Полимерные материалы. Использование полимерных материалов в быту

В 1833 году Й. Берцелиус ввел в обиход термин «полимерия», которым он назвал один из видов изомерии. Такие вещества (полимеры) должны были обладать одинаковым составом, но разной молекулярной массой, как например этилен и бутилен. К современному пониманию термина «полимер» умозаключение Й. Берцелиуса не соответствует, потому что истинные (синтетические) полимеры в то время еще не были известны. Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам.

Химия полимеров возникла только после создания А. М. Бутлеровым теории химического строения органических соединений и получила дальнейшее развитие благодаря интенсивным поискам способов синтеза каучука (Г. Бушарда, У. Тилден, К Гарриес, И. Л. Кондаков, С. В. Лебедев). С начала 20-х годов 20 века стали развиваться теоретические представления о строении полимеров.

ОПРЕДЕЛЕНИЕ

Полимеры — химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов) , молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).

Классификация полимеров

Классификация полимеров основана на трех признаках: их происхождении, химической природе и различиях в главной цепочке.

С точки зрения происхождения все полимеры подразделяют на природные (натуральные), к которым относят нуклеиновые кислоты, белки, целлюлозу, натуральный каучук, янтарь; синтетические (полученные в лаборатории путем синтеза и не имеющие природных аналогов), к которым относят полиуретан, поливинилиденфторид, фенолформальдегидные смоли и др; искусственные (полученные в лаборатории путем синтеза, но на основе природных полимеров) – нитроцеллюлоза и др.

Исходя из химической природы, полимеры делят на полимеры органической (в основе мономер – органическое вещество – все синтетические полимеры), неорганической (в основе Si, Ge, S и др. неорганические элементы – полисиланы, поликремниевые кислоты) и элементоорганической (смесь органических и неорганических полимеров – полислоксаны) природы.

Выделяют гомоцепные и гетероцепные полимеры. В первом случае главная цепь состоит из атомов углерода или кремния (полисиланы, полистирол), во втором – скелет из различных атомов (полиамиды, белки).

Физические свойства полимеров

Для полимеров характерны два агрегатных состояния – кристаллическое и аморфное и особые свойства – эластичность (обратимые деформации при небольшой нагрузке — каучук), малая хрупкость (пластмассы), ориентация при действии направленного механического поля, высокая вязкость, а также растворение полимера происходит посредством его набухания.

Получение полимеров

Реакции полимеризации – цепные реакции, представляющие собой последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта – полимера (рис. 1).

Рис. 1. Общая схема получения полимера

Так, например, полиэтилен получают полимеризацией этилена. Молекулярная масса молекулы достигает 1миллиона.

n CH 2 =CH 2 = -(-CH 2 -CH 2 -)-

Химические свойства полимеров

В первую очередь для полимеров будут характерны реакции, характерные для функциональной группы, присутствующей в составе полимера. Например, если в состав полимера входит гидроксо-группа, характерная для класса спиртов, следовательно, полимер будет участвовать в реакциях подобно спиртам.

Во-вторых, взаимодействие с низкомолекулярными соединениями, взаимодействие полимеров друг с другом с образованием сетчатых или разветвленных полимеров, реакции между функциональными группами, входящими в состав одного и того же полимера, а также распад полимера на мономеры (деструкция цепи).

Применение полимеров

Производство полимеров нашло широкое применение в различных областях жизни человечества — химической промышленности (производство пластмасс), машино – и авиастроении, на предприятиях нефтепереработки, в медицине и фармакологии, в сельском хозяйстве (производство гербицидов, инсектицидов, пестицидов), строительной промышленности (звуко- и теплоизоляция), производство игрушек, окон, труб, предметов быта.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Полистирол хорошо растворяется в неполярных органических растворителях: бензоле, толуоле, ксилоле, тетрахлориде углерода. Вычислите массовую долю (%) полистирола в растворе, полученном растворением 25 г полистирола в бензоле массой 85г. (22,73%).
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора бензола:

m р-ра (C 6 H 6) = m(C 6 H 6)/(/100%)

Представьте следующую ситуацию. Вы выходите из магазина и торопитесь поскорее закинуть пакет в машину. Дело сделано. Вы быстро проверяете телефон и садитесь за руль. Заходя в свою квартиру, вы вытираете ноги о резиновый коврик, вынимаете все из пакетов: сковородку с антипригарным покрытием, игрушки для ребенка, пену для бритья, пару рубашек, обои. Вроде ничего не забыли. Вы прихватываете с собой бутылку воды и идете к компьютеру - пора бы и поработать. Все, о чем шла речь выше, содержит полимеры. Вплоть до магазина.

