помещены древними греками на небо.

На звездной карте можно найти не только Андромеду с ее отцом, матерью и мужем, но и волшебного коня пегаса и виновника всех бед - чудовища Кита.

Созвездие Кита расположено ниже Пегаса и Андромеды. К сожалению, оно не отмечено какими-нибудь характерными яркими звездами и поэтому принадлежит к числу второстепенных созвездий.

§3. Использование идеи прямоугольных координат в живописи.

Следы применения идеи прямоугольных координат в виде квадратной сетки (палетки) изображены на стене одной из погребальных камер Древнего Египта. В погребальной камере пирамиды отца Рамсеса на стене имеется сеть квадратиков. С их помощью перенесено изображение в увеличенном виде. Прямоугольной сеткой пользовались и художники Возрождения.

Слово «перспектива» в переводе с латинского означает «ясно вижу». В изобразительном искусстве линейная перспектива — это изображение предметов на плоскости в соответствии с кажущимися изменениями их величины. Основу современной теории перспективы заложили великие художники эпохи Возрождения — Леонардо да Винчи, Альбрехт Дюрер и другие. На одной из гравюр Дюрера (рис. 3) изображён способ рисования с натуры через стекло с нанесённой на него квадратной сеткой. Этот процесс можно описать так: если встать перед окном и, не изменяя точки зрения, обвести на стекле всё, что видно за ним, то полученный рисунок и будет перспективным изображением пространства.

Египетские методы проектирования, которые, похоже, основывались на схемах квадратной сетки. В египетском искусстве имеются многочисленные примеры, показывающие, что художники и скульпторы сначала рисовали сетку на стене, которую предстояло расписать или вырезать, для того чтобы сохранить установленные пропорции. Простые числовые отношения этих сеток служат сердцевиной всех великих художественных произведений египтян.

Тот же метод использовался многими художниками Возрождения, в том числе и Леонардо да Винчи. В Древнем Египте это нашло свое воплощение в Великой пирамиде, что и подкрепляется ее тесной связью с узором на Марлборо-Дауне.

Приступая к работе, египетский художник расчерчивал стену сеткой прямых линий и затем тщательно переносил на нее фигуры. Но геометрическая упорядоченность не мешала ему воссоздавать натуру с детальной точностью. Наружность каждой рыбы, каждой птицы передана с такой правдивостью, что современные зоологи без труда определяют их виды. На рис.4 дана деталь композиции с иллюстрации- дерево с птицами, схваченными сетью Хнумхотепа. Движение руки художника направлялось не только запасами его навыков, но и глазом, чувствительным к очертаниям натуры.

Рис.4 Птицы на акации

Глава II. Метод координат в математике

§1. Применение координат в математике. Заслуги

французского математика Рене Декарта

Долгое время лишь география "землеописание" - пользовалась этим замечательным изобретением, и только в 14 веке французский математик Никола Орем (1323-1382) попытался приложить его к "землеизмерению" - геометрии. Он предложил покрыть плоскость прямоугольной сеткой и называть широтой и долготой то, что мы теперь называем абсциссой и ординатой.

На основе этого удачного нововведения возник метод координат, связавший геометрию с алгеброй. Основная заслуга в создании этого метода принадлежит великому французскому математику Рене Декарту (1596 - 1650). В его честь такая система координат называется декартовой, обозначающая место любой точки плоскости расстояниями от этой точки до "нулевой широты" - оси абсцисс " и "нулевого меридиана" - оси ординат.

Однако этот гениальный французский ученый и мыслитель XVII века (1596 - 1650) далеко не сразу нашел свое место в жизни. Родившись в дворянской семье, Декарт получил хорошее образование. В 1606 году отец отправил его в иезуитскую коллегию Ла Флеш. Учитывая не очень крепкое здоровье Декарта, ему делали некоторые послабления в строгом режиме этого учебного заведения, например, разрешали вставать позже других. Приобретя в коллегии немало познаний, Декарт в то же время проникся антипатией к схоластической философии, которую он сохранил на всю свою жизнь.

