Разница между диэлектриками и проводниками.

Известно, что в веществе, помещенном в электрическое поле, при воздействии сил данного поля образуется движение свободных электронов, либо ионов по направлению сил поля. Другими словами, в веществе происходит возникновение электрического тока.

Свойство, определяющее способность вещества проводить электрический ток имеет название «электропроводность». Электропроводность напрямую зависима от концентрации заряженных частиц: чем выше концентрация, тем она электропроводность.

По данному свойству все вещества подразделяются на 3 типа:

  1. Проводники.
  2. Полупроводники.

Описание проводников

Проводники обладают наивысшей электропроводностью из всех типов веществ. Все проводники подразделяются на две большие подгруппы:

  • Металлы (медь, алюминий, серебро) и их сплавы.
  • Электролиты (водный раствор соли, кислоты).

В веществах первой подгруппы перемещаться способны только электроны, поскольку их связь с ядрами атомов слабая, в связи с чем, они достаточно просто от них отсоединяются. Так как в металлах возникновение тока связано с передвижением свободных электронов, то тип электропроводности в них называется электронным.

Из проводников первой подгруппы используют в обмотках электромашин, линиях электропередач, проводах. Важно отметить, что на электропроводность металлов оказывает влияние его чистота и отсутствие примесей.

В веществах второй подгруппы при воздействии раствора происходит распадение молекулы на положительный и отрицательный ион. Ионы перемещаются вследствие воздействия электрического поля. Затем, когда ток проходит через электролит, происходит осаждение ионов на электроде, который опускается в данный электролит. Процесс, когда из электролита под воздействием электрического тока выделяется вещество, получил название электролиз. Процесс электролиза принято применять, к примеру, когда добывается цветной металл из раствора его соединения, либо при покрытии металла защитным слоем иных металлов.

Описание диэлектриков

Диэлектрики также принято называть электроизоляционными веществами.

Все электроизоляционные вещества имеют следующую классификацию:

  • В зависимости от агрегатного состояния диэлектрики могут быть жидкими, твердыми и газообразными.
  • В зависимости от способы получения — естественными и синтетическими.
  • В зависимости от химического состава – органическими и неорганическими.
  • В зависимости от строения молекул – нейтральными и полярными.

К ним относятся газ (воздух, азот, элегаз), минеральное масло, любое резиновое и керамическое вещество. Данные вещества характеризуются способностью к поляризации в электрическом поле . Поляризация представляет собой образование на поверхности вещества зарядов с разными знаками.

В диэлектриках содержится малое количество свободных электронов, при этом электроны имеют сильную связь с ядрами атомов и только в редких случаях отсоединяются от них. Это означает, что данные вещества не обладают способностью проводить ток.

Данное свойство весьма полезно в сфере производства средств, используемых при защите от электрического тока: диэлектрические перчатки, коврики, ботинки, изоляторы на электрическое оборудование и т.п.

О полупроводниках

Полупроводник выступает в роли промежуточного вещества между проводником и диэлектриком . Самыми яркими представителями данного типа веществ являются кремний, германий, селен. Помимо этого, к данным веществам принято относить элементы четвертой группы периодической таблицы Дмитрия Ивановича Менделеева.

Полупроводники имеют дополнительную «дырочную» проводимость, в дополнение к электронной проводимости. Данный тип проводимости зависим от ряда факторов внешней среды, среди которых свет, температура, электрическое и магнитное поле.

В данных веществах имеются непрочные ковалентные связи. При воздействии одного из внешних факторов связь разрушается, после чего происходит образование свободных электронов. При этом, когда электрон отсоединяется, в составе ковалентной связи остается свободная «дырка». Свободные «дырки» притягивают соседние электроны, и так данное действие может производиться бесконечно.

Увеличить проводимость полупроводниковых веществ можно путем внесения в них различных примесей. Данный прием широко распространен в промышленной электронике: в диодах, транзисторах, тиристорах. Рассмотрим более подробно главные отличия проводников от полупроводников.

Чем отличается проводник от полупроводника?

Основным отличием проводника от полупроводника является способность к проводимости электрического тока. У проводника она на порядок выше.

Когда поднимается значение температуры, проводимость полупроводников также возрастает; проводимость проводников при повышении становится меньше.

