Новосинтезированные рнк еще неактивны. Процессинг, сплайсинг

Наименование параметра Значение
Тема статьи: Процессинг РНК
Рубрика (тематическая категория) Биология

Первичные РНК (предшественники РНК, гетерогенные ядерные РНК), образующиеся в результате транскрипции, в большинстве случаев представляют из себяфункционально неактивные молекулы. По этой причине сразу после транскрипции они претерпевают ряд модификаций и превращаются в зрелые РНК. Созревание первичных транскриптов принято называть процессингом .

Рис. 32. ρ- зависимая терминация транскрипции у бактерий

Для бактериальных клеток процессинг предшественников мРНК не характерен и необходим только при образовании зрелых молекул рРНК и тРНК.

Процессинг рнк у эукариот представляет собой достаточно сложный и тонко организованный процесс, непосредственно влияющий на регуляцию экспрессии генетического материала. Наиболее детально изучен процессинг мРНК эукариот, который включает:

· сплайсинг – вырезание из пре-мРНК некодирующих областей (интронов) и сшивание кодирующих структуру белка участков (экзонов);

· кэпирование – образование на 5′-конце мРНК особой структуры – кэпа – происходит вскоре после начала синтеза мРНК и осуществляется с участием ГТФ;

· полиаденилирование – образование на 3′-конце поли(А)-фрагмента͵ содержащего около 200 адениловых нуклеотидов (рис. 33).

Рис. 33. Процессинг мРНК

Механизм сплайсинга

В сплайсинге пре-мРНК эукариот принимает участие ряд белков, а также РНК особого вида – малые ядерные РНК (мяРНК). Различные мяРНК по принципу комплементарности связываются с пограничными участками интронов РНК. Для этого взаимодействия существенны определœенные последовательности нуклеотидов в начале и конце интронов: так, интроны всœегда начинаются с Г-У, а заканчиваются дуплетом А-Г. Малые ядерные РНК образуют комплекс с ферментами, катализирующими сплайсинг – сплайосому .

Первый разрыв пре-РНК происходит в области 5′-конца интрона, который связывается с одним из нуклеотидов в средней части того же интрона (рис. 34). Это приводит к образованию кольцевой (или, точнее, лассоподобной) структуры. Первая мяРНК диссоциирует, а ферментный комплекс перемещается к другой мяРНК, маркирующей 3′-конец интрона. Здесь происходит второй разрыв пре-РНК. Связь экзона 2 с интроном заменяется связью с экзоном 1.

Альтернативный сплайсинг

В ряде случаев возможно изменение хода сплайсинга и осуществление его по альтернативному варианту. В этом случае с одного гена считывается более одного типа мРНК. Альтернативный сплайсинг позволяет организму синтезировать разные по структуре и свойствам белки на базе одного гена. Такие гены кодируют семейства родственных белков, участвующих в мышечных сокращениях, формировании цитоскелœета͵ нервных
волокон, пептидных гормонов и др.

Рис. 34. Вероятный механизм спайсинга:

Е – ферментный комплекс (с нуклеазной и лигазной активностью)

Альтернативный сплайсинг мРНК включает три базовых механизма:

1. Использование разных промоторов. При наличии в гене альтернативных промоторов разные типы РНК могут синтезироваться с разных сайтов инициации транскрипции. Альтернативный промотор – сложный промотор, состоящий по крайней мере из двух независимо функционирующих частей, расположенных перед разными экзонами одного гена. В этом случае образуются транскрипты, имеющие разные по длинœе 5′-концы и разное количество экзонов.

2. Изменение сайта полиаденилирования первичного транскрипта. В результате изменяются размеры и структура 3′-концевого участка пре-мРНК.

3. Соединœение экзонов в различных комбинациях. При этом часть экзонов может не включаться в сплайсинᴦ. К примеру, в случае если ген содержит всœего шесть экзонов (с 1-го по 6-й), в одном типе мРНК они могут располагаться в порядке 1,2,3,4,5,6, в других РНК порядок должна быть иным, к примеру 4,5,6,1,2,3, или 2,5,6, или 1,3,5.