Полимеры - что это такое?

Полимеры - это материалы, состоящие из длинных повторяющихся цепочек молекул. Они обладают уникальными свойствами в зависимости от типа соединяемых молекул и от того, как они соединены. Некоторые из них гнутся и тянутся, например резина и полиэстер. Другие твердые и жесткие, как эпоксиды и органическое стекло.

Термин «полимер» обычно используется для описания пластиков, которые являются синтетическими полимерами. Как бы то ни было, естественные полимеры также существуют: к примеру, резина и дерево - это естественные полимеры, состоящие из простого углеводорода, изопрена. Белки - тоже естественные полимеры, они состоят из аминокислот. Нуклеиновые кислоты (ДНК и РНК) - полимеры нуклеотидов - сложных молекул, состоящих из азотсодержащей основы, сахара и фосфорной кислоты.

Кто до этого додумался?

Отцом полимеров считается преподаватель органической химии из Швейцарской высшей технической школы Цюриха Герман Штаудингер.

Герман Штаудингер. Источник: Wikimedia

Его исследования 1920-х гг. проложили путь для последующей работы, как с естественными, так и с синтетическими полимерами. Он ввел два термина, являющихся ключевыми для понимания полимеров: полимеризация и макромолекула. В 1953 г. Штаудингер получил заслуженную Нобелевскую премию «за его открытия в поле макромолекулярной химии».

Полимеризация - метод создания синтетических полимеров путем комбинирования более маленьких молекул, мономеров, в цепочку, скрепляемую ковалентными связями. Различные химические реакции, например те, что вызваны теплом и давлением, изменяют химические связи, которые скрепляют мономеры. Процесс заставляет молекулы связываться в линейной, разветвленной или пространственной структуре, превращая их в полимеры. Эти цепочки мономеров также называют макромолекулами. Одна макромолекула может состоять из сотен тысяч мономеров.

Виды полимеров

Вид полимера зависит от его структуры. Из вышенаписанного мы понимаем, что таких видов должно быть три.

Линейные полимеры. Это соединения, в которых мономеры химически инертны по отношению друг к другу и связаны лишь силами Ван-дер-Ваальса (силы межмолекулярного (и межатомного) взаимодействия с энергией 10–20 кДж/моль. - Прим. ред .). Термин «линейные» вовсе не обозначает прямолинейное расположение молекул относительно друг друга. Наоборот, для них более характерна зубчатая или спиральная конфигурация, что придает таким полимерам механическую прочность.

Разветвленные полимеры. Они образованы цепями с боковыми ответвлениями (число ответвлений и их длина различны). Разветвленные полимеры более прочны, чем линейные.

Линейные и разветвленные полимеры размягчаются при нагревании и вновь затвердевают при охлаждении. Такое их свойство называется термопластичностью, а сами полимеры - термопластичными, или термопластами. Связи между молекулами в таких полимерах могут быть разорваны и соединены по новой. Это значит, что пластмассовые бутылки можно использовать для производства других полимерсодержащих вещей, от коврика до флисовых курток. Конечно, можно наделать еще бутылок. Все, что понадобится для переработки, - высокая температура. Термопластичные полимеры можно не только плавить, но и растворять, так как связи Ван-дер-Ваальса легко рвутся под действием реагентов. К термопластам относятся поливинилхлорид, полиэтилен, полистирол и др.

Если же макромолекулы содержат реакционно-способные мономеры, то при нагревании они соединяются множеством поперечных связей, и полимер приобретает пространственную структуру. Такие полимеры называют термоактивными, или реактопластами.

С одной стороны, реактопласты обладают положительными качествами: они более твердые и теплостойкие. С другой стороны, после разрушения связей между молекулами термоактивных полимеров ее не получится установить второй раз. Переработка в таком случае отпадает, а это очень нехорошо. Самые распространенные полимеры этой группы - полиэстер, винилэстер и эпоксиды.

Материалы, получаемые на основе полимеров . На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты).

Волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относятся полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями или методом нанесения растворов полимеров на движущуюся ленту или методом каландрования" полимеров. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Лаки - растворы пленкообразующих веществ в органических растворителях. Кроме полимеров лаки содержат вещества, повышающие пластичность (пластификаторы), растворимые красители, отвердители и др. Применяются для электроизоляционных покрытий, а также в качестве основы грунтовочного материала и лакокрасочных эмалей.