После окончания коллегии Декарт продолжил образование. В 1616 в университете Пуатье он получил степень бакалавра права. В 1617 Декарт поступает на службу в армию и много путешествует по Европе.

1619 год в научном отношении оказался ключевым для Декарта.

Именно в это время, как он сам писал в дневнике, ему открылись основания новой «удивительнейшей науки». Скорее всего, Декарт имел в виду открытие универсального научного метода, который он впоследствии плодотворно применял в самых разных дисциплинах.

В 1620-е годы Декарт знакомится с математиком М. Мерсенном, через которого он долгие годы «держал связь» со всем европейским научным сообществом.

В 1628 Декарт более чем на 15 лет обосновывается в Нидерландах, но не поселяется в каком-то одном месте, а около двух десятков раз меняет место жительства.

В 1633, узнав об осуждении церковью Галилея, Декарт отказывается от публикации натурфилософской работы «Мир», в которой излагались идеи естественного возникновения вселенной по механическим законам материи.

В 1637 на французском языке выходит работа Декарта «Рассуждение о методе», с которой, как многие считают, и началась новоевропейская философия.

Большое влияние на европейскую мысль оказала и последняя философская работа Декарта «Страсти души», опубликованная в 1649 г. В том же году по приглашению шведской королевы Кристины Декарт отправился в Швецию. Суровый климат и непривычный режим (королева заставляла Декарта вставать в 5 утра, чтобы давать ей уроки и выполнять другие поручения) подорвали здоровье Декарта, и, подхватив простуду, он

умер от пневмонии.

По традиции, введенной Декартом, "широта" точки обозначаются буквой x, "долгота" - буквой y

На этой системе основаны многие способы указания места.

Например, на билете в кинотеатр стоят два числа: ряд и место — их можно рассматривать как координаты места в зале.

Подобные координаты приняты в шахматах. Вместо одного из чисел берется буква: вертикальные ряды клеток обозначаются буквами латинского алфавита, а горизонтальные — цифрами. Таким образом, каждой клетке шахматной доски ставится в соответствие пара из буквы и числа, и шахматисты получают возможность записывать свои партии. О применении координат пишет в своём стихотворении "Сын артиллериста" Константин Симонов.

Всю ночь, шагая как маятник,

Глаз майор не смыкал,

Пока по радио утром

Донёсся первый сигнал:

"Всё в порядке, добрался,

Немцы левей меня,

Координаты (3;10),

Скорее давайте огня!

Орудия зарядили,

Майор рассчитал всё сам.

И с рёвом первые залпы

Ударили по горам.

И снова сигнал по радио:

"Немцы правей меня,

Координаты (5; 10),

Скорее ещё огня!

Летели земля и скалы,

Столбом поднимался дым.

Казалось, теперь оттуда

Никто не уйдёт живым.

Третий сигнал по радио:

"Немцы вокруг меня,

Координаты (4; 10),

Не жалейте огня.

Майор побледнел, услышав:

(4;10) - как раз

То место, где его Лёнька

Должен сидеть сейчас.

Константин Симонов "Сын артиллериста"

§2. Легенды об изобретении системы координат

Существует несколько легенд об изобретении системы координат, которая носит имя Декарта.

Легенда 1

До наших времён дошла такая история.

Посещая парижские театры, Декарт не уставал удивляться путанице, перебранкам, а подчас и вызовам на дуэль, вызываемыми отсутствием элементарного порядка распределения публики в зрительном зале. Предложенная им система нумерации, в которой каждое место получало номер ряда и порядковый номер от края, сразу сняла все поводы для раздоров и произвела настоящий фурор в парижском высшем обществе.

