Построение плоскости перпендикулярной заданной плоскости. Прямые, параллельные и перпендикулярные плоскостям

Построение взаимно перпендикулярных прямых и плоскостей является важной графической операцией при решении метрических задач.

Построение перпендикуляра к прямой или плоскости основывается на свойстве прямого угла, которое формулируется следующим образом: если одна из сторон прямого угла параллельна плоскости проекций, а другая не перпендикулярна ей, то угол проецируется в натуральную величину на эту плоскость.

Рисунок 28

Сторона ВС прямого угла АВС, изображенного на рисунке 28, параллельна плоскости П 1 . Следовательно, проекция угла АВС на эту плоскость будет представлять прямой угол А 1 В 1 С 1 =90.

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. При построении перпендикуляра из множества прямых принадлежащих плоскости, выбирают прямые уровня - горизонталь и фронталь. В этом случае горизонтальную проекцию перпендикуляра проводят перпендикулярно горизонтали, а фронтальную -перпендикулярно фронтали. На примере, изображенном на рисунке 29, показано построение перпендикуляра к плоскости, заданной треугольником АВС, из точки К. Для этого сначала проводим горизонталь и фронталь в плоскости. Затем из фронтальной проекции точки К проводим перпендикуляр к фронтальной проекции фронтали, а из горизонтальной проекции точки - перпендикуляр к горизонтальной проекции горизонтали. Затем строим точку пересечения данного перпендикуляра с плоскостью при помощи вспомогательной секущей плоскости Σ. Искомая точка - F. Таким образом, полученный отрезок КF является перпендикуляром к плоскости АВС.


Рисунок 29

На рисунке 29 изображено построение перпендикуляра КF к плоскости АВС.

Две плоскости перпендикулярны, если прямая, лежащая в одной плоскости, перпендикулярна двум пересекающимся прямым другой плоскости. Построение плоскости перпендикулярной данной плоскости АВС показано на рисунке 30. Через точку М проводится прямая МN, перпендикулярная плоскости АВС. Горизонтальная проекция этой прямой перпендикулярна АС, так как АС является горизонталью, а фронтальная проекция перпендикулярна АВ, так как АВ - фронталь. Затем через точку М проводится произвольная прямая EF. Таким образом, плоскость перпендикулярна АВС и задана двумя пересекающимися прямыми EF и MN.


Рисунок 30

Этот способ применяется для определения натуральных величин отрезков общего положения, а также углов наклона их к плоскостям проекций. Для того, чтобы определить натуральную величину отрезка этим способом, необходимо достроить прямоугольный треугольник к одной из проекций отрезка. Другим катетом будет являться разность высот или глубин конечных точек отрезка, а гипотенуза - натуральной величиной.

Рассмотрим пример: на рисунке 31 дан отрезок АВ общего положения. Требуется определить его натуральную величину и углы его наклона к фронтальной и горизонтальной плоскостям проекций.

Проводим перпендикуляр к одному из концов отрезка на горизонтальной плоскости. Откладываем на нем разность высот (ZA-ZB) концов отрезка и достраиваем прямоугольный треугольник. Гипотенуза его является натуральной величиной отрезка, а угол между натуральной величиной и проекцией отрезка - натуральной величиной угла наклона отрезка к плоскости П 1 . Порядок построений на фронтальной плоскости тот же самый. По перпендикуляру откладываем разность глубин концов отрезка (YA-YB). Полученный угол между натуральной величиной отрезка и его фронтальной проекцией - это угол наклона отрезка к плоскости П 2 .


Рисунок 31

1. Сформулируйте теорему о свойстве прямого угла.

2. В каком случае прямая перпендикулярна плоскости?

3. Сколько прямых и сколько плоскостей, перпендикулярных данной плоскости, можно провести через точку пространства?

4. Для чего применяется способ прямоугольного треугольника?

5. Как при помощи этого способа определить угол наклона отрезка общего положения к горизонтальной плоскости проекций?

В рамках этой темы необходимо уметь:

  • 1. Задавать плоскость, перпендикулярную к прямой.
  • 2. Задавать прямую, перпендикулярную к плоскости.