В чистых проводниках в нормальных условиях при прохождении тока высвобождается гораздо большее количество электронов, нежели в полупроводниках. При этом, добавление примесей снижает проводимость проводников, но увеличивает проводимость полупроводников.

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

В электронных приборах используются самые разные материалы. Основными элементами, применяемыми для этих устройств, является проводниковая и полупроводниковая продукция. Для более эффективного их использования, необходимо точно знать, чем отличаются проводники от полупроводников. Свойства каждого элемента, применяемые в комплексе, позволяют создавать приборы, обладающие уникальными качествами и характеристиками.

Свойства проводников и полупроводников

Очень многие вещества способны проводить электрический ток. Они могут находиться в твердом, жидком или газообразном состоянии. Основными проводниками, применяемыми в электротехнике, являются различные виды металлов или их сплавов. Они отличаются высокими качествами проводимости и электрическим сопротивлением, характерным для каждого материала.

В электротехнике металлы применяются в качестве проводников, конструкционных и контактных материалов, а также для спаивания между собой любых видов проводников. Основным свойством проводников является наличие в них свободных электронов, обеспечивающих прохождение электрического тока.

К категории полупроводников относятся вещества, занимающие промежуточное место между . Эти границы достаточно условны, поскольку под влиянием различных факторов, полупроводники могут иметь свойства и проводников и изоляторов. Например, под влиянием низких температур, они становятся диэлектриками, а при повышении температуры, в них начинают появляться свободные носители зарядов. Это связано с тем, что при росте температуры, возрастают и колебания кристаллической решетки, разрывая определенные валентные связи и образуя свободные электроны, проводящие электрический ток.

Проводники и полупроводники: основные отличия

Для того, чтобы правильно использовать те или иные материалы в электронике и электротехнике, необходимо, прежде всего, знать, чем отличаются проводники от полупроводников. В проводниках всегда имеются свободные электроны, от которых зависит движение тока. В полупроводниках образование свободных электронов происходит только при наличии определенных условий. Это дает возможность технологического управления свободными носителями полупроводника.

Одним из основных отличий является более высокая проводимость проводников в сравнении с полупроводниками. Кроме того, если при повышении температуры проводимость полупроводника резко возрастает, то в проводнике, наоборот, происходит уменьшение этого показателя с одновременным ростом электрического сопротивления. Наличие примесей также оказывает неодинаковое действие: в проводниках они снижают проводимость, а в полупроводниках она повышается. Все эти свойства рационально используются в электронных приборах, позволяя добиваться их максимальной эффективности.

Твёрдые тела — это металлы, полупроводники и диэлектрики. Они отличаются друг от друга по своим электронным свойствам. Электропроводность твёрдых тел определяется свойствами электронов.

Определение

Полупроводники относятся к металлам, к твердым телам. К их числу принадлежат германий, кремний, мышьяк и др., а также различные сплавы и химические соединения.

Металлы — это твердые тела, которые имеют определенную структуру.

Сравнение

Рассмотрим, как возникает электрический ток в полупроводниках. У атомов германия на внешней оболочке находятся четыре слабо связанных валентных электрона. В кристаллической решетке около каждого атома находятся еще четыре. Атомы в кристалле полупроводника связаны парами валентных электронов. Каждый валентный электрон принадлежит двум атомам. Если происходит повышение температуры, какая-то часть валентных электронов получит энергию, которая достаточна для разрыва ковалентных связей. В кристалле появятся свободные электроны, называемые электронами проводимости. Одновременно на месте ушедших электронов образуются вакансии, дырки. Вакантное место могут занять валентные электроны соседней пары, тогда дырка будет на новом месте в кристалле. При определенной температуре в полупроводнике существует определенное количество электронно-дырочных пар. Свободный электрон, встречаясь с дыркой, восстанавливает электронную связь. Дырки похожи на положительно заряженные частицы. Если электрического поля нет, дырки и электроны проводимости движутся хаотично. Если полупроводник поместим в электрическое поле, то дырки и свободные электроны начнут двигаться упорядоченно. Поэтому ток в полупроводнике складывается из электронного и дырочного токов. Количество носителей свободного заряда меняется, не остается постоянным и зависит от температуры. При ее увеличении сопротивление полупроводников возрастает.

Металлы имеют кристаллическую структуру. Они состоят из молекул и атомов, которые занимают определённое, упорядоченное положение. Металл представляется в виде кристаллической решетки, в узлах которой находятся атомы, или ионы, или молекулы, которые колеблются около своего местоположения. Между ними в пространстве находятся свободные электроны, которые хаотично движутся в разных направлениях. Но при появлении электрического поля они начинают двигаться упорядоченно в сторону положительного полюса, в металлах появляется электрический ток. Количество электронов постоянное. При понижении температуры скорость движения электронов замедляется, сопротивление металлов падает.

Выводы сайт

  1. Полупроводники отличаются от металлов механизмом электрического тока.
  2. Электрический ток в металлах — это направленное движение электронов.
  3. У чистых полупроводников электронно-дырочный механизм проводимости.
  4. Удельное сопротивление полупроводников и металлов зависит от температуры по-разному.

Кикоин А.К. Диэлектрики, полупроводники, полуметаллы, металлы //Квант. - 1984. - № 2. - С. 25-29.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

В классической физике было принято все вещества по их электрическим свойствам разделять на проводники и диэлектрики («Физика 9», §§44 и 46). Современная физика различает еще два промежуточных состояния - полупроводники («Физика 9», § 78) и полуметаллы. Лишь с появлением квантовой механики стало ясно, в чем различия между всеми этими типами веществ. В этой заметке мы постараемся вкратце описать суть современной квантово-механической теории, объясняющей электрические свойства твердых тел.

Твердое тело состоит из атомов, образующих кристаллическую решетку. Атомы удерживаются в решетке силами взаимодействия электрически заряженных атомных частиц - положительно заряженных ядер и отрицательно заряженных электронов. Электрический ток в кристалле - это движение электронов, которое подчиняется законам квантовой механики. Согласно этим законам, электроны и в отдельном атоме, и в кристалле могут обладать лишь определенными (разрешенными) значениями энергии, или, иными словами, находиться на определенных энергетических уровнях . Чем выше уровень, тем большей энергии он соответствует.

В атоме эти уровни расположены довольно далеко один от другого - принято говорить, что уровни образуют дискретный энергетический спектр (рис. 1). При определенных условиях электроны могут переходить с одного уровня на другой, разрешенный, уровень. Электрон с данной энергией может двигаться только по замкнутой траектории - орбите - вокруг ядра .

Когда атомы объединяются в кристалл, часть электронов по-прежнему остается на своих атомных орбитах, но наиболее удаленные от ядра электроны получают возможность двигаться по всему кристаллу благодаря тому, что внешние орбиты соседних атомов перекрываются. А это значит, что и энергетические уровни, раньше принадлежавшие отдельным атомам, становятся «общими» для всего кристалла. Вместо дискретных уровней в кристалле образуются энергетические зоны , состоящие из очень близко расположенных уровней. Электроны, которые находятся на этих «обобществленных» уровнях, называются валентными электронами .

Валентные электроны движутся по орбитам, охватывающим весь кристалл, и, казалось бы, могут проводить электрический ток. Однако если бы все было так просто, все твердые тела были бы хорошими проводниками (металлами). Законы квантовой механики делают картину гораздо более сложной и разнообразной.

Во-первых, энергетические зоны разделены промежутками, в которых нет ни одного энергетического уровня. Эти промежутки называются запрещенными зонами . Во-вторых, электроны подчиняются так называемому принципу Паули, согласно которому на каждом уровне в данном состоянии может находиться только один электрон. При наинизшей возможной температуре (равной абсолютному нулю) энергетические уровни последовательно снизу вверх (то есть начиная с наименьших значений энергии) заполняются электронами в соответствии с принципом Паули, а уровни с более высокими энергиями остаются свободными. Различная степень заполнения энергетических зон, а также различия в их относительном расположении и позволяют разделить все твердые тела на диэлектрики, полупроводчики, полуметаллы и металлы.

Диэлектрики.

При T = 0 валентные электроны целиком заполняют наинизшую зону, называемую валентной зоной (рис. 2). Свободных уровней в ней нет, а следующая разрешенная зона - зона проводимости - отделена от нее широкой запрещенной зоной. Если к такому образцу приложить электрическое поле, оно не сможет ускорить электроны, то есть создать электрический ток, так как ускорить электрон - значит сообщить ему дополнительную энергию, а, согласно законам квантовой механики, это можно сделать, только переведя его на более высокий энергетический уровень. Но принцип Паули запрещает электронам занимать уже занятые