Альтернативный сплайсинг обеспечивает тонкую регуляцию работы генов у эукариот, дифференцировку тканей, определяет развитие различных признаков, детерминированных одним геном. У человека около 1/3 всœех генов может кодировать более одного белка, т. е. разные белки кодируются разными сочетаниями экзонов одного и того же гена. Наличие альтернативного сплайсинга может объяснить тот факт, что количество белков в организме человека в несколько раз больше, чем число белок-кодирующих генов.

Процессинг РНК - понятие и виды. Классификация и особенности категории "Процессинг РНК" 2017, 2018.

Процессинг у эукариот затрагивает все виды первичных транскриптов эукариотических генов.

Процессинг у эукариот

Кэпирование представляет собой образование на 5"-конце мРНК особой структуры - кэпа (шапочки). Кэпирование происходит еще до полного завершения транскрипции и защищает 5"-конец РНК от действия нуклеаз. Кэпирование РНК осуществляется с участием GTP(гуанозинтрифосфата ), из состава которого GMP переносится на 5"-дифосфат первого нуклеотида мРНК.

Полиаденилирование осуществляется, ферментом поли(А)-полимеразой и приводит к образованию на З"-конце олиго(А)-фрагмента, содержащего 100 - 200 остатков адениловой кислоты подряд и называемого также «поли(А)-хвостом». Эта поли (А)-последовательность добавляется к РНК после присоединения кэпа . Сначала 3"-конец РНК отщепляется ферментами в точке, отстоящей на 10-35 рибонуклеотидов от консервативной последовательности ААUААА, а затем происходит полиаденилирование этого конца молекулы РНК. Поли(А)-хвост находят практически у всех мРНКэукариотических ороганизмов, за исключением транскриптов гистоновых генов. Последовательность ААUААА встречается не во всех эукариотических РНК-транскриптах. По-видимому, это связано с мутациями, препятствующими полиаденилированию. В отсутствие 3"- хвоста РНК-транскрипты быстро деградируют под действием ферментов.

Т.о. 5"-кэп и 3"-хвост чрезвычайно важны для дальнейшего процессинга и транспортировки мРНК в цитоплазму. Поли(А)-хвост определяет стабильность мРНК и время ее жизни в клетке. Кроме того, способствует выходу мРНК из ядра в цитоплазму, а также существенен для регуляции трансляции.

Механизмы сплайсинга: автокатализ РНК (Клаг,400)

Для разных типов ядерной РНК, а также для РНК мтх и хлп существуют свои собственные механизмы сплайсинга.

В зависимости от специфичности механизма сплайсинга, интроны можно разделить на несколько групп. К первой группе относятся интроны, входящие в состав первичного рРНК-транскрипта, для удаления которых не требуется дополнительных компонентов. Эти интроны сами обладают ферментативной активностью, необходимой для их вырезания. Впервые этот факт был обнаружен в 1982 г (Томас Чех с сотр.) у жгутикового простейшего тетрахимены (Tetrachymena). Из-за автокаталитических свойств самосплайсирующиеся РНК иногда называют рибозимами .

Процесс самовырезания (автоэсцизия) (рис. 145_Коничев)

(рис.12-12, Клаг) представляет собой две нуклеофильные реакции, или реакции трансэтерификации, в которых гуанозин взаимодействует с первичным итранскриптом и действует как кофактор. При этом З"-гидроксильная группа гуанозина переносится на нуклеотид, примыкающий к 5"-концу интрона. Во второй реакции эта гидроксильная группа взаимодействуетс фосфатной группой на З"-конце правого интрона, в результате интрон вырезается, а концы двух соседних экзонов соединяются с образованием зрелой мРНК.


Интрон 26S рРНК тетрахимены - IVS, состоит из 413 нуклеотидов. В результате реакции трансэтерификации без дополнительных затрат энергии осуществляется лигирование двух экзонов с образованием зрелой 26S рРНК. Вырезанный интрон затем циклизуется. Из его состава путем двухэтапного ауторасщепления освобождается фрагмент, содержащий 19 нуклеотидов, в результате чего образуя РНК длиной 376 нуклеотидов (L -19 IVS), которая и представляет собой истинный РНК-фермент (рибозим ), обладающий каталитическими свойствами. Этот рибозим обладает устойчивой структурой, имеет эндонуклеазную активность, расщепляя длинные одноцепочечные РНК, и проявляет специфичность, распознавая в о составе атакуемого субстрата тетрануклеотиды CUCU . В структуре интронов типа I выявлены характерные внутренние олигопуриновые последовательности (у тетрахимены это последовательность GGAGGG), называемые адапторными последовательностями , которые участвуют в образовании активного центра РНК-ферментов и выполняют важнейшую роль в каталитическом расщеплении РНК.

