Пропускная способность трубы: просто о сложном. Пропускная способность трубопровода

Нужда в классификации газопроводов пришла в нашу жизнь с повсеместным распространением технологий использования газа для нужд населения. Отопление жилых, административных, промышленных зданий, использование газа как в приготовлении пищи, так и в производстве уже давно стала для нас обыденной вещью.

Классификация газопроводов являет собой необходимые меры и правила по систематизации прокладки газовых магистралей. могут различаться как по тому, какое у них назначение, так и по ряду показателей, таких как: давление, материал, из которого он изготовлен, местоположение, объемы транспортируемого газа и другие.

Cодержание статьи

О видах классификации по назначению магистрали

В связи с характерной спецификой их использования, газовые трубы можно классифицировать сразу по нескольким направлениям. После этого для отдельно взятого газопровода можно составить ряд характеристик, определяющих его свойства и конструктивные особенности.

Об этом нам детально могут рассказать специальные таблички-привязки, расположенные вдоль всей трассы газопровода. Они представляют собой таблички-знаки размером 140х200 миллиметров, с шифрованной информацией по газопроводу.

Распространены в зеленом (для стальных вариантов) и желтом (полиэтиленовые трубы) цветовом исполнении. Таблички могут размещаться на стенах зданий, а также на специальных столбиках возле трасс. Эти указатели устанавливают на расстоянии не более 100 метров друг от друга, с соблюдением зоны прямой видимости.

При планировке газовых труб можно выделить: уличные, внутриквартальные, межцеховые и дворовые. На этом характеристика по расположению не заканчивается, ведь прокладка и врезка коммуникаций возможна на земле, под землей и над землей.

В системе газоснабжения газопроводы можно классифицировать по их прямому назначению :

  • распределительные. Это наружные газопроводы, поставляющие газ от источников газа до распределительных пунктов, а кроме того газопроводы среднего и высокого давления, подключенные к одному объекту;
  • газопровод-ввод. Это участок от присоединения к распределительному газопроводу к устройству на вводе, отключающему систему;
  • вводный газопровод. Это промежуток от отключающего устройства до непосредственно внутреннего газопровода;
  • межпоселковый. Такие коммуникации проложены вне населенных пунктов;
  • внутренний. Внутренним газопроводом считают участок который начинается от вводного газопровода до конечного агрегата, использующего газ.

Классификация газопроводов по давлению

Давление в трубе является важнейшим показателем функционирования газопровода. Рассчитав этот показатель, можно определить предел мощности газопровода, его надежность, а также степени риска, возникающие при его эксплуатации.

Газопровод, бесспорно, является потенциально опасным объектом, и потому прокладка или врезка газовых коммуникаций с давлением, превышающим допустимое, несет в себе большие риски для газотранспортной системы и безопасности окружающих людей. Правила надлежащей классификации помогут избежать аварий на взрывоопасном объекте.

Разделяют газопроводы высокого, среднего и низкого давления . Более подробная классификация газопроводов приведена ниже:

  • высокого давления категории I-a. Давление газа в таком газопроводе может превышать 1,2 МПа. Такой вид применяют для подключения к газовой системе паровых и турбинных установок, а также теплоэлектростанций. Диаметр трубы от 1000 до 1200 мм.;
  • высокого давления категории I. Показатель колеблется от 0,6 до 1,2 МПа. Используются для передачи газа в газораспределительные пункты. Диаметр трубы тот же, что и диаметр категории I-a;
  • высокого давления категории II. Показатель от 0,3 до 0,6 МПа. Поставляется в газораспределительные пункты для жилых домов и в промышленные объекты. Диаметр магистрали высокого давления от 500 до 1000 мм.;
  • среднего давления категории III. Показатель может быть в промежутке от 5 КПа до 0,3 МПа. Используются для подведения газа к газораспределительным пунктам по трубам среднего давления, находящимся на жилых зданиях. Диаметр трубы среднего давления от 300 до 500 мм.;
  • низкого давления категории IV. Допустимо давление не превышающее 5 КПа. Такой газовые трубы поставляют носитель непосредственно в жилые дома. Газопроводы низкого давления имеют диаметр трубы не более 300 мм..

Виды газопроводов по глубине заложения

Учитывая фактор городских условий, нагрузки от тяжелого транспорта, влиянию снега и дождя на грунт, глубина заложения коммуникаций в городе и их магистральных вариаций требует рассмотрения их по отдельности.

Правила прокладки газовых магистралей также зависят от вида транспортируемого газа. Трубы, поставляющие осушенные газ, можно закладывать в зону промерзания грунта. Глубина заложения определяется прежде всего вероятностью механических повреждений грунта или дорожного покрытия.

Динамические нагрузки не должны вызывать напряжения в трубах. Вместе с тем, увеличение глубины заложения прямо пропорционально влияет на стоимость ремонтно-строительных дорожных работ, необходимых при закладке труб.