При решении этих взаимосвязанных задач важно понимать, как должны быть направлены проекции перпендикуляра по отношению к проекциям плоскости. Для уяснения этого решим задачи А и Б.

Задача А

Условие. Через точку А, взятую на прямой гп, провести плоскость, перпендикулярную к этой прямой.

Решение. Известно, что плоскость перпендикулярна прямой, сели две прямые, расположенные в этой плоскости, перпендикулярны заданной прямой.

Поэтому в нашем случае через точку А достаточно провести две прямые, каждая из которых была бы перпендикулярна т. Тогда эти прямые в паре определят искомую плоскость.

Пусть одной из прямых, определяющих эту плоскость, станет горизонталь. Ее фронтальная проекция 1ъ пройдет горизонтально (рис. 4.7), а горизонтальная проекция h| - под прямым углом к m 1 (на основании теоремы о проекциях прямого угла).

Второй прямой, определяющей искомую плоскость, будет фронталь. Ес горизонтальная проекция f| пройдет горизонтально.

а фронтальная проекция f2 - иод прямым углом к mi (на основании той же теоремы).

Рис. 4.7

Таким образом, задача решена. Анализируя ее, мы можем заметить, что по отношению к построенной плоскости (f х h) заданная прямая m является перпендикуляром. Отсюда следует важный практический вывод:

горизонтальная проекция перпендикуляра к плоскости должна проходить под прямым углом к горизонтальной проекции горизонтали, а фронтальная проекция - под прямым углом к фронтальной проекции фронтали.

Задача Б

Условия. Опустить перпендикуляр из точки В на плоскость DEF (с определением его видимости но отношению к плоскости).

Рис. 4.8а - графические условия задачи

Рис. 4.86

Рис. 4.8в - определение основания и натуральной величины перпендикуляра

Решение. Вначале вычертим проекции DEF и В (рис. 4.8а).

Приступив к решению задачи, выделим в ней три

характерных этапа:

  • 1. Построение направлений для проекций перпендикуляра.
  • 2. Построение основания перпендикуляра (точки его пересечения с плоскостью).
  • 3. Определение натуральной величины перпендикуляра.

Выполним эти построения. Сначала наметим направление

проекций перпендикуляра. Для этого предварительно в плоскости DEF нужно провести горизонталь h и фронталь f, которые являются ориентирами для его проекций.

Теперь найдем основание перпендикуляра как точку пересечения полученной прямой с плоскостью DEF. Эта задача нам уже знакома (см. п. 3.3.4). В рассмотренном примере искомая точка К лежит за пределами треугольника, ограничивающего плоскость (рис. 4.8в). Она расположена на прямой 2-3, которая, по построению, принадлежит плоскости DEF. Значит, ей принадлежит и точка К. Если проекции перпендикуляра частично или полностью заслоняются проекциями треугольника DEF, то дополнительно необходимо определить видимость перпендикуляра но отношению к плоскости.

Натуральная величина перпендикуляра ВК может быть найдена любым из методов, рассмотренных ранее в и. 2.2. На рисунке 4.8в для этой цели использован метод прямоугольного треугольника.

Отметим, что данная задача зачастую формулируется как определение расстояния от точки В до плоскости треугольника DEF.

Признак перпендикулярности прямой и плоскости позволяет построить взаимно перпендикулярные прямую и плоскость, т. е. доказать существование таких прямых и плоскостей. Начнем с построения плоскости, перпендикулярной данной прямой и проходящей через данную точку. Решим две задачи на построение, соответствующие двум возможностям в расположении данной точки и данной прямой.

Задача 1. Через данную точку А на данной прямой a провести плоскость, перпендикулярную этой прямой.

Проведем через прямую а любые две плоскости и в каждой их этих плоскостей через точку А проведем по прямой, перпендикулярной прямой а, обозначим их b и с (рис. 2.17). Плоскость а, проходящая через прямые бис, содержит точку А и перпендикулярна прямой а (по признаку перпендикулярности прямой и плоскости). Поэтому плоскость а искомая. Задача решена.