Клеи - композиции, способные соединять различные материалы вследствие образования прочных связей между их поверхностями и клеевой прослойкой. Синтетические органические клеи составляются на основе мономеров, олигомеров, полимеров или их смесей. В состав композиции входят отвердители, наполнители, пластификаторы и др.

Клеи подразделяются на термопластические, термореактивные и резиновые. Термопластические клеи образуют связь с поверхностью в результате затвердевания при охлаждении от температуры текучести до комнатной температуры или испарения растворителя. Термореактивные клеи образуют связь с поверхностью в результате отвердевания (образования поперечных сшивок), резиновые клеи - в результате вулканизации.

В качестве полимерной основы термореактивных клеев служат фенол- и мочевино-формальдегидные и эпоксидные смолы, полиуретаны, полиэфиры и другие полимеры, термопластичных клеев - полиакрилы, полиамиды, поливинилацетали, поливинилхлорид и другие полимеры. Прочность клеевого слоя например, фенолоформальдегидных клеев (БФ, ВК) при 20 °С при сдвиге лежит в пределах 15 до 20 МПа, эпоксидных - до 36 МПа.

Пластмассы - это материалы, содержащие полимер, который при формировании изделия находится в вязкотекучем состоянии, а при его эксплуатации - в стеклообразном. Все пластмассы подразделяются на реактопласты и термопласты. При формовании реактопластов происходит необратимая реакция отвердевания, заключающаяся в образовании сетчатой структуры. К реактопластам относятся материалы на основе фенолоформальдегидных, мочевиноформальдегидных, эпоксидных и других смол. Термопласты способны многократно переходить в вязкотекучее состояние при нагревании и стеклообразное - при охлаждении. К термопластам относятся материалы на основе полиэтилена, политетрафторэтилена, полипропилена, поливинилхлорида, полистирола, полиамидов и других полимеров.

Кроме полимеров в состав пластмасс входят пластификаторы, красители и наполнители. Пластификаторы, например, диоктилфталат, дибутилсебацинат, хлорированный парафин, снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико-механические свойства полимеров. В качестве наполнителей применяют порошки (графит, сажа, мел, металл и т.д.), бумагу, ткань. Особую группу пластмасс составляют композиты.

Композиционные материалы (композиты) - состоят из основы (органической, полимерной, углеродной, металлической, керамической), армированной наполнителем, в виде высокопрочных волокон или нитевидных кристаллов. В качестве основы используются синтетические смолы (алкидные, фенолоформальде-гидные, эпоксидные и др.) и полимеры (полиамиды, фторопласты, силиконы и др.).

Армирующие волокна и кристаллы могут быть металлическими, полимерными, неорганическими (например, стеклянными, карбидными, нитридными, борными). Армирующие наполнители в значительной степени определяют механические, теплофизические и электрические свойства полимеров. Многие композиционные полимерные материалы по прочности не уступают металлам. Композиты на основе полимеров, армированных стекловолокном (стеклопластики), обладают высокой механической прочностью (прочностью при разрыве 1300-2500 МПа) и хорошими электроизоляционными свойствами. Композиты на основе полимеров, армированных углеродными волокнами (углепластики), сочетают высокую прочность и вибропрочность с повышенной теплопроводностью и химической стойкостью. Боропластики (наполнители - борные волокна) имеют высокую прочность, твердость и низкую ползучесть.

Композиты на основе полимеров используются как конструкционные, электро- и теплоизоляционные, коррозионностойкие, антифрикционные материалы в автомобильной, станкостроительной, электротехнической, авиационной, радиотехнической, горнорудной промышленности, космической технике, химическом машиностроении и строительстве.

Редокситы. Широкое применение получили полимеры с окислительно-восстановительными свойствами - редокситы (с редокс-группами или редоксиониты).

Применение полимеров. В настоящее время широко применяется большое число различных полимеров. Физические и химические свойства некоторых термопластов приведены в табл. 14.2 и 14.3.

Полиэтилен [-СН2-СН2-]n - термопласт, получаемый методом радикальной полимеризации при температуре до 320 °С и давлении 120-320 МПа (полиэтилен высокого давления) или при давлении до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давления имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен химически стоек во многих средах, но под действием окислителей стареет (табл. 14.3). Хороший диэлектрик (см. табл. 14.2), может эксплуатироваться в пределах температур от -20 до +100 °С. Облучение может повысить теплостойкость полимера. Из полиэтилена изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки и оболочки кабелей (высокочастотных, телефонных, силовых), пленки, упаковочный материал, заменители стеклотары.