Легенда2. Однажды РенеДекарт весь день пролежал в кровати, думая о чем-то, а муха жужжала вокруг и не давала ему сосредоточиться. Он стал размышлять, как бы описать положение мухи в любой момент времени математически, чтобы иметь возможность прихлопнуть ее без промаха. И...придумал, декартовы координаты, одно из величайших изобретений в истории человечества.

Марковцев Ю.

Однажды в незнакомый город

Приехал молодой Декарт.

Его ужасно мучил голод.

Стоял промозглый месяц март.

Решил к прохожей обратиться

Декарт, пытаясь, дрожь унять:

Где тут гостиница, скажите?

И дама стала объяснять:

- Идите до молочной лавки,

Потом до булочной, за ней

Цыганка продает булавки

И яд для крыс и для мышей,

Найдете в них наверняка

Сыры, бисквиты, фрукты

И разноцветные шелка…

Все объяснения эти слушал

Декарт, от холода дрожа.

Ему хотелось очень кушать,

- За магазинами - аптека

(аптекарь там - усатый швед),

И церковь, где в начале века

Венчался, кажется, мой дед…

Когда на миг умолкла дама,

Вдруг произнес ее слуга:

- Идите три квартала прямо

И два направо. Вход с угла.

Это - третья небылица о случае, который подсказал Декарту идею координат.

Заключение

Создавая, свой проект мы узнали о применении координатной плоскости в различных областях науки и повседневной жизни, некоторые сведения из истории возникновения координатной плоскости и математиках сделавших большой вклад в это изобретение. Материал, который мы собрали в ходе написания работы, может быть использован на занятиях школьного кружка, в качестве дополнительного материала к урокам. Всё это может заинтересовать школьников и скрасить учебный процесс.

А закончить нам бы хотелось такими словами:

«Представь свою жизнь координатной плоскостью. Ось у — твое положение в обществе. Ось х — продвижение вперед, к цели, к твоей мечте. И как мы знаем, она бесконечна… мы можем падать вниз, все дальше углубляясь в минус, можем оставаться на нуле и ничего не делать, абсолютно ничего. Можем подниматься вверх, можем падать, можем идти вперед или возвращаться назад, а все из-за того, что вся наша жизнь это координатная плоскость и самое главное здесь, какая у тебя координата…»

Список используемой литературы

    Глейзер Г.И. История математики в школе: - М.: Просвещение, 1981. - 239 с, ил.

    Ляткер Я. А. Декарт. М.: Мысль, 1975. - (Мыслители прошлого)

    Матвиевская Г. П. Рене Декарт, 1596-1650. М.: Наука, 1976.

    А. Савин. Координат. Квант. 1977. №9

    Математика - приложение к газете «Первое сентября», №7, №20, №17, 2003г., №11, 2000г.

    Зигель Ф.Ю. Звёздая азбука: Пособие для учащихся. - М.: Просвещение, 1981. - 191 с., ил

    Стив Паркер, Николас Харрис. Иллюстрированная энциклопедия для детей. Тайны вселенной. Харьков Белгород. 2008

    Материалы с сайта http://istina.rin.ru/

На плоскости. Пусть одна будет x, другая – y. И пусть эти прямые будут взаимно перпендикулярны (то есть пересекаются под прямым углом). Причем точка их пересечения будет началом координат для обеих прямых, а единичный отрезок одинаков (рис. 1).

Таким образом, мы получили прямоугольную систему координат , а наша плоскость стала координатной. Прямые x и y называют осями координат. Причем, ось x – осью абсцисс, а ось y – осью ординат. Обозначается подобная плоскость обычно по названию осей и точке отсчета – xOy. Прямоугольную систему координат также называют декартовой системой координат , так как впервые ее начал активно использовать французский математик и философ - Рене Декарт.

Прямоугольные углы, образованные прямыми x и y, называют координатными углами . Каждый угол имеет свой номер как показано на рис. 2.