  • на проездах улиц с бетонным или асфальтовым покрытием минимальная глубина заложения допускается не менее 0,8 метра, при отсутствии такого покрытия – прокладка глубиной 0,9 метра;
  • минимальная глубина заложения труб транспортирующих сухой газ принимается в 1,2 метра от поверхности земли;
  • на улицах и внутриквартальных территориях, где гарантированно отсутствует и будет отсутствовать движение транспорта, правила прокладки допускают, что глубина заложения уменьшится до 0,6 метра;
  • глубина заложения подземного газопровода зависит от наличия водяного пара и уровня промерзания грунта. При транспортировке сухого газа обычно прокладка по глубине составляет 0,8 метра.

Укладка газопровода в траншею.mp4 (видео)

Магистральные газопроводы и их охранные зоны

Магистральные газопроводы являются целыми комплексами технических сооружений, основная задача которых – транспортировка газа из места его добычи к распределительным пунктам, а далее к потребителю. В непосредственной близости к городу они переходят в местные. Последние, в свою очередь, служат для распределения газа по городу и доставки в промышленные предприятия.

Проектирование и прокладка магистральных коммуникаций должна учитывать объемы газа, мощность работающего с ним оборудования, давления газа и конечно же правила закладки магистральных газопроводов. Расположение магистрального газопровода возле объекта, который требуется газифицировать, вовсе не означает, что врезка будет применена именно к нему.

Врезка может быть проложена в нескольких километрах от газифицированного участка. Кроме того, врезка должна учитывать практическую возможность обеспечения потребителя с заданной мощностью и давлением в трубе.

Магистральные трубы имеют разную производительность. На неё влияет, прежде всего, топливно-энергетический баланс района, в котором планируется прокладка трубопровода. При этом, необходимо рационально определить годовое количество газа, учитывающее объемы ресурса, на перспективу после начала эксплуатации комплекса.

Обычно параметр производительности характеризует количество поступающего за год газа. В течение года этот показатель будет колебаться в сторону уменьшения, из-за неравномерного использования населением газа по сезонам. К тому же на это влияют еще и изменения в температуре внешней среды.

Охранная зона магистрального газопровода подразумевает участок по обе стороны газопровода, ограниченный двумя параллельными линиями. Охранные зоны для магистральных газовых труб обязательны из-за взрывоопасности таких коммуникаций. И потому должна проводиться с учетом необходимого расстояния.

Для соблюдения нужной протяженности охранных зон, нужно учесть следующие правила:

  • для магистралей высокого давл. I категории – охранная зона составляет 10 м;
  • для труб высокого давл. II категории – охранная зона составляет 7 м;
  • для магистралей среднего давл. – охранная зона составляет 4 м;
  • для труб низкого давл. – охранная зона составляет 2 м.

Во время проектирования трубопровода, выбор размеров труб осуществляется по основанию гидравлического расчета, который определяет внутренний диметр труб для пропуска нужного количества газа при допускаемых потерях давления или, напротив, потери давления при транспортировке нужного количества газа по срубу ранее заданного диаметра. Сопротивление, которое оказывается движению газа в трубопроводе, суммируется из местных сопротивлений и линейных сопротивлений трения: сопротивления трения выполняют свою роль на всей протяженности трубопровода, а местные сопротивления создаются только в пункте изменений направления и скорости движения газа (тройники, углы и т.д.). Подробный гидравлический подсчёт газопроводов выполняется по формулам, которые приведены в CП 42-101-2003, там также учитывается режим движения газа и коэффициенты гидравлического сопротивления газопровода.
***
Так же вы можете использовать Онлайн расчеты , расчёт диаметра газопровода и его размеры. Здесь приводится сокращенный вариант.
***

Для подсчета внутреннего диаметра газопровода можно использовать формулу:

DР= (626AQ0/ρ0 ΔPуд)1/m1

DP – расчетный диаметр. Q0 – расчетный расход газа (м3/ч). ΔРуд – удельные потери давления (ПA/м)

Внутренний диаметр газопровода берется из стандартных внутренних диаметров трубопроводов:: ближайший меньший – для полиэтиленовых газопроводов и ближайший больший – для стальных.

В газопроводах низкого давления, расчётные суммарные потери давления газа принимаются не больше 1.80*10(в третьей степени) ПА, во внутренних газопроводах и газопроводах-вводах – 0,60*10(в третьей степени) ПА.

Для того чтобы рассчитать падение давления нужно определить такой параметр, как число Рейнольдса, которое зависит от характера движения газа. Также нужно определить «λ» -коэффициент гидравлического трения. Число Рейнольдса является безразмерным соотношением, которое отражает – в каком режиме передвигается газ или жидкость: турбулентном и ламинарном.

Существует, так называемое критическое число Рейнольдса, которое равно 2320. Если число Рейнольдса меньше критического значения, то режим является ламинарным, если больше, то турбулентным.

Число Рейнольдса, как критерий перехода с ламинарного режима на турбулентный и обратно актуален для напорных потоков. Если рассматривать переход к безнапорным потоком, то здесь переходная зона между турбулентным и ламинарным режимом возрастает, поэтому использовать число Рейнольдса как критерий, не особо требуется.

Новости по теме:

Натяжные потолки легко комбинируются с различными цветовыми и фактурными вариантами, к тому же они очень легкие. Главной особенностью натяжного потолка является возможность его монтажа по разным наклоном и углом в различных плоскостях. Потолок снабжен бактериальной пленкой, что послужит хорошей защитой от насекомых и позволит монтировать потолок в медицинских и детских учреждениях. Как у любого материала, кроме недостатков есть и небольшие недостатки, тем более данным материал относится к сегменту класса люкс. Итак, минусы: Невозможность демонтирования потолка и установка его снова в том же помещении, так как физические свойства материала не позволяют осуществить такой процесс. Однако как я уже говорил, установка в другом помещении осуществима, но при меньших размерах. Последний...


Сами камины в своей конструкции уже предусматривают вид топлива, который используется для горения. Это может быть жидкое топливо, газ или твердое топливо. Но в большинстве случаев в домах установлены камины на твердом топливе (дрова, каменный уголь, торфобрикет, антрацит). Твердые породы деревьев (береза, дуб, лещина, боярышник, тис, граб, ясень) горят долго, выделяют много теплоэнергии, и дают ровное длинное пламя, но и колоть их трудно. Тополь и все хвойные относятся к мягким породам: прекрасно раскалываются, горят гораздо быстрее. Но их лучше не использовать, так как они смолосодержащие, и эта смола искрит и выделяет при горении вредные для здоровья пары. Наиболее подходящим вариантом будут дрова из дуба, березы, осины либо ольхи. Березовые поленья дают большее количество...


Художественная ковка, представляет собой один метод обработки поверхности металлического типа, что позволяет тем самым создать уникальные изделия, которые сегодня применяются практически во всех областях. В целом можно сказать, что художественный тип ковки, считается достаточно популярным в силу своей нейтральности, потому как он может выглядеть уместно в совершенно разных областях. Одним из основных направлений, где активно используется художественная ковка, является оформление дизайнов интерьеров и приусадебных участков, где как раз красиво будет установить забор кованый. Такой достаточно широкий план использования ковки художественного типа обеспечивается тем, что в силу своей универсальности, она может стать действительно незаменимым элементом. Сейчас любой тип предмета можно...


Выбор обеденного стола – задача непростая и очень ответственная, ведь именно столовая – место, где собирается вся семья. Именно эта комната – воплощение сердца дома. Необходимо подбор предмета интерьера осуществлять с учетом габаритов комнаты таким образом, чтобы он не казался громоздким, при этом не стоит приобретать слишком маленький предмет. Уделить внимание следует ширине, чтобы стол не оказался слишком узким, что не даст возможности аккуратно и удобно сервировать блюда, не должен он быть и слишком широким, что помешает общению. При размещении стола необходимо учитывать, что требуется некоторое место для того, чтобы выдвинуть стул, на что следует зарезервировать минимум метр с каждой стороны. Не только помещению должны соответствовать размеры стола, но и количеству членов семьи. ...


Крайне важно, чтобы в ванной комнате вы чувствовали себя максимально удобно и комфортно. Для этого необходимо правильно подобрать сантехническое оборудование, оформить ванную в соответствии с вашим вкусом. Сегодня мы расскажем, как правильно выбрать такой важный элемент сантехнической зоны, как душевая кабина. Для начала следует определить место - где будет располагаться душевая кабина, замерить расстояние, убедиться, что ничего не помешает открытию дверок, вход будет удобный и свободный. Замерить строительным уровнем ровность пола и стен, чтобы кабина не стояла криво. По материалу рекомендуют выбирать душевые кабины из акрила. Акрил способствует более быстрому нагреванию и более длительному сохранению тепла. Поддон в целях безопасности следует приобретать с рифленой поверхностью, он...

Добавлено: 13.02.2017

Строительство плавательного водоёма всегда сопровождается прокладкой трубопроводов и установкой закладных элементов, таких как, возвратные форсунки, донные заборники, скиммеры... Если диаметр труб будет меньше необходимого, забор и подача воды будут происходить с повышенными потерями на трение, отчего насос будет испытывать нагрузки, способные вывести его из строя. Если трубы проложены диаметром большим необходимого - неоправданно повышаются расходы на строительство водоёма.

Как правильно подобрать диаметр труб?

Как правильно подобрать диаметр труб?

Возвратные форсунки, донные заборники, скиммеры, каждый имеют отверстие для подключения определенного диаметра, что первоначально определяет диаметр труб. Обычно эти подключения - 1 1/2" - 2", к которым подсоединяется труба, диаметром 50 мм. Если несколько закалдных элементов соединяются в одну линию, то общая труба должна быть большего диаметра, чем трубы, подходящие к ней.

На выбор трубы влияет также производительность насоса, которая определяет скорость и количество перекачиваемой воды.

Пропускную способность труб различного диаметра можно определить по следующей таблице:

Пропускная способность труб различного диаметра.

Диаметр, мм Площадь внутр. сечения, мм 2 Пропускная способность в м 3 /час при скорости
Наружный Внутренний 0,5 м/с 0,8 м/с 1,2 м/с 2,0 м/с 2,5 м/с
16 10 79 0,14 0,23 0,34 0,57 0,71
20 15 177 0,32 0,51 0,76 1,27 1,59
25 20 314 0,91 1,36 2,26 2,83
32 25 491 0,88 1,41 2,12 3,54 4,42
40 32 805 1,45 2,32 3,48 5,79 7,24
50 40 1257 2,26 3,62 5,43 9,05 11,31
63 50 1964 3,54 5,66 8,49 14,14 17,68
75 65 3319 5,97 9,56 14,34 23,90 29,87
90 80 5028 9,05 14,48 21,72 36,20 45,25
110 100 7857 14,14 22,63 33,94 56,57 70,71
125 110 9506 17,11 27,38 41,07 68,45 85,56
140 125 12276 22,10 35,35 53,03 88,39 110,48
160 150 17677 31,82 50,91 76,37 127,28 159,09
200 175 24061 43,31 69,29 103,94 173,24 216,54
225 200 31426 56,57 90,51 135,76 226,27 282,83
250 225 39774 71,59 114,55 171,82 286,37 357,96
315 300 70709 127,28 203,64 305,46 509,10 636,38

Для подбора диаметра турбы нам понадобиться знание следующих величин:

Расмотрим технологию подбора труб на конкретных примерах обвязки закладных элементов.

Диаметр трубы для подключения возвратных форсунок.

Например, движение воды в системе обеспечивается насосом , максимальной производительностью 16 м 3 /час. Возврат воды в плавательную чашу осуществляется через 4 возвратные форсунки - (подключение 2" наружная резьба), каждая ввинчена в с соединением D 50/63. Форсунки расположены попарно на противоположных бортах. Подберем необходимый трубопровод.

Скорость воды на подающей магистрали - 2 м/с. Форсунки делятся на две ветви по две штуки. Производительность на каждую форсунку - 4 м 3 /час, на каждую ветвь - 8 м 3 /час. Подберём диаметр общей трубы, трубы на каждую ветвь и турбы на каждую насадку. Если в таблице нет точного совпадения производительности для конкртеной скорости течения, берем ближайшую. По таблице получается:

  • при производительности 16 м 3 /час (в таблице ближайшее значение 14,14 м 3 /час) - диаметр трубы равен 63 мм;
  • при производительности 8 м 3 /час (в таблице ближайшее значение 9,05 м 3 /час) - диаметр турбы равен 50 мм;
  • при производительности 4 м3/час (в таблице ближайшее значение 3,54 м 3 /час) - диаметр трубы равен 32 мм.

Получается, что на общую подачу подходит труба, диаметром 63 мм, на каждую ветвь - диаметром 50 мм, и на каждую насадку - диаметром 32 мм. Но так, как стеновой проход расчитан на подключение 50 и 63 трубы, трубу, диаметром 32 мм не берём, а соединяем всё трубой 50 мм. К тройнику идет 63-я труба, разводка 50-й трубой.

Диаметр труб для подключения скиммеров.

Тот же насос с производительностью 16 м 3 /час забирает воду через скиммеры. в режиме фильтрации забирает обычно от 70 до 90% воды от общего потока, который всасывает насос, остальное приходится на донный слив. В нашем случае 70% производительности - это 11,2 м 3 /час. Подключение скиммер обычно это 1 1/2" или 2". Скорость потока на всасывающей линии насоса - 1.2 м/с.

По таблице получаем:

  • для этого случая достаточно трубы, диаметром 63 мм, но идеально - 75 мм;
  • в случае подключения двух скимеров, разветвление ведём 50-ой трубой.

Диаметр труб для подключения донного заборника.

30% от производительности насоса EcoX2 16000 - это 4,8 м 3 /час. По таблице для подключения донного стока достаточно трубы 50 мм. Обычно при подключении донного стока ориентируются на диаметр его присоединения. Стандартный имеет подсоединение 2", поэтому выбирают трубу 63 мм.

Расчет диаметра трубы.

Формулу для расчета оптимального диаметра трубопровода получим из формулы для расхода:

Q - расход перекачиваемой воды, м 3 /с
d - диаметр трубопровода, м
v - скорость потока, м/с

П- число пи = 3.14

Отсюда, расчетная формула для оптимального диаметра трубопровода:

d=((4*Q)/(П*v)) 1/2

Обратим внимание на то, что в этой формуле расход перекачиваемой воды выражен в м 3 /с. Производительность насосов обычно указывается в м 3 /час. Для того, чтобы перевести м 3 /час в м 3 /с, необходимо значение поделить на 3600.

Q(м 3 /с)=Q(м 3 /час)/3600

В качестве примера расчитаем оптимальный диаметр трубопровода для производительности насоса 16 м 3 /час на подающей магистрали.

Переведем производительность в м 3 /с:

Q(м 3 /с)=16 м 3 /час/3600 = 0,0044 м 3 /с

Скорость потока на подающей магистрали равна 2 м/с.

Подставляя значения в формулу получим:

d=((4*0,0044)/(3,14*2)) 1/2 ≈0,053 (м) = 53 (мм)

Получилось, что в данном случае оптимальный внутренний диаметр трубы будет равен 53 мм. Сравниваем с таблицей: для ближайшей производительности 14.14 м 3 /час при скорости протока 2 м/с подходти труба внутренним диаметром 50 мм.

При подборе труб Вы можете воспользоваться одним из описанных выше способов, мы подтвердили расчетами их равнозначность.

По материалам сайтов: waterspace com, ence-pumps ru

Б.К. Ковалев, заместитель директора по НИОКР

В последнее время все чаще приходится сталкиваться с примерами, когда оформление заказов на промышленное газовое оборудование ведут менеджеры, не имеющие достаточного опыта и технических знаний в отношении предмета закупок. Иногда результатом становится не вполне корректная заявка или принципиально неверный подбор заказываемого оборудования. Одной из наиболее распространенных ошибок является выбор номинальных сечений входного и выходного трубопроводов газораспределительной станции, сориентированный только на номинальные значения давления газа в трубопроводе без учета скорости потока газа. Цель данной статьи – выдача рекомендаций по определению пропускной способности трубопроводов ГРС, позволяющих при выборе типоразмера газораспределительной станции проводить предварительную оценку ее производительности для конкретных значений рабочих давлений и номинальных диаметров входного и выходного трубопроводов.

При выборе необходимых типоразмеров оборудования ГРС одним из основных критериев является производительность, которая в значительной мере зависит от пропускной способности входного и выходного трубопроводов.

Пропускная способность трубопроводов газораспределительной станции рассчитывается с учетом требований нормативных документов, ограничивающих максимально допустимую скорость потока газа в трубопроводе величиной 25м/с. В свою очередь, скорость потока газа зависит главным образом от давления газа и площади сечения трубопровода, а также от сжимаемости газа и его температуры.

Пропускную способность трубопровода можно рассчитать из классической формулы скорости движения газа в газопроводе (Справочник по проектированию магистральных газопроводов под редакцией А.К. Дерцакяна, 1977):

где W - скорость движения газа в газопроводе, м/сек;
Q - расход газа через данное сечение (при 20°С и 760 мм рт. ст.), м 3 /ч;
z - коэффициент сжимаемости (для идеального газа z = 1);
T = (273 + t °C) - температура газа, °К;
D - внутренний диаметр трубопровода, см;
p = (Pраб + 1,033) - абсолютное давление газа, кгс/см 2 (атм);
В системе СИ (1 кгс/см 2 = 0,098 МПа; 1 мм = 0,1 см) указанная формула примет следующий вид:

где D - внутренний диаметр трубопровода, мм;
p = (Pраб + 0,1012) - абсолютное давление газа, МПа.
Отсюда следует, что пропускная способность трубопровода Qmax, соответствующая максимальной скорости потока газа w = 25м/сек, определяется по формуле:

Для предварительных расчетов можно принять z = 1; T = 20?С = 293 ?К и с достаточной степенью достоверности вести вычисления по упрощенной формуле:

Значения пропускной способности трубопроводов с наиболее распространенными в ГРС условными диаметрами при различных величинах давления газа приведены в таблице 1.

Рраб.(МПа) Пропускная способность трубопровода (м?/ч),
при wгаза=25 м/с; z = 1; T= 20?С = 293?К
DN 50 DN 80 DN 100 DN 150 DN 200 DN 300 DN 400 DN 500

Примечание: для предварительной оценки пропускной способности трубопроводов, внутренние диаметры труб приняты равными их условным величинам (DN 50; 80; 100; 150; 200; 300; 400; 500).

Примеры пользования таблицей:

1. Определить пропускную способность ГРС с DNвх=100мм, DNвых=150мм, при PNвх=2,5 – 5,5 МПа и PNвых=1,2 МПа.

Из таблицы 1 находим, что пропускная способность выходного трубопровода DN=150мм при PN=1,2 МПа составит 19595 м 3 /ч, в то же время входной трубопровод DN=100мм при PN=5,5 МПа сможет пропустить 37520 м 3 /ч, а при PN=2,5 МПа - только 17420 м 3 /ч. Таким образом, данная ГРС при PNвх=2,5 – 5,5 МПа и PNвых=1,2 МПа сможет максимально пропустить от 17420 до 19595 м 3 /ч. Примечание: более точные значения Qmax можно получить из формулы (3).

2. Определить диаметр выходного трубопровода ГРС, производительностью 5000 м 3 /ч при Pвх=3,5 МПа для выходных давлений Pвых1=1,2 МПа и Pвых2=0,3 МПа.

Из таблицы 1 находим, что пропускную способность 5000м 3 /час при Pвых=1,2 МПа обеспечит трубопровод DN=80мм, а при Pвых=0,3 МПа - только DN=150мм. При этом на входе ГРС достаточно иметь трубопровод DN=50мм.

ГАЗОВЫЕ СЕТИ

Современные распределительные системы снабжения природным газом представляют собой сложный комплекс сооружений, состоящий из газораспределительных станций, газовых сетей различного назначения, газорегуляторных пунктов и установок, систем резервирования и установок для сжигания газа. Каждый из элементов системы газоснабжения имеет свои задачи и особенности.

3.1. Расчётные расходы газа

Для проектирования системы газоснабжения населённого пункта необходимы данные о годовом потреблении природного газа. Это определяется по нормам с учётом перспективы развития потребителей.

Поскольку система газоснабжения имеет высокую стоимость и большую металлоёмкость серьёзное внимание должно быть уделено обоснованию расчётных расходов газа. Эти расходы используются для выбора диаметров газопроводов.

Газовые сети необходимо рассчитывать на максимальные часовые расходы. Расчётный часовой расход газа Q р.ч , м 3 /ч на хозяйственно-бытовые нужды определяется как доля годового расхода по формуле:

где К тах - коэффициент часового максимума (переход от Q год к максимальному часовому расходу газа).

Расчётный часовой расход газа на технологические нужды промышленных и сельхозпредприятий следует определять по данным топливопотребления этих предприятий (с учётом изменения КПД при переходе на газовое топливо). Коэффициент К max , представляет собой величину, обратную числу часов в год использования минимума (К т ax = 1/m ). Величина К т ax для промышленных предприятий зависит от вида производства, технологического процесса и числа рабочих смен в сутки.

Для отдельных жилых домов и общественных зданий Q р.ч определяется по сумме номинальных расходов газа газовыми приборами с учётом коэффициента одновременности их действия.

(3.2)

где К 0 - коэффициент одновременности; q ном - номинальный расход газа прибором, м 3 /ч; п - число однотипных приборов; х - число типов приборов.

3.2. Расчёт диаметра газопровода и допустимых потерь давления

Пропускная способность газопроводов может приниматься из условий создания при максимально допустимых потерях давления газа наиболее экономичной и надежной в эксплуа­тации системы, обеспечивающей устойчивость работы ГРП и газорегуляторных установок (ГРУ), а также работы горелок потребителей в допустимых диапазонах давления газа.

Расчетные внутренние диаметры газопро­водов определяются исходя из условия обеспече­ния бесперебойного газоснабжения всех потре­бителей в часы максимального потребления газа.

Расчет диаметра газопровода следует выполнять, как правило, на компьютере с оп­тимальным распределением расчетной потери давления между участками сети.

При невозможности или нецелесообразно­сти выполнения расчета на компьютере (отсут­ствие соответствующей программы, отдельные участки газопроводов и т.п.) гидравлический расчет допускается производить по приведен­ным ниже формулам или по номограммам (СП-42-101-2003) составленным по этим формулам.

Расчетные потери давления в газопро­водах высокого и среднего давления принима­ются в пределах категории давления, принятой для газопровода.

Расчетные суммарные потери давления газа в газопроводах низкого давления (от ис­точника газоснабжения до наиболее удаленно­го прибора) принимаются не более 180 МПа, в том числе в распределительных газопроводах 120 МПа, в газопроводах-вводах и внутренних газопроводах - 60 МПа.

Значения расчетной потери давления газа при проектировании газопроводов всех давлений для промышленных, сельскохозяй­ственных и бытовых предприятий и организа­ций коммунально-бытового обслуживания при­нимаются в зависимости от давления газа в месте подключения с учетом технических ха­рактеристик принимаемого к установке газо­вого оборудования, устройств автоматики бе­зопасности и автоматики регулирования техно­логического режима тепловых агрегатов.

Падение давления на участке газовой сети можно определять:

· для сетей среднего и высокого давлений по формуле

(3.3)

где P H - абсолютное давление в начале газопровода, МПа; Р K - абсолютное давление в конце газо­провода, МПа; Р 0 = 0,101325 МПа; λ - коэффициент гидравлического тре­ния; l - расчетная длина газопровода посто­янного диаметра, м; d - внутренний диаметр газопровода, см; ρ 0 - плотность газа при нормальных ус­ловиях, кг/м 3 ; Q 0 - расход газа, м 3 /ч, при нормальных условиях;

· для сетей низкого давления по формуле

(3.4)

где Р H - давление в начале газопровода, Па; Р K - давление в конце газопровода, λ, l, d, ρ 0 , Q 0 - обозначения те же, что и в предыдущей формуле.

Коэффициент гидравлического трения λ определяется в зависимости от режима дви­жения газа по газопроводу, характеризуемого числом Рейнольдса,

(3.5)

где ν - коэффициент кинематической вяз­кости газа, м 2 /с, при нормальных условиях; Q 0 , d - обозначения те же, что и в предыдущей форму­ле, и гидравлической гладкости внутренней стенки газопровода, определяемой по условию

где Rе - число Рейнольдса; п - эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, принимаемая равной для новых стальных - 0,01 см, для бывших в эксплуатации стальных - 0,1 см, для полиэтиленовых неза­висимо от времени эксплуатации - 0,0007 см; d - обозначение то же, что и в предыдущей формуле.

В зависимости от значения Rе коэффици­ент гидравлического трения λ определяется:

· для ламинарного режима движения газа Rе < 2000

· для критического режима движения газа Rе = 2000-4000

(3.8)

· при Rе > 4000 - в зависимости от выпол­нения условия (3.6);

· для гидравлически гладкой стенки (нера­венство (3.6) справедливо):

· при 4000 < Rе < 100000 по формуле

· при Rе > 100000

(3.10)

· для шероховатых стенок (неравенство (6) несправедливо) при Rе > 4000

(3.11)

где п - обозначение то же, что и в форму­ле (3.6);d - обозначение то же, что и в форму­ле (3.4).

Расчетный расход газа на участках распределительных наружных газопроводов низкого давления, имеющих путевые расходы газа, следует определять как сумму транзит­ного и 0,5 путевого расходов газа на данном участке.

Падение давления в местных сопротив­лениях (колена, тройники, запорная арматура и др.) допускается учитывать путем увеличения фактической длины газопровода на 5-10 %.

Для наружных надземных и внутрен­них газопроводов расчетную длину газопрово­дов определяют по формуле



(3.12)

где l - действительная длина газопровода, м; - сумма коэффициентов местных со­противлений участка газопровода; d - обозначение то же, что и в форму­ле (3.4);λ - коэффициент гидравлического трения, определяемый в зависимости от режима течения и гидравлической гладкости стенок газопровода по формулам (3.7) - (3.11).

Расчет кольцевых сетей газопроводов следует выполнять с увязкой давлений газа в узловых точках расчетных колец. Неувязка по­терь давления в кольце допускается до 10 % .

При выполнении гидравлического рас­чета надземных и внутренних газопроводов с учетом степени шума, создаваемого движением газа, следует принимать скорости движения газа не более 7 м/с для газопроводов низкого давления, 15 м/с для газопроводов среднего давления, 25 м/с для газопроводов высокого давления.

При выполнении гидравлического рас­чета газопроводов, проведенного по формулам (3.5)-(3.12), а также по различным методикам и программам для электронно-вычислительных машин, составленным на основе этих формул, расчетный внутренний диаметр газопровода следует предварительно определять по форму­ле

(3.13)

где d - расчетный диаметр, см; А, В, т, т 1 - коэффициенты, определяемые потаблицам 3.1 и 3.2 в зависимости от ка­тегории сети (по давлению) и мате­риала газопровода; Q 0 - расчетный расход газа, м 3 /ч, при

нормальных условиях; ΔР УД - удельные потери давления (Па/м - для сетей низкого давления, МПа/м - для сетей среднего и высокого давле­ния), определяемые по формуле

Допустимые потери давления (Па - для сетей низкого давления, МПа/м - для сетей среднего и высокого дав­ления); L - расстояние до самой удаленной точ­ки, м.

Таблица 3.1

Таблица 3.2

Внутренний диаметр газопровода при­нимается из стандартного ряда внутренних диа­метров трубопроводов: ближайший больший - для стальных газопроводов и ближайший мень­ший - для полиэтиленовых.

3.3. Расчёт газовых сетей высокого и среднего давления.

3.3.1. Расчёт разветвлённых распределительных газопроводов высокого и среднего давления

Гидравлические режимы работы распределительных газопроводов должны приниматься из условий создания системы, обеспечивающей устойчивость работы всех ГРС, ГРП, горелок в допустимых пределах давления газа.

Расчёт газопроводов сводится к определению необходимых диаметров и к проверке заданных перепадов давления.

Порядок расчёта может быть следующим.

1 . Начальное давление определяется режимом работы ГРС или ГРП, а конечное давление паспортными характеристиками газовых приборов потребителей.

2. Выбирают наиболее удалённые точки разветвлённых газопроводов и определяют общую длину l 1 по выбранным

основным направлениям. Каждое направление рассчитывается отдельно.

3. Определяют расчётные расходы газа для каждого участка газопровода Q p .

4. По значениям Q p расчётом или по номограммам СП 42-101-2003 выбирают предварительно диаметры участков, округляя их в большую сторону.

5. Для выбранных стандартных диаметров находят действительные значения перепада давления и затем уточняют P K .

6. Определяют давления, начиная с начала газопровода, т.к. начальное давление ГРС или ГРП известно. Если давление Р K действительное значительно больше заданного (более 10 %), то уменьшают диаметры конечных участков основного направления.

7. После определения давлений по данному основному направлению проводят гидравлический расчёт газопроводов-отводов по той же методике, начиная со второго пункта. При этом за начальное давление принимают давление в точке отбора.

3.3.2. Расчёт кольцевых газовых сетей высокого и среднего давления

Все городские сети рассчитывают на заданный перепад давления. Расчётный перепад для сети высокого (среднего) давления определяют из следующих соображений. Начальное давление (Р н) принимают максимальным по СНиП, а конечное давление (Р к) таким, чтобы при максимальной нагрузке сети было обеспечено минимальное допустимое давление газ перед регуляторами на ГРП. Величина этого давления складывается из максимального давления газа перед горелками, перепада давлений в абонентском ответвление при максимальной нагрузке и перепада в ГРП. В большинстве случаев перед регуляторами давления достаточно иметь избыточное давление 0,15÷0,20 МПа.

При расчёте кольцевых сетей необходимо оставлять резерв давления для увеличения пропускной способности системы при аварийных гидравлических режимах. Стопроцентное обеспечение потребителей газом при отказах элементов системы связано с дополнительными капитальными вложениями.

Максимального эффекта можно добиться при следующей постановке задачи. Ввиду кратковременности аварийных ситуаций следует допускать снижение качества системы при отказах её элементов. Снижение качества оценивают коэффициентом обеспеченности К об, который зависит от категории потребителей. Объемный расход газа, подаваемого потребителю при аварийном режиме определится из соотношения

где. - расчетный расход газа потребителя, м 3 /ч.

Коэффициент обеспеченности для коммунально-бытовых потребителей можно принять 0,80÷0,85, для отопительных котельных 0,70÷ 0,75. После обоснования К об для всех потребителей определяют необходимый резерв пропускной способности сети.

Сети высокого (среднего) давления обычно состоят из одного кольца и ряда отводов к газорегуляторным пунктам. Расчёт ведут на три режима: нормальный и два аварийных, когда выключается головные участки по обе стороны от точки питания, а движение газа идёт в одном направлении при уменьшенных нагрузках. Диаметры сети принимаются максимальными из двух аварийных режимов.

Порядок расчёта одно кольцевой сети следующий.

1. Производится предварительный расчёт диаметра кольца по формулам раздела 3.2.

2. Выполняется два варианта гидравлического расчёта аварийных режимов. Диаметры участков корректируются так, чтобы давление газа у последнего потребителя на понижалось ниже минимально допустимого значения. Для всех ответвлений рассчитывают диаметры газопроводов на полное использование перепада давления с подачей им газа.

3. Рассчитывают распределение потоков при нормальном режиме и определяют давление во всех узловых точках.

4. Проверяются диаметры ответвлений к сосредоточенным потребителям при аварийном гидравлическом режиме. При недостаточности диаметров увеличивают их до необходимых размеров.

3.4. Расчёт газовых сетей низкого давления

3.4.1. Расчёт разветвлённых распределительных газопроводов низкого давления

К городским сетям низкого давления потребителей присоединяют, как правило, непосредственно. Колебания давления газа у потребителей зависят от величины расчётного перепада (∆ ) давления и степени его использования на пути движения газа от точки питания до газового прибора. В зависимости от принятых давлений газа перед бытовыми газовыми приборами устанавливаются максимальные давления газа в распределительных газопроводах после ГРП: 0,003 МПа при номинальном давлении (∆ ) приборов 0,002 МПа и 0,002 МПа при номинальном давлении у приборов 0,0013 МПа.

При расчётах газопроводов целесообразно использовать номограммы, построенные по расчётным формулам (см. приложение Б СП 42-101-2003).

Типовой порядок расчёта газовой сети.

1. Начальное и конечное давление принимают по режиму работы ГРП и по характеристикам газовых приборов.

2. Падение давления в газопроводах низкого давления следует определять в зависимости от Re.

3. Определяют расчётные расходы газа по участкам Q p ., i ,.

4. Выбирают наиболее удалённые точки системы и рассчитывают , для каждого направления.

5. Проводится гидравлический расчёт газопроводов с определением диаметра и перепада давлений согласно формул раздела 3.1.2.

С учётом степени шума, создаваемого движением газа в газопроводах низкого давления, скорости движения газа следует принимать не более 7 м/с.

где - действительная длина газопровода, м; МС - расчётная длина участка местных сопротивлений; - сумма коэффициентов местных сопротивлений участка газопровода длиной l , м.

7. По номограммам приложения Б СП 42-101-2003 определяют фактические величины перепадов давлений для каждого участка.

8. Определяют суммарные потери давления по всему направлению

и сравнивают их с заданными.

При отклонении от принятой величины более 10 % изменяют диаметр газопроводов, начиная с конечных участков основных направлений.

3.4.2. Расчёт кольцевых газовых сетей низкого давления

Порядок проведения расчётов сети.

1. Выбирают основные направления потоков газа, определяют наиболее удаленные концевые точки.

2. Определяют сосредоточенные и удельные путевые расходы газа для всех контуров газовой сети.

3. Определяют путевые, транзитные и расчётные расходы газа по участкам.

4. Исходя из заданного перепада давления в сети для основных направлений оценивают величины ∆P