Задача имеет лишь одно (т.е. единственное) решение. Действительно, допустим противное. Тогда, кроме плоскости а через точку А проходит еще какая-нибудь плоскость Р, перпендикулярная прямой а (рис. 2.18). Возьмем в плоскости Р любую прямую , проходящую через точку А и не лежащую в плоскости а. Проведем плоскость у через пересекающиеся прямые а и . Плоскость у пересечет плоскость а по прямой q. Прямая q не совпадает с прямой , так как q лежит в а не лежит в а. Обе эти прямые лежат в плоскости у, проходят через точку А и перпендикулярны прямой а так как и аналогично так как и . Но это противоречит известной теореме планиметрии, согласно которой в плоскости через каждую точку проходит лишь одна прямая, перпендикулярная данной прямой.

Итак, предположив, что через точку А проходят две плоскости, перпендикулярные прямой а, мы пришли к противоречию. Поэтому задача имеет единственное решение.

Задача 2. Через данную точку А, не лежащую на данной прямой а, провести плоскость, перпендикулярную этой прямой.

Через точку А проводим прямую b, перпендикулярную прямой а. Пусть В - точка пересечения а и b. Через точку В проводим еще прямую с, перпендикулярную прямой а (рис. 2.19). Плоскость, проходящая через обе проведенные прямые, будет перпендикулярна а по признаку перпендикулярности (теорема 2).

Как и в задаче 1, построенная плоскость единственная. Действительно, возьмем любую плоскость, проходящую через точку А перпендикулярно прямой а. Такая плоскость содержит прямую, перпендикулярную прямой а и проходящую через точку А. Но такая прямая только одна. Это прямая b, которая проходит через точку В. Значит, плоскость, проходящая через А и перпендикулярная прямой а, должна содержать точку В, а через точку В проходит лишь одна плоскость, перпендикулярная прямой а (задача 1). Итак, решив эти задачи на построение и доказав единственность их решений, мы доказали следующую важную теорему.

Теорема 3 (о плоскости, перпендикулярной прямой). Через каждую точку проходит плоскость, перпендикулярная данной прямой, и притом только одна.

Следствие (о плоскости перпендикуляров). Прямые, перпендикулярные данной прямой в данной ее точке, лежат в одной плоскости и покрывают ее.

Пусть а - данная прямая и А - какая-либо ее точка. Через нее проходит плоскость. По определению перпендикулярности прямой и плоскости она покрыта

крыта прямыми, перпендикулярными прямой а в точке А, т.е. через каждую точку плоскости а в ней проходит прямая, перпендикулярная прямой а.

Допустим, что через точку А проходит прямая , не лежащая в плоскости а. Проведем через нее и прямую а плоскость Р. Плоскость Р пересечет а по некоторой прямой с (рис. 2.20). И так как то Получается, что через точку А в плоскости Р проходят две прямые b и с, перпендикулярные прямой а. Это невозможно. Значит, прямых, перпендикулярных прямой а в точке А и не лежащих в плоскости а, нет. Все они лежат в этой плоскости.

Пример к следствию теоремы 3 дают спицы в колесе, перпендикулярные его оси: при вращении они зачерчивают плоскость (точнее, круг), принимая все положения, перпендикулярные оси вращения.

Теоремы 2 и 3 помогают дать простое решение следующей задачи.

Задача 3. Через точку данной плоскости провести прямую, перпендикулярную этой плоскости.

Пусть даны плоскость а и точка А в плоскости а. Проведем в плоскости а через точку А какую-либо прямую а. Через точку А проведем плоскость , перпендикулярную прямой а (задача 1). Плоскость пересечет плоскость а по некоторой прямой b (рис. 2.21). Проведем в плоскости Р через точку А прямую с, перпендикулярную прямой b. Так как (поскольку с лежит в плоскости

И ), то по теореме 2 . Единственность ее решения установлена в п. 2.1.