Итак, когда мы говорили про координатную прямую у всякой точки этой прямой была одна координата. Теперь, когда идет речь о координатной плоскости, то у каждой точки этой плоскости уже будут две координаты. Одна соответствует прямой x (эту координату называют абсциссой ), другая соответствует прямой y (эту координату называют ординатой ). Записывается это таким образом: M(x;y), где x – абсцисса, а y – ордината. Читается как: «Точка M с координатами x, y».


Как определить координаты точки на плоскости?

Теперь мы знаем, что у каждой точки на плоскости есть две координаты. Для того чтобы узнать ее координаты нам достаточно через эту точку провести две прямые, перпендикулярные осям координат. Точки пересечения этих прямых с координатными осями и будут искомыми координатами. Так, например, на рис. 3 мы определили, что координатами точки M являются 5 и 3.


Как построить точку на плоскости по ее координатам?

Бывает и так, что мы уже знаем координаты точки на плоскости. И нам нужно найти ее расположение. Допустим у нас координаты точки (-2;5). То есть, абцисса равна -2, а ордината равна 5. Возьмем на прямой x (оси абсцисс) точку с координатой -2 и проведем через нее прямую a, параллельную оси y. Заметим, что любая точка на этой прямой будет иметь абсциссу равную -2. Теперь найдем на прямой y (оси ординат) точку с координатой 5 и проведем через нее прямую b, параллельную оси x. Заметим, что любая точка на этой прямой будет иметь ординату равную 5. На пересечении прямых a и b как раз и будет находиться точка с координатами (-2;5). Обозначим ее буквой P (рис. 4).

Добавим также, что прямая a, все точки которой имеют абсциссу -2, задается уравнением
x = -2 или что x = -2 – уравнение прямой a. Можно для удобства говорить не «прямая, которая задается уравнением x = -2», а просто «прямая x = -2». Действительно, для любой точки прямой a справедливо равенство x = -2. А прямая b, все точки которой имеют ординату 5, в свою очередь задается уравнением y = 5 или что y = 5 – уравнение прямой b.

Для указания взаимного расположения каких-то исследуемых объектов используются:

  1. координатный луч, когда их размещение или движение происходят вдоль прямой линии по одну сторону от заданного объекта, принятого за начало отсчёта;
  2. координатная прямая, когда их размещение или движение происходят вдоль прямой линии по разные стороны от заданного объекта, принятого за начало отсчёта;
  3. координатная плоскость, когда их размещение или движение происходят вдоль произвольной непрямой линии.

Элементы координатной плоскости

Координатная плоскость отличается от обычной плоскости тем, что на неё наносится система координат. Примером может служить изображение любого материка с нанесёнными на него параллелями и меридианами, которые и задают систему географических координат, позволяющих находить или задавать положение любого объекта на карте.

Система координат представляет собой две взаимно пересекающиеся под прямым углом координатные прямые в точках начала отсчёта. Горизонтальную координатную прямую принято называть осью абсцисс (абсцисса с лат. яз. – отрезок). Вертикальную прямую – осью ординат (ордината с лат. яз. – выстраивание по порядку).

Аналогично, координатная прямая отличается от обычной прямой тем, что на ней выбирают какую-то точку за начало отсчёта; выбирают масштаб единичного отрезка в зависимости от того, какие расстояния предстоит изображать; положительное направление отсчёта, обозначаемое на координатной прямой стрелкой.

Положение объекта на такой плоскости обозначают точкой с двумя числами – координатами: абсциссой и ординатой.

Использование координатных плоскостей

Координатные плоскости широко используются для решения геометрических и физических задач. Причём в физике за ось абсцисс часто принимают ось времени. Тогда ось ординат задаёт координату тела на координатной прямой, располагаемой вдоль прямолинейной траектории движения тела.

Математика - наука довольно сложная. Изучая ее, приходится не только решать примеры и задачи, но и работать с различными фигурами, и даже плоскостями. Одной из наиболее используемых в математике является система координат на плоскости. Правильной работе с ней детей учат не один год. Поэтому важно знать, что это такое и как правильно с ней работать.