Такое самовырезание интронов характерно для пре-рРНК других простейших. Этот механизм, по-видимому, действует и при удалении интронов из первичных транскриптов иРНК и тРНК в митохондриях и хлоропластах , которые относятся к группе II .

Для вырезания интроноввторой группы также необходимы две автокаталитические реакции, но гуанозин не требуется.

Дальнейшие исследования позволили установить, что каталитической активностью обладают не только крупные РНК (~400 нуклеотидов у тетрахимены и РНКазы Р), но и короткие 13 -20-членные олигонуклеотиды, которые могут быть синтезированы in vitro. Такие рибозимы стали называть минизимами . Одна из детально исследованных моделей функционирования таких рибозимов получила название «головка молотка » (рис. 146). Третичная структура «головки молотка» стабилизируется ионами двухвалентных металлов, которые нейтрализуют отрицательно заряженные атомы кислорода фосфодиэфирных связей и одновременно соединяют фосфатные группы ковалентными связями, что существенно для образования стабильного переходного состояния (фермент-субстратного комплекса). Как и в случае катализа, осуществляемого ферментами белковой природы, рибозимы и атакуемый субстрат

(природные или синтетически полученные молекулы РНК) образуют фермент-субстратный комплекс, а затем - фермент-продуктный комплекс (см. рис. 146).

Механизмы сплайсинга: сплайсосома. (Процессинг мРНК у эукариот)

В ядерных пре-мРНК интроны могут достигать в длину 20 000 нуклеотидов. Поэтому их удаление требует более сложного механизма, чем самовырезание (автоэксцизия). (рис.12-13). Нуклеотидные последовательности на концах интронов в этих молекулах сходны: на 5"-концах часто находится динуклеотид (GU) ГУ, а на З"-конце – динуклеотид (AG) АГ. C этими последовательностями связываются молекулы специальных белков, которые формируют комплекс, называемый сплайсомой . Основной компонент сплайсосом – малые ядерные рибонуклеопротеины, или мяРНП , которые найдены только в ядре и обогащены остатками уридина. Поэтому малые ядРНК часто обозначают U1 , U2 …U6.

[Коничев, с.292. В сплайсинге пре-мРНК

у высших эукариот задействован ряд белков, а также РНК особого вида – малые ядерные РНК (мяРНК). Малые ядерные РНК имеют последовательности протяженностью от 65 до 1000 и более нуклеотидов (10S -90S), богатые уридиловыми нуклеотидами, и поэтому называются также uPHK (Ul, U2 и т.д.). У дрожжей выявлено 25 различных мяРНК, у позвоночных животных - 15. У шпорцевых лягушек Xenopus laevis ряд мяРНК (U3, U8, U14 и U22) участвуют в процессинге рибосомальных РНК, связываясь с пограничными участками спейсерных последовательностей (см. рис. 143). Малые ядерные РНК выявлены не только у позвоночных животных и дрожжей, но также у насекомых и архибактерий. Они представляют собой, вероятно, очень древнюю группу молекул. Нуклеотидная последовательность всех соответствующих uPHK

эукариот совпадает более чем на 90 %, что, в частности, относится к U1 человека и дрозофилы. Высокий консерватизм структуры uPHK говорит о том, что сплайсинг представляет собой очень древний процесс, начавшийся с аутосплайсинга (см. выше) и трансформировавшийся в сплайсинг с участием особых рибонуклеопротеидных частиц - мяРНП. Гены мяРНК транскрибируются РНК-полимеразой II и имеют различную локализацию в геноме: часть из них представляет собой дискретные независимые гены,

не имеющие интронов, тогда как гены других мяРНК располагаются внутри интронов генов, кодирующих белки. Так, у Xenopus U13 кодируется тремя уникальными последовательностями, находящимися

в интронах 5, 6 и 8 генов белков теплового шока, а ген U16 находится внутри интрона рибосомального белка L1. Последнее обстоятельство имеет важное значение, так как показывает, что процессинг рРНК и процессинг мРНК белков рибосом может быть скоординирован при участии мяРНК. Кроме того,

предполагают, что мяРНК способны служить РНК-шаперонами, участвуя в фолдингерРНК, т.е. помогая ей принять необходимую структуру в пространстве. Малые ядерные РНК присутствуют в ядрах в комплексах с белками, получившими название малыерибонуклеопротеиновые частицы (мяРНП). Стабильным компонентом мяРНП является белок фибрилларин - очень консервативный по структуре белок с молекулярной массой 34 кДа, локализованный в ядрышках. Комплекс, состоящий из множества мяРНП, который катализирует сплайсинг ядерных про-мРНК, носит название сплайсингосомы .]

Известно, мяРНК типа U 1, содержит нуклеотидную последовательность, гомологичную 5"-концу интрона. Спаривание этих последовательностей дает начало сплайсоме. Затем к ней присоединяется мяРНК типа U2 , U4 , U5 и U6 начинается сплайсинг. Как и в случае интронов первой группы происходит две реакции трансэтерификации. Сначала З"- гидроксильная группа аденина (А), локализованного в интроне, взаимодействует с 5"-сайтом сплайсинга, разрезая цепь РНК. Затем несколько мяРНП формируют промежуточный комплекс и начинается вторая реакция: свободный 5"-конец интрона соединяется с остатком аденина. В результате формируется характерная петлеобразная структура типа лассо, содержащая удаленный интрон. Затем концы экзонов лигируют и комплекс мяРНК освобождает транскрипт.

[ Коничев, с.294. Взаимодействие разных мяРНК, входящих в состав сплайсингосомы, со сплайсируемой пре-мРНК в 5"- и З"-сайтах сообщает интрону петлеобразную структуру. При этом сближаются концы экзонов, чему способствует образование неканонических (отличающихся от уотсон-криковских пар) водородных связей между двумя гуанинами, содержащимися в 5"- и З"-сайтах сплайсинга (см. рис. 148). Сближение экзонов создает условие для атаки З"-конца интрона адениловым нуклеотидом, расположенным вблизи З"-конца. В результате разрыва фосфодиэфирной связи между экзоном 1 и 5"-концом интрона последний взаимодействует с адениловым нуклеотидом и образованием в интроне петли типа «лассо» (см. рис. 148_Коничев). Вслед за этим освободившийся З"-ОН-конец экзона 1 разрезает З"-сайт сплайсинга, выщепляет интрон и, соединяясь с экзоном 2, образует в итоге зрелую (сплайсированную) молекулу мРНК]

Сразу после синтеза первичные транскрипты РНК по разным причинам еще не имеют активности, являются "незрелыми" и в дальнейшем претерпевают ряд изменений, которые называются процессинг . У эукариот процессингу подвергаются все виды пре-РНК, у прокариот – только предшественники рРНК и тРНК.

Процессинг предшественника матричной РНК

При транскрипции участков ДНК, несущих информацию о белках, образуются гетерогенные ядерные РНК, по размеру намного превосходящие мРНК. Дело в том, что из-за мозаичной структуры генов эти гетерогенные РНК включают в себя информативные (экзоны ) и неинформативные (интроны ) участки.

1. Сплайсинг (англ. splice – склеивать встык) – особый процесс, в котором при участии малых ядерных РНК происходит удаление интронов и сохранение экзонов.

Последовательность событий сплайсинга

2. Кэпирование (англ. cap – шапка) – происходит еще во время транскрипции. Процесс состоит в присоединении к 5"-трифосфату концевого нуклеотида пре-мРНК 5"-углерода N 7 -метил-гуанозина.

"Кэп" необходим для защиты молекулы РНК от экзонуклеаз, работающих с 5"-конца, а также для связывания мРНК с рибосомой и для начала трансляции.

3. Полиаденилирование – при помощи полиаденилат-полимеразы с использованием молекул АТФ происходит присоединение к 3"-концу РНК от 100 до 200 адениловых нуклеотидов, формирующих полиадениловый фрагмент – поли(А)-хвост. Поли(А)-хвост необходим для защиты молекулы РНК от экзонуклеаз, работающих с 3"-конца.

Схематичное представление матричной РНК после процессинга

Процессинг предшественника рибосомальной РНК

Предшественники рРНК являются более крупными молекулами по сравнению со зрелыми рРНК. Их созревание сводится к разрезанию прерибосомной РНК на более мелкие формы, которые уже непосредственно участвуют в формировании рибосомы. У эукариот существуют четыре типа рРНК – 5S-, 5,8S-, 18S- и 28S-рРНК . При этом 5S-рРНК синтезируется отдельно, а большая прерибосомная 45S-РНК расщепляется специфичными нуклеазами с образованием 5,8S-рРНК, 18S-рРНК и 28S-рРНК.

У прокариот молекулы рибосомальной РНК совсем иные по своим свойствам (5S-, 16S-, 23S-рРНК), что является основой изобретения и использования ряда антибиотиков в медицине.

Процессинг предшественника транспортной РНК

1. Модификация нуклеотидов в молекуле путем дезаминирования, метилирования, восстановления.
Например, образование псевдоуридина и дигидроуридина.

Строение модифицированных уридиловых нуклеотидов

2. Формирование антикодоновой петли происходит путем сплайсинга

Под процессингом РНК понимают процесс ее созревания , который протекает в период и после ее транскрипции и предшествует процессу трансляции.

Процессинг разных типов РНК протекает по-разному. Однако у прокариот процессинга матичной РНК (мРНК) не происходит. Обычно процессинг РНК рассматривается на примере мРНК эукариот.

Как известно, РНК синтезируется на участке одной из цепей ДНК, и этот процесс называется транскрипцией. В школьном курсе обычно сразу за транскрипцией рассматривается процесс трансляции, при котором мРНК используется в качестве матрицы для синтеза белка. Однако между транскрипцией и трансляцией с РНК происходит ряд превращений, в результате которых она становится функционально активной. Эти модификации в совокупности называют процессингом. Некоторые его этапы протекают уже в момент транскрипции.

Рассмотрим процессинг матричной (информационной) РНК эукариот.

Кэпирование . Еще на этапе транскрипции к начальному (5") концу молекулы РНК через трифосфатный (три остатка фосфорной кислоты) мостик присоединяется молекула метилгуанозина, которая представляет собой метилированное азотистое основание гуанозин. Также у первых двух нуклеотидов мРНК метилируются остатки рибозы. Эти процессы называются кэпированием, образуется кэп (шапочка). Он защищает молекулу от ферментативного распада, участвует в других этапах процессинга, инициирует трансляцию.

Полиаденилирование . После завершения транскрипции к концу (3") РНК присоединяется множество адениновых нуклеотидов (от 100 до 250). Образуется полиадениловый конец - поли-А. Он также выполняет защитную функцию, предотвращая действие ферментов-разрушителей.

Сплайсинг . Молекула-предшественник мРНК (пре-мРНК) представляет собой копию участка ДНК (гена), включающего нетранслируемые области (находящиеся на концах) и чередующиеся интроны и экзоны. Интроны не участвуют в трансляции и должны быть удалены перед ней. Сплайсинг - это процесс разрезания мРНК, удаление интронов и сшивание между собой оставшихся экзонов.

В результате сплайсинга длина молекулы мРНК сокращается в разы. Процесс катализируется специальным комплексом - сплайсосомой , включающей малые ядерные РНК и белки-ферменты. Экзоны могут быть сшиты между собой разными способами (по-разному чередоваться, какие-то могут быть опущены). Данное явление называется альтернативным сплайсингом. В результат одна пре-мРНК может дать несколько разных мРНК, на которых будут синтезироваться разные белки.

Транспортные РНК (тРНК) также нередко претерпевают процессинг. Однако он у них другой, в основном связан с метилированием отдельных нуклеотидов. В результате тРНК принимает характерную для нее форму и становится активной (способной связываться с аминокислотами).

Процессинг рибосомальных РНК (рРНК) в основном сводится к разрезанию общего транскрипта (пре-рРНК), из частей которого образуют три разных молекулы рРНК (из четырех).

После процессинга зрелые молекулы мРНК, тРНК, сформированные субчастицы рибосом (содержащие рРНК) транспортируются из ядра в цитоплазму, где, выполняя каждая свою роль, обеспечивают процесс трансляции (синтез белка).

Кэпирование и полиаденилирование иРНК называется процессингом (посттранскрип-ционной модификацией).

Кэпирование:

К 5 " концу всех эукариотических иРНК присоединяется во время процессинга остаток 7-метилгуанозина с образованием уникальной 5 "à 5 " фосфодиэфирной связи . Этот дополнительный нуклеотид получил название кэп или колпачек.

Функции кэпа:

1. он защищает РНК от экзонуклеаз

2. помогает связыванию молекулы мРНК с рибосомой.

Полиаденилирование:

3"-конец также модифицируется сразу после завершения транскрипции. Специальный фермент – полиаденилат-полимераза присоединяет к 3"-концу каждого РНК-транскрипта от 20 до 250 остатков адениловой кислоты (поли(А)). Полиаденилатполимераза узнает специфическую последовательность AAУAAA, отщепляет от первичного транскрипта небольшой фрагмент в 11-30 нуклеотидов и затем присоединяет поли(А) последовательность. Принято считать, что такой "хвост" способствует последующему процессингу РНК и экспорту зрелых молекул мРНК из ядра.

По мере участия иРНК в процессах трансляции, длина полиА фрагмента уменьшается. Критическим для стабильности считается 30 адениловых нуклеотидов.

Вся совокупность ядерных транскриптов РНК-полимеразы II известна как гетерогенная ядерная РНК (гяРНК).

Все 3 класса РНК транскрибируются с генов, которые содержат интроны (неинформативные участки)и экзоны (участки ДНК, несущие информацию). Последовательности, кодируемые интронами ДНК, должны быть удалены из первичного транскрипта до того, как РНК станет биологически активной. Процесс удаления копий интронных последовательностей получил название сплайсинга РНК .

Сплайсинг РНК катализируется комплексами белков с РНК , известными как «малые ядерные рибонуклеопротеидные частицы» (мяРНП, англ. small nuclear ribonucleic particles, snRNP ).Такие каталитические РНК носят название рибозимов.

Функции интронов:

· защищают функционально активную часть генома клетки от повреждающего действия химических или физических (лучевых) факторов



· позволяет при помощи так называемого альтернативного сплайсинга увеличить генетическое разнообразие генома без увеличения числа генов.


Альтернативный сплайсинг:

В результате изменения распределение экзонов одного транскрипта во время сплайсинга возникают различные РНК и следовательно различные белки.

Известны уже более 40 генов, транскрипты которых подвергаются альтернативному сплайсингу. Например, транскрипт гена кальцитонина, в результате альтернативного сплайсинга дает РНК, которая служит матрицей для синтеза кальцитонина (в щитовидной железе) или специфического белка, отвечающего за вкусовое восприятие (в мозге). Еще более сложному альтернативному сплайсингу подвергается транскрипт гена -тропомиозина. Были идентифицированы по крайней мере 8 различных тропомиозиновых иРНК, полученных из одного транскрипта (см рис)

33 . Общая схема биосинтеза белка - необходимые предпосылки:

Информационный поток - схема передачи информации (центральная догма молекулярной биологии). Репликация и транскрипция ДНК - ферменты, механизм. Обратная транскрипция, роль ревертаз. Процессинг и сплайсинг иРНК. Характеристика генетического кода, кодон, антикодон.

Отличие биосинтеза белка от биосинтеза других молекул:

· Нет соответствия между числом мономеров матрицы и в продукте реакции (4 нуклеотида--20 аминокислот)

· Между мРНК (матрица) и пептидной цепью белка (продукт) нет комплементарности.

Общая схема биосинтеза белка - необходимые предпосылки:

· информационный поток (передача информации от ДНК на РНК и на белок)

· пластический поток (аминокислоты, мРНК, тРНК, ферменты)

· энергетический поток (макроэрги АТФ, ГТФ, УТФ, ЦТФ)