Замечание. О построениях в пространстве. Напомним, что в главе 1 мы изучаем "строительную геометрию". А в этом пункте мы решили три задачи на построение в пространстве. Что же понимают в стереометрии под терминами "построить”, "провести", "вписать" и т.п.? Сначала вспомним о построениях на плоскости. Указав, например, как строить окружность, описанную около треугольника, мы тем самым доказываем ее существование. Вообще, решая задачу на построение, мы доказываем теорему существования фигуры с заданными свойствами. Это решение сводится к составлению некоторого алгоритма построения искомой фигуры, т.е. к указанию последовательности выполнения простейших операций, приводящих к необходимому результату. Простейшие операции - это проведение отрезков, окружностей и нахождение точек их пересечения. Затем с помощью чертежных инструментов выполняется непосредственное построение фигуры на бумаге или на доске.

Итак, в планиметрии решение задачи на построение имеет как бы две стороны: теоретическую - алгоритм построения - и практическую - реализацию этого алгоритма, например, циркулем и линейкой.

У стереометрической задачи на построение остается лишь одна сторона - теоретическая, так как нет инструментов для построения в пространстве, аналогичных циркулю и линейке.

За основные построения в пространстве принимают те, которые обеспечиваются аксиомами и теоремами о существовании прямых и плоскостей. Это - проведение прямой через две точки, проведение плоскости (предложения п. 1.1 и аксиома 1 п. 1.4), а также построение прямой пересечения любых двух построенных плоскостей (аксиома 2 п. 1.4). Кроме того, мы, естественно, будем считать, что можно выполнять планиметрические построения в уже построенных плоскостях.

Решить задачу на построение в пространстве - это значит указать последовательность основных построений, в результате которых получается нужная фигура. Обычно явно указываются не все основные построения, а делаются ссылки на уже решенные задачи на построение, т.е. на уже доказанные предложения и теоремы о возможности таких построений.

Кроме построений - теорем существования в стереометрии, возможны еще два вида задач, связанных с построениями.

Во-первых, задачи на рисунке или на чертеже. Таковы задачи на сечения многогранников или других тел. Мы не строим на самом деле само сечение, а только изображаем его на

рисунке или чертеже, который у нас уже есть. Такие построения осуществляются как планиметрические с учетом аксиом и теорем стереометрии и правил изображений. Задачи такого типа постоянно решают в черчении и в конструкторской практике.

Во-вторых, задачи на построение на поверхностях тел. Задача: "Построить точки на поверхности куба, удаленные от данной его вершины на данное расстояние" - решается с помощью циркуля (как?). Задача: "Построить точки на поверхности шара, удаленные от данной точки на данное расстояние" - также решается с помощью циркуля (как?). Задачи такого типа решают не на уроках геометрии - их постоянно решает разметчик, разумеется, с точностью, которой позволяют добиться его инструменты. Но, решая такие задачи, он опирается на геометрию.

Не будет преувеличением утверждать, что построение взаимно перпендикулярных прямых и плоскостей наряду с определением расстояния между двумя точками являются основными графическими операциями при решении метрических задач.

Теоретической предпосылкой для построения на эпюре Монжа проекций прямых и плоскостей, перпендикулярных по отношению друг к другу в пространстве, служит отмеченное раньше (см. § 6) свойство

проекции прямого угла, одна из сторон которого параллельна какой-либо плоскости проекции:

1. Взаимно перпендикулярные прямые.

Чтобы можно было воспользоваться отмеченным свойством для построения на эпюре Монжа двух пересекающихся под углом 90° прямых, необходимо, чтобы одна из них была параллельна какой-либо плоскости проекции. Поясним сказанное на примерах.

ПРИМЕР 1. Через точку А провести прямую l, пересекающую горизонталь h под прямым углом (рис. 249).

Так как одна из сторон h прямого угла параллельна плоскости π 1 , то на эту плоскость прямой угол спроецируется без искажения. Поэтому через А" проводим горизонтальную проекцию l" ⊥ h". Отмечаем точку М" = l" ∩ h". Находим М" (М" ∈ h"). Точки А" и М" определяют l" (см. рис. 249, а).

Если вместо горизонтали будет задана фронталь f, то геометрические построения по проведению прямой l ⊥ f аналогичны только что рассмотренным с той лишь разницей, что построения неискаженной проекции прямого угла следует начинать с фронтальной проекции (см. рис. 249, б).