Давайте же разберемся, что представляет собой данная система, какие действия можно выполнять с ее помощью, а также узнаем ее основные характеристики и особенности.

Определение понятия

Координатная плоскость - это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.

В школьном курсе математики школьникам приходится довольно тесно работать с системой координат - строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.

Историческая справка

Идеи о создании системы координат были еще во времена Птоломея. Уже тогда астрономы и математики думали о том, как научиться задавать положение точки на плоскости. К сожалению, в то время еще не было известной нам системы координат, и ученым приходилось пользоваться другими системами.

Изначально они задавали точки с помощью указания широты и долготы. Долгое время это был один из наиболее используемых способов нанесения на карту той или иной информации. Но в 1637 году Рене Декарт создал собственную систему координат, названную впоследствии в честь "декартовой".

Уже в конце XVII в. понятие «координатная плоскость» стало широко использоваться в мире математики. Несмотря на то что с момента создания данной системы прошло уже несколько веков, она до сих пор широко используется в математике и даже в жизни.

Примеры координатной плоскости

Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты - одну координату буквенную, вторую - цифровую. С ее помощью можно определить положение той или иной фигуры на доске.

Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.

Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.

Оси координат

Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.

Первая ось - абсцисс - горизонтальная. Она обозначается как (Ox ). Вторая ось - ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy ). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0 . Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.

Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.

Четверти

Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.

Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината - положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной - ордината.

Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.

Работа с координатной плоскостью

Когда мы разобрались с понятием плоскости и поговорили о ее четвертях, можно перейти к такой проблеме, как работа с данной системой, а также поговорить о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд.

В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.

Правила построения плоскости

Если вы решили начать отмечать на бумаге фигуры и точки, вам понадобится координатная плоскость. Координаты точек наносятся именно на нее. Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная - ординат. При этом важно помнить, что оси пересекаются под прямым углом.

Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.

Отмечаем точку

Теперь поговорим о том, как нанести координаты точек на координатной плоскости. Это основа, которую следует знать, чтобы успешно размещать на плоскости разнообразные фигуры, и даже отмечать уравнения.

При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая - по оси ординат.

Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy . Далее провести воображаемые линии от данных обозначений и найти место их пересечения - это и будет заданная точка.

Вам останется только отметить ее и подписать. Как видите, все довольно просто и не требует особых навыков.

Размещаем фигуру

Теперь перейдем к такому вопросу, как построение фигур на координатной плоскости. Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. Если вы умеете это делать, то разместить фигуру на плоскости не так уж и сложно.

В первую очередь вам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные вами Рассмотрим нанесение прямоугольника, треугольника и окружности.

Начнем с прямоугольника. Наносить его довольно просто. Сначала на плоскость наносятся четыре точки, обозначающие углы прямоугольника. Затем все точки последовательно соединяются между собой.

Нанесение треугольника ничем не отличается. Единственное - углов у него три, а значит, на плоскость наносятся три точки, обозначающие его вершины.

Касательно окружности тут следует знать координаты двух точек. Первая точка - центр окружности, вторая - точка, обозначающая ее радиус. Эти две точки наносятся на плоскость. Затем берется циркуль, измеряется расстояние между двумя точками. Острие циркуля ставится в точку, обозначающую центр, и описывается круг.

Как видите, тут также нет ничего сложного, главное, чтобы под рукой всегда были линейка и циркуль.

Теперь вы знаете, как наносить координаты фигур. На координатной плоскости это делать не так уж и сложно, как может показаться на первый взгляд.

Выводы

Итак, мы рассмотрели с вами одно из наиболее интересных и базовых для математики понятий, с которым приходится сталкиваться каждому школьнику.

Мы с вами выяснили, что координатная плоскость - это плоскость, образованная пересечением двух осей. С ее помощью можно задавать координаты точек, наносить на нее фигуры. Плоскость разделена на четверти, каждая из которых имеет свои особенности.