Полипропилен [-СН(СН3)-СН2-]n - кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120-140 °С), чем полиэтилен. Имеет высокую механическую прочность (см. табл. 14.2), стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др.

Термопласт, получаемый радикальной полимеризацией стирола.

Полимер стоек к действию окислителей, но неустойчив к воздействию сильных кислот, он растворяется в ароматических растворителях (см. табл. 14.3).

Таблица 14.2. Физические свойства некоторых полимеров

Свойство

Полиэтилен

Полипропилен

Полисти-рол

Поливини-хлорид

Полимети-метакрилат

Политетра-фторэтилен

Плотность, г/см3

Температура стеклования, °С

Предел прочности при растяжении, МПа

Относительное удлинение при разрыве, %

Удельное электрическое сопротивление, Ом×см

Диэлектрическая проницаемость

* Температура плавления.

Таблица 14.3 Химические свойства некоторых полимеров

Свойство

Полимеры

Полиэти-лен

Полистирол

Поливини-хлорид

Полимети-метакрилат

Силиконы

Фторо-пласты

Устойчивость к дейсвию:

а) растворов кислот

б) растворов щелочей

в) окислителей

Растворимость в углеводородах

а) алифатических

б) ароматических

Растворители

Набухает

Растворяется при нагреве

Бензол при нагревании

Стоек в слабых растворах

Стоек в слабых растворах

Набухает

Растворяется

Спирты, эфиры, стирол

Не растворяется

Не растворяется

Тетрагидрофуран, дихлорэтан

Стоек в мини-ральных кислотах

Растворим

Дихлорэтан, кетоны

Не стойки

Растворяются

Растворимы

Эфиры, хлороугле-водороды

Растворы некоторых комлексов

Полистирол обладает высокой механической прочностью и диэлектрическими свойствами (см. табл. 14.2) и используется как высококачественный электроизоляционный, а также конструкционный и декоративно-отделочный материал в приборостроении, электротехнике, радиотехнике, бытовой технике. Гибкий эластичный полистирол, получаемый вытяжкой в горячем состоянии, применяется для оболочек кабелей и проводов. На основе полистирола также выпускают пенопласты.

Поливинилхлорид [-CH2-CHCl-]n - термопласт, изготовляемый полимеризацией винилхлорида, стоек к воздействию кислот, щелочей и окислителей (см. табл. 14.3). Растворим в циклогексаноне, тетрагидрофуране, ограничено - в бензоле и ацетоне. Трудногорюч, механически прочен (см. табл. 14.2). Диэлектрические свойства хуже, чем у полиэтилена. Применяется как изоляционный материал, который можно соединять сваркой. Из него изготовляют грампластинки, плащи, трубы и др. предметы.

Политетрафторэтилен (фторопласт)[-CF2-CF2-]n - термопласт, получаемый методом радикальной полимеризации тетрафторэ-тилена. Обладает исключительной химической стойкостью к кислотам, щелочам и окислителям. Прекрасный диэлектрик. Имеет очень широкие температурные пределы эксплуатации (от -270 до +260 °С). При 400 °С разлагается с выделением фтора, не смачивается водой. Фторопласт используется как химически стойкий конструкционный материал в химической промышленности. Как лучший диэлектрик применяется в условиях, когда требуется сочетание электроизоляционных свойств с химической стойкостью. Кроме того, его используют для нанесения антифрикционных, гидрофобных и защитных покрытий, покрытий сковородок.

Полиметилметакрилат (плексиглаз)

Термопласт, получаемый методом полимеризации метилметакрилата. Механически прочен (см. табл. 14.2), стоек к действию кислот, атмосферостоек. Растворяется в дихлорэтане, ароматических углеводородах, кетонах, сложных эфирах. Бесцветен и оптически прозрачен. Применяется в электротехнике, как конструкционный материал, а также как основа клеев.