ПРИМЕР 2. Через точку А провести прямую l , пересекающую прямую а, заданную отрезком [ВС], под углом 90° (рис. 250).

Так как данный отрезок занимает произвольное положение по отношению к плоскостям проекций, мы не можем, как в предыдущем примере, воспользоваться свойством о частном случае проецирования прямого угла, поэтому вначале необходимо [ВС] перевести в положение, параллельное какой-либо плоскости проекции.

На рис. 250 [ВС] переведен в положение, параллельное плоскости π 3 . Это сделано с помощью способа замены плоскостей проекции путем замены плоскости π 1 → π 3 || [ВС].

В результате такой замены в новой системе x 1 π 2 /π 3 [ВС] определяет горизонтальную прямую, поэтому все дальнейшие простроения выполнены так же, как это было сделано в предыдущем примере: после того, как была найдена точка М" 1 , ее перевели на исходные плоскости проекции в положение М" и М", эти точки совместно с А" и А" определяют проекции прямой l.

ПРИМЕР 3. Провести горизонтальную проекцию стороны [ВС] прямого угла АВС, если известны его фронтальная проекция ∠A"B"C" и горйзонтапьная проекция стороны [А"В"] (рис. 251).

1. Переводим сторону угла [ВА] в положение || π 3 путем перехода от системы плоскостей проекции хπ 2 /π 1 к новой x 1 π 3 /π 2



2. Определяем новую фронтальную проекцию .

Из В" 1 восставляем перпендикуляр к [В" 1 A" 1 ]. На этом перпендикуляре определяем точку С" 1 (С" 1 удалена от оси x 1 на расстояние |С x 1 С" 1 | = |С x С"|).

4. Горизонтальная проекция С" определяется как точка пересечения прямых (С" 1 С x 1) ∩ (С"С x) = С".

2. Взаимно перпендикулярные прямая и плоскость.

Из курса стереометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна хотя бы к двум пересекающимся прямым, принадлежащим этой плоскости.

Если в плоскости взять не произвольные пересекающиеся прямые, а ее горизонталь и фронталь, то открывается возможность воспользоваться свойством проекции прямого угла, как это было сделано в примере 1, рис. 249.

Рассмотрим следующий пример; пусть из точки A ∈ α требуется восставить перпендикуляр к плоскости α (рис. 252).

Через точку А проводим горизонталь h и фронталь f плоскости α. Тогда, по определению (АВ), перпендикулярная к плоскости α, должна быть перпендикулярна к прямым h и f, т. е. . Но сторона AM ∠ ВАМ || π 1 , поэтому ∠ВАМ проецируется на плоскость π 1 , без искажения, т. е.. Сторона АК ∠ ВАК || π 2 и, следовательно, на плоскость π 2 этот угол проецируется также без искажения, т. е. и . Приведенные рассуждения можно сформулировать в виде следующей теоремы: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы на эпюре горизонтальная проекция прямой была перпендикулярна к горизонтальной проекции горизонтали плоскости, а фронтальная проекция к фронтальной проекции фронтали этой плоскости.

Если плоскость задана следами, то теорема может быть сформулирована иначе: для того чтобы прямая в пространстве была перпендикулярна плоскости, необходимо и достаточно, чтобы проекции этой прямой были перпендикулярны к одноименным следам плоскости.


Установленные теоремой зависимости между прямой в пространстве, перпендикулярной к плоскости, и проекциями этой прямой к проекциям линий уровня (следам) плоскости лежат в основе графического алгоритма решения задачи по проведению прямой, перпендикулярной к плоскости, а также построения плоскости, перпендикулярной к заданной прямой.

ПРИМЕР 1. Восставить в вершине А перпендикуляр AD к плоскости ΔАВС (рис. 253).

Для того чтобы определить направление проекций перпендикуляра, проводим проекции горизонтали h и фронтали f плоскости ΔАВС. После этого из точки А" восставляем перпендикуляр к h", а из А" - к f".

ПРИМЕР 2. Из точки А, принадлежащей плоскости α (m || n), восставить перпендикуляр к этой плоскости (рис. 254).