Основной навык, который следует выработать при работе с координатной плоскостью, - умение правильно наносить на нее заданные точки. Для этого следует знать правильное расположение осей, особенности четвертей, а также правила, по которым задаются координаты точек.

Надеемся, что изложенная нами информация была доступна и понятна, а также была полезна для вас и помогла лучше разобраться в данной теме.

«прописаны» точки - «жильцы», у каждой точки есть свой «номер дома» - ее координата. Если же точка берется в плоскости, то для ее «прописки» нужно указывать не только «номер дома», но и «номер квартиры». Напомним, как это делается.

Проведем две взаимно-перпендикулярные координатные прямые и будем считать началом отсчета на обеих прямых точку их пересечения - точку О. Тем самым на плоскости задана прямоугольная система координат (рис. 20), которая превращает обычную плоскость в координатную. Точку О называют началом координат, координатные прямые (ось х и ось у) называют осями координат, а прямые углы, образованные осями координат, называют координатными углами. Координатные прямоугольная углы нумеруют так, как показано на рисунке 20.

А теперь обратимся к рисунку 21, где изображена прямоугольная система координат и отмечена точка М. Проведем через нее прямую, параллельную оси у. Прямая пересекает ось х в некоторой точке, у этой точки есть координата - на оси х. Для точки, изображенной на рисунке 21, эта координата равна -1,5, ее называют абсциссой точки М. Далее проведем через точку М прямую, параллельную оси х. Прямая пересекает ось у в некоторой точке, у этой точки есть координата - на оси у.

Для точки М, изображенной на рисунке 21, эта координата равна 2, ее называют ординатой точки М. Коротко пишут так: М(-1,5; 2). Абсциссу записывают на первом месте, ординату - на втором. Используют, если в этом есть необходимость, и другую форму записи: х = -1,5; у = 2.

Замечание 1 . На практике для отыскания координат точки М обычно вместо прямых, параллельных осям координат и проходящих через точку М, строят отрезки этих прямых от точки М до осей координат (рис. 22).

Замечание 2. В предыдущем параграфе мы ввели разные обозначения для числовых промежутков. В частности, как мы условились, запись (3, 5) означает, что на координатной прямой рассматривается интервал с концами в точках 3 и 5. В настоящем же параграфе пару чисел мы рассматриваем как координаты точки; например, (3; 5) - это точка на координатной плоскости с абсциссой 3 и ординатой 5. Как же правильно по символической записи определить, о чем идет речь: об интервале или о координатах точки? Чаще всего это бывает ясно по тексту. А если не ясно? Обратите внимание на одну деталь: в обозначении интервала мы использовали запятую, а в обозначении координат - точку с запятой. Это, конечно, не очень существенное, но все-таки различие; будем его применять.

Учитывая введенные термины и обозначения, горизонтальную координатную прямую называют абсцисс, или осью х, а вертикальную координатную прямую - осью ординат, или осью у. Обозначения х, у используют обычно при задании на плоскости прямоугольной системы координат (см. рис. 20) и часто говорят так: дана система координат хОу. Впрочем, встречаются и другие обозначения: например, на рисунке 23 задана система координат tOs.
Алгоритм отыскания координат точки М, заданной в прямоугольной системе координат хОу

Именно так мы и действовали, находя координаты точки М на рисунке 21. Если точка М 1 (х; у) принадлежит первому координатному углу, то х > 0, у > 0; если точка М 2 (х; у) принадлежит второму координатному углу, то х < 0, у > 0; если точка М 3 (х; у) принадлежит третьему координатному углу, то х < О, у < 0; если точка М 4 (х; у) принадлежит четвертому координатному углу, то х > О, у < 0 (рис. 24).