Полиамиды - термопласты, содержащие в основной цепи амидогруппу -NHCO-, например поли-e-капрон [-NH-(CH2)5-CO-]n, полигексаметиленадипинамид (найлон) [-NH-(CH2)5-NH-CO-(CH2)4-CO-]n, полидодеканамид [-NH-(CH2)11-CO-]n и др. Их получают как поликонденсацией, так и полимеризацией. Плотность полимеров 1,0¸1,3 г/см3. Характеризуются высокой прочностью, износостойкостью, диэлектрическими свойствами. Устойчивы в маслах, бензине, разбавленных кислотах и концентрированных щелочах. Применяются для получения волокон, изоляционных пленок, конструкционных, антифрикционных и электроизоляционных изделий.

Полиуретаны - термопласты, содержащие в основной цепи группы -NH(CO)O-, а также эфирные, карбаматные и др. Получают взаимодействием изоциантов (соединений, содержащих одну или несколько NCO-гpyпп) с полиспиртами, например с гликолями и глицерином. Устойчивы к действию разбавленных минеральных кислот и щелочей, масел и алифатических углеводородов.

Выпускаются в виде пенополиуретанов (поролонов), эластомеров, входят в составы лаков, клеев, герметиков. Используются для тепло- и электроизоляции, в качестве фильтров и упаковочного материала, для изготовления обуви, искусственной кожи, резинотехнических изделий. Полиэфиры -полимеры с общей формулой HO[-R-O-]nH или [-OC-R-COO-R"-O-]n. Получают либо полимеризацией циклических оксидов, например этиленоксида, лактонов (сложных эфиров окси-кислот), либо поликонденсацией гликолей, диэфиров и других соединений. Алифатические полиэфиры устойчивы к действию растворов щелочей, ароматические - также к действию растворов минеральных кислот и солей.

Применяются в производстве волокон, лаков и эмалей, пленок, коагулянтов и флотореагентов, компонентов гидравлических жидкостей и др.

Синтетические каучуки (эластомеры) получают эмульсионной или стереоспецифической полимеризацией. При вулканизации превращаются в резину, для которой характерна высокая эластичность. Промышленность выпускает большое число различных синтетических каучуков (СК), свойства которых зависят от типа мономеров. Многие каучуки получают совместной полимеризацией двух и более мономеров. Различают СК общего и специального назначения. К СК общего назначения относят бутадиеновый [-СН2-СН=СН-СН2-]n и бутадиенстирольный [-СН2-СН=СН-СН2-]n-[-СН2-СН(С6Н5)-]n. Резины на их основе используются в изделиях массового назначения (шины, защитные оболочки кабелей и проводов, ленты и т.д.). Из этих каучуков также получают эбонит, широко используемый в электротехнике. Резины, получаемые из СК специального назначения, кроме эластичности характеризуются некоторыми специальными свойствами, например бензо- и маслостойкостью (бутадиеннитрильный СК [-CH2-CH=CH-CH2-]n-[-CH2-CH(CN)-]n), бензо-, масло- и теплостойкостью, негорючестью (хлоропреновый СК [-СН2-С(Сl)=СН-СН2-]n), износостойкостью (полиуретановый и др.), тепло-, свето-, озоностойкостью (бутилкаучук) [-C(СН3)2-CH2-]n –[-CH2C(CH3)=СН-СН2-]m.

К наиболее применяемым относятся бутадиенстирольный (более 40%), бутадиеновый (13%), изопреновый (7%), хлоропреновый (5%) каучуки и бутилкаучук (5%). Основная доля каучуков (60-70%) идет на производство шин, около 4% - на изготовление обуви.

Кремнийорганические полимеры (силиконы) -содержат атомы кремния в элементарных звеньях макромолекул, например:


Большой вклад в разработку кремнийорганических полимеров внес российский ученый К.А.Андрианов. Характерной особенностью этих полимеров является высокая тепло- и морозостойкость, эластичность. Силиконы не стойки к воздействию щелочей и растворяются во многих ароматических и алифатических растворителях (см. табл. 14.3). Кремнийорганические полимеры используются для получения лаков, клеев, пластмасс и резины. Кремнийорганические каучуки [-Si(R2)-O-]n, например диметилсилоксановый и метил винил сил оксановый имеют плотность 0,96-0,98 г/см3, температуру стеклования 130°С. Растворимы в углеводородах, галогеноуглеводородах, эфирах. Вулканизируются с помощью органических пероксидов. Резины могут эксплуатироваться при температуре от -90 до +300°С, обладают атмосферостойкостью, высокими электроизоляционными свойствами (r = 1015-1016 Ом×см). Применяются для изделий, работающих в условиях большого перепада температур, например для защитных покрытий космических аппаратов и т.д.

Феноло- и аминоформальдегидные смолы получают поликонденсацией формальдегида с фенолом или аминами (см. §14.2). Это термореактивные полимеры, у которых в результате образования поперечных связей образуется сетчатая пространственная структура, которую невозможно превратить в линейную структуру, т.е. процесс идет необратимо. Их используют как основу клеев, лаков, ионитов, пластмасс.

Пластмассы на основе фенолоформальдегидных смол получили название фенопластов, на основе мочевино-формальдегидных смол -аминопластов. Наполнителями фенопластов и аминопластов служит бумага или картон (гетинакс), ткань (текстолит), древесина, кварцевая и слюдяная мука и др. Фенопласты стойки к действию воды, растворов кислот, солей и оснований, органических растворителей, трудногорючи, атмосферостойки и являются хорошими диэлектриками. Используются в производстве печатных плат, корпусов электро- и радиотехнических изделий, фольгированных диэлектриков. Аминопласты характеризуются высокими диэлектрическими и физико-механическими свойствами, устойчивы к действию света и УФ-лучей, трудногорючи, стойки к действию слабых кислот и оснований и многих растворителей. Они могут быть окрашены в любые цвета. Применяются для изготовления электротехнических изделий (корпусов приборо

Полимерные материалы - это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации - это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы - это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1-10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1-10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.

Подробности Опубликовано: 25 Декабрь 2013

Термин полимер, широко используется в наше время в производстве пластмасс и композитной промышленности, довольно часто слово «полимер» используют для обозначения пластиков. На самом деле, термин " полимер " означает намного-намного больше.

Специалисты компании ООО НПП «Симплекс» решили рассказать подробно, что же такое полимеры:
Полимер – вещество с химическим составом молекул соединенных в длинные повторяющиеся цепочки. Благодаря этому все материалы, изготовленные из полимеров, обладают уникальными свойствами и могут быть адаптированы в зависимости от их назначения.
Полимеры бываю как искусственного, так и естественного происхождения. Самым распространенным в природе является натуральный каучук, который является чрезвычайно полезным и используется человечеством уже несколько тысяч лет. Каучук (резина) обладает отличной эластичностью. Это результат того, что молекулярные цепи в молекуле чрезвычайно длинные. Абсолютно все виды полимеров обладают свойствами повышенной упругости, однако вместе с этими свойствами, могут демонстрировать и широкий спектр дополнительных полезных свойств. В зависимости от назначения, полимеры могут быть тонко синтезированы для максимально удобного и выгодного использования их определенных свойств.

Основные физические свойства полимеров:

  • Ударопрочность
  • Жесткость
  • Прозрачность
  • Гибкость
  • Упругость

    Ученые химики давно заметили одну интересную особенность, связанную с полимерами: если посмотреть на полимерную цепь под микроскопом, то можно увидеть, что визуальная структура и физические свойства молекулы цепочки будет имитировать реальные физические свойства полимера.

    Например, если полимерная цепь состоит из туго скрученных между нитей мономеров и их трудно разделить, то, скорее всего, этот полимер будет сильным и упругим. Или, если полимерная цепь на молекулярном уровне проявляет эластичность, скорее всего, и полимер будет иметь гибкие свойства.

    Переработка полимеров
    Большинство изделий из полимеров можно изменить и деформировать под воздействием высоких температур, однако на молекулярном уровне сам полимер может, не изменится и из него можно будет создать новое изделие. Например, можно расплавить пластиковую тару и бутылки и затем сделать из этих полимеров пластиковые контейнеры или детали автомобилей.

    Примеры Полимеров
    Ниже приводится список самых распространенных полимеров, используемых в наше время, а также их основное применение:

    • Полипропилен (PP) – Производство ковровых покрытий, тара для продуктов, фляги.
    • Неопрен – Гидрокостюмы
    • Поли-винил-хлорид) (PVC) - Производство трубопроводов, профнастил
    • Полиэтилен низкой плотности (LDPE) - Продуктовые пакеты
    • Полиэтилен высокой плотности (HDPE) – Тара для моющих средств, бутылки, игрушки
    • Полистирол (PS) - Игрушки, пены, бескаркасная мебель
    • Политетрафторэтилен (ПТФЭ, фторопласт) - антипригарные сковородки, электрическая изоляция
    • Полиметилметакрилат (ПММА, плексигласа, оргстекла) – офтальмология, производство акриловых ванн, осветительная техника
    • (ПВА) - Краски, клеи