РЕШЕНИЕ. Для определения направления проекций перпендикуляра l" и l", как и в предыдущем примере, проводим через точку А (А",А") горизонталь h(h", h"), принадлежащую плоскости α. Зная направление h", строим горизонтальную проекцию перпендикуляра l" (l" ⊥ h"). Для определения направления фронтальной проекции перпендикуляра через точку А (А", А") проводим фронталь f (f", f") плоскости α. В силу параллельности f фронтальной плоскости проекции прямой угол между l и f проецируется на π 2 без искажения, поэтому проводим l" ⊥ f".

На рис. 255 эта же задача решена для случая, когда плоскость α задана следами. Для определения направлений проекций перпендикуляра отпадает необходимость в проведении горизонтали и фрон-


тали, так как их функции выполняют следы плоскости h 0α и f 0α . Как видно из чертежа, решение сводится к проведению через точки А" и А" проекций l" ⊥ h 0α и l" ⊥ f 0α .

ПРИМЕР 3. Построить плоскость γ, перпендикулярную к данной прямой l и проходящую через заданную точку А (рис. 256).

РЕШЕНИЕ. Через точку А проводим горизонталь h и фронталь f. Эти две пересекающиеся прямые определяют плоскость; чтобы она была перпендикулярна к прямой l, необходимо, чтобы прямые h и f составляли с прямой l угол 90°. Для этого проводим h" ⊥ l" и f" ⊥ l". Фронтальная проекция h" и горизонтальная проекция f" проводятся параллельно оси x.

Рассмотренный случай позволяет по иному решать задачу, приведенную в примере 3 (с. 175 рис. 251). Сторона [ВС] ∠АВС должна принадлежать плоскости γ ⊥ [АВ] и проходить через точку В (рис. 257).

Это условие и определяет ход решения задачи, который состоит в следующем: заключаем точку В в плоскость γ ⊥ [АВ], для этого через точку В проводим горизонталь и фронталь плоскости γ так, чтобы h" ⊥ A"B" и f" ⊥ A"B".

Точка С ∈ (ВС), принадлежащей плоскости γ, поэтому для нахождения ее горизонтальной проекции проводим через С" произвольную прямую 1"2", принадлежащую плоскости γ; определяем горизонтальную проекцию этой прямой 1"2" и на ней отмечаем точку С" (С" определяется пересечением линии связи - перпендикуляра, опущенного из С", с горизонтальной проекцией прямой 1"2"). С" совместно с В" определяют горизонтальную проекцию (ВС) ⊥ (АВ).

3. Взаимно перпендикулярные плоскости..

Две плоскости перпендикулярны, если одна из них содержит прямую, перпендикулярную к другой плоскости .

Исходя из определения перпендикулярности плоскостей, задачу на построение плоскости β, перпендикулярной к плоскости α, решаем следующим путем: проводим прямую l, перпендикулярную к плоскости α; заключаем прямую l в плоскость β. Плоскость β ⊥ α, так как β ⊃ l ⊥ α.

Через прямую l можно провести множество плоскостей, поэтому задача имеет множество решений. Чтобы конкретизировать ответ, необходимо указать дополнительные условия.

ПРИМЕР 1. Через данную прямую а провести плоскость β, перпендикулярную к плоскости α (рис. 258).

РЕШЕНИЕ. Определяем направление проекций перпендикуляра к плоскости α, для этого находим горизонтальную проекцию горизонтали (h") и фронтальную проекцию фронтали (f") ; из проекций произвольной точки А ∈ α проводим проекции перпендикуляра l" ⊥ h" и l" ⊥ f". Плоскость β ⊥ α, так как β ⊃ l ⊥ α.


ПРИМЕР 2. Через данную точку А провести горизонтально проецирующую плоскость γ, перпендикулярную к плоскости α, заданной следами (рис. 259, а).

Искомая плоскость γ должна содержать прямую, перпендикулярную плоскости α, или быть перпендикулярной к прямой, принадлежащей плоскости α. Так как плоскость γ должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней, должна быть параллельна плоскости π 1 , т. е. являться горизонталью плоскости α или (что то же самое) горизонтальным следом этой плоскости - h 0α Поэтому через горизок тальную проекцию точки А" проводим горизонтальный след h 0γ ⊥ h 0α фронтальный след f 0γ ⊥ оси х.

На рис. 259, б показана фронтально проецирующая плоскость γ, проходящая через точку В и перпендикулярная к плоскости π 2 .

Из чертежа видно, что отличительной особенностью эпюра, на котором заданы две взаимно перпендикулярные плоскости, из которых одна - фронтально проецирующая, является перпендикулярность их фронтальных следов f 0γ ⊥ f 0α , горизонтальный след фронтально проецирующей плоскости перпендикулярен оси х.


Из всех возможных положений прямой, пересекающей плоскость, отметим случай, когда прямая перпендикулярна к плоскости, и рассмотрим свойства проекций такой прямой.

На рис. 185 задана плоскость, определяемая двумя пересекающимися прямыми AN и AM, причем AN является горизонталью, а AM - фронтальна этой плоскости. Прямая АВ, изображенная на том же чертеже, перпендикулярна к АN и к AM и, следовательно, перпендикулярна к определяемой ими плоскости.

Перпендикуляр к плоскости перпендикулярен к любой прямой, проведенной в этой плоскости. Но чтобы при этом проекция перпендикуляра к плоскости общего положения оказалась перпендикулярной к одноименной проекции какой-либо прямой этой плоскости, прямая должна быть горизонталью, или фронталью, или профильной прямой плоскости. Поэтому, желая построить перпендикуляр к плоскости, берут в общем случае две такие прямые (например, горизонталь и фронталь, как это показано на рис. 185).

Итак, у перпендикуляра к плоскости его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, фронтальная проекция перпендикулярна к фронтальной проекции фронтали, профильная проекция перпендикулярна к профильной проекции профильной прямой этой плоскости.

Очевидно, в случае, когда плоскость выражена следами (рис. 186), мы получаем следующий вывод: если прямая перпендикулярна к плоскости, то горизонтальная проекция этой прямой перпендикулярна к горизонтальному следу плоскости, а фронтальная проекция перпендикулярна к фронтальному следу плоскости.

Итак, если в системе π 1 , π 2 горизонтальная проекция прямой перпендикулярна к горизонтальному следу и фронтальная проекция прямой перпендикулярна к фронтальному следу плоскости, то в случае плоскостей общего положения (рис. 186), а также горизонталъно- и фронталъно-проецирующих прямая перпендикулярна к плоскости . Но для профильно-проеци- рующей плоскости может оказаться, что прямая к этой плоскости не перпендикулярна, хотя

проекции прямой соответственно перпендикулярны к горизонтальному и фронтальному следам плоскости. Поэтому в случае профильно-проецйрующей плоскости надо рассмотреть также взаимное положение профильной проекции прямой и профильного следа данной плоскости и лишь после этого установить, будут ли перпендикулярны между собой данные прямая и плоскость,

Очевидно (рис. 187), горизонтальная проекция перпендикуляра к плоскости сливается с горизонтальной проекцией линии ската, проведенной в плоскости через основание перпендикуляра.

На рис. 186 из точки А проведен перпендикуляр к пл. α (А"С"⊥ f" 0α , А"С"⊥h" 0α) и показано построение точки Е, в которой перпендикуляр АС пересекает пл. α. Построение выполнено с помощью горизонтально-проецирующей пл. β, проведенной через перпендикуляр АЕ.

На рис. 188 показано построение перпендикуляра к плоскости, определяемой треугольником АВС. Перпендикуляр проведен через точку А.

Так как фронтальная проекция перпендикуляра к плоскости должна быть перпендикулярна к фронтальной проекции фронтали плоскости, а его горизонтальная проекция перпендикулярна к горизонтальной проекции горизонтали, то в плоскости через точку А проведены фронталь с проекциями A"D" и A"D" и горизонталь А"Е", А"Е", Конечно, эти прямые не обязательно проводить именно через точку А.

Далее проведены проекции перпендикуляра: M"N"⊥A"D", M"N"⊥А"Е". Почему проекции на рис. 188 на участках A"N" и А"М" показаны штриховыми линиями? Потому, что здесь рассматривается плоскость, заданная треугольником АВС, а не только этот треугольник: перпендикуляр находится частично перед плоскостью, частично за ней.


На рис. 189 и 190 показано построение плоскости, проходящей через точку А перпендикулярно к прямой ВС. На рис. 189 плоскость выражена следами. Построение начато с проведения через точку А горизонтали искомой плоскости: так как горизонтальный след плоскости должен быть перпендикулярен к В"С", то и горизонтальная проекция горизонтали должна быть перпендикулярна к В"С". Поэтому A"N"⊥В"С". Проекция A"N"||оси х, как это должно быть у горизонтали. Затем проведен через точку N"(N" - фронтальная проекция фронтального следа горизонтали AN) след f" 0α ⊥В"С", получена точка Х α и проведен след h" 0α ||A"N" (h" 0α ⊥В"С").

На рис. 190 плоскость определена ее фронталью AM и горизонталью AN. Эти прямые перпендикулярны к ВС (А"М"⊥В"С", A"N"⊥В"С"); определяемая ими плоскость перпендикулярна к ВС.

Так как перпендикуляр к плоскости перпендикулярен к каждой прямой, проведенной в этой плоскости, то, научившись проводить плоскость перпендикулярно к прямой, можно воспользоваться этим для проведения перпендикуляра из некоторой точки А к прямой общего положения ВС. Очевидно, можно наметить следую-щий план построения проекций искомой прямой:

1) через точку А провести плоскость (назовем ее γ), перпендикулярную к ВС;

2) определить точку К пересечения прямой ВС с пл. γ;

3) соединить точки А и К отрезком прямой линии.

Прямые АК и ВС взаимно перпендикулярны.

Пример построения дан на рис. 191. Через точку А проведена плоскость (γ), перпендикулярная к ВС. Это сделано при помощи фронтали, фронтальная проекция A"F" которой проведена перпендикулярно к фронтальной проекции В"С", и горизонтали, горизонтальная проекция которой перпендикулярна к В"С".

Затем найдена точка К, в которой прямая ВС пересекает пл. γ. Для этого через прямую ВС проведена горизонтально-проецируюгцая плоскость β (на чертеже она задана только горизонтальным следом (β"). Пл. β пересекает пл. γ по прямой с проекциями 1"2" и 1"2". В пересечении этой прямой с прямой ВС получается точка К. Прямая АК является искомым перпендикуляром к ВС. Действительно, прямая АК пересекает прямую ВС и находится в пл. γ, перпендикулярной к прямой ВС; следовательно, АК⊥ВС.

В § 15 было показано (рис. 92), как можно провести перпендикуляр из точки на прямую. Но там это было выполнено при помощи введения в систему π 1 , π 2 дополнительной плоскости и образования, таким образом, системы π 3 , π 1 , в которой пл. π 3 проводится параллельно заданной прямой. Рекомендуем сравнить построения, данные на рис. 92 и 191.

На рис. 192 изображены плоскость общего положения - α, проходящая через точку А, и перпендикуляр AM к этой плоркости, продолженный до пересечения с пл. π 1 в точке В".

Угол φ 1 между пл. α, и пл.π 1 и угол φ между прямой AM и пл. π 1 являются острыми углами прямоугольного треугольника В"AM", и, следовательно, φ 1 +φ=90°. Аналогично, если пл.α составляет с пл. π 2 угол σ 2 , а прямая AM, перпендикулярная к α, составляет с пл. π 2 угол σ, то σ 2 +σ=90°. Из этого, прежде всего, следует, что плоскость общего положения, которая должна составлять с пл.π 1 угол φ 1 , а с пл. π 2 угол σ 2 , может быть построена, лишь если 180° > φ 1 +σ 2 >90°.

Действительно, складывая почленно φ 1 + φ=90° и σ 2 +σ=90°, получим φ 1 +σ 2 +φ+σ=180°, т. е. φ 1 +σ 2 90°. Если взять φ 1 +σ 2 =90°, то получится профильно-проецирующая плоскость, а если взять φ 1 +σ 2 =180°, то получится профильная плоскость, т.е. в обоих этих случаях плоскость не общего положения, а частного.