А что будет, если точка, координаты которой надо найти, лежит на одной из осей координат? Пусть точка А лежит на оси х, а точка В - на оси у (рис. 25). Проводить через точку А прямую, параллельную оси у, и находить точку пересечения этой прямой с осью х не имеет смысла, поскольку такая точка пересечения уже есть - это точка А, ее координата (абсцисса) равна 3. Точно так же не нужно проводить через точку А прямую, параллельную оси х, - этой прямой является сама ось х, которая пересекает ось у в точке О с координатой (ординатой) 0. В итоге для точки А получаем А(3; 0). Аналогично для точки В получаем В(0; - 1,5). А для точки О имеем О(0; 0).

Вообще, любая точка на оси х имеет координаты (х; 0), а любая точка на оси у - координаты (0; у)

Итак, как находить координаты точки в координатной плоскости, мы обсудили. А как решать обратную задачу, т. е. как, задав координаты, построить соответствующую точку? Чтобы выработать алгоритм, проведем два вспомогательных, но в то же время важных рассуждения.

Первое рассуждение. Пусть в системе координат хОу проведена I, параллельная оси у и пересекающая ось х в точке с координатой (абсциссой) 4

(рис. 26). Любая точка, лежащая на этой прямой, имеет абсциссу 4. Так, для точек М 1 , М 2 , М 3 имеем М 1 (4; 3), М 2 (4; 6), М 3 (4; - 2). Иными словами, абсцисса любой точки М прямой удовлетворяет условию х = 4. Говорят, что х = 4 - уравнение прямой l или что прямая I удовлетворяет уравнению х = 4.


На рисунке 27 изображены прямые, удовлетворяющие уравнениям х = - 4 (прямая I 1), x = - 1
(прямая I 2) x = 3,5 (прямаяI 3). А какая прямая удовлетворяет уравнению х = 0? Догадались? Ось у.

Второе рассуждение. Пусть в системе координат хОу проведена прямая I, параллельная оси х и пересекающая ось у в точке с координатой (ординатой) 3 (рис. 28). Любая точка, лежащая на этой прямой, имеет ординату 3. Так, для точек М 1 , М 2 , М 3 имеем: М 1 (0; 3), М 2 (4; 3), М 3 (- 2; 3). Иными словами, ордината любой точки М прямой I удовлетворяет условию у = 3. Говорят, что у = 3 - уравнение прямой I или что прямая I удовлетворяет уравнению у = 3.

На рисунке 29 изображены прямые, удовлетворяющие уравнениям у = - 4 (прямая l 1), у = - 1 (прямая I 2), у = 3,5 (прямая I 3)- A какая прямая удовлетворяет уравнению у = 01 Догадались? Ось х.

Заметим, что математики, стремясь к краткости речи, говорят «прямая х = 4», а не «прямая, удовлетворяющая уравнению х = 4». Аналогично, они говорят «прямая у = 3», а не «прямая, удовлетворяющая равнению у = 3 ». Мы будем поступать точно так же. Вернемся теперь к рисунку 21. Обратите внимание, что точка М (- 1,5; 2), которая там изображена, есть точка пересечения прямой х = -1,5 и прямой у = 2. Теперь, видимо, будет понятен алгоритм построения точки по заданным ее координатам.

Алгоритм построения точки М (а; Ь) в прямоугольной системе координат хОу

П р и м е р. В системе координат хОу построить точки: А (1; 3), В (- 2; 1), С (4; 0), D (0; - 3).

Решение. Точка А есть точка пересечения прямых х = 1 и у = 3 (см. рис. 30).

Точка В есть точка пересечения прямых x = - 2 и y = 1 (рис. 30). Точка С принадлежит оси х, а точка D - оси у (см. рис. 30).


В заключение параграфа заметим, что впервые прямоугольную систему координат на плоскости стал активно использовать для замены алгебраических моделей геометрическими французский философ Рене Декарт (1596-1650). Поэтому иногда говорят «декартова система координат», «декартовы координаты».

Полный перечень тем по классам, календарный план согласно школьной программе по математике онлайн , видеоматериал по математике для 7 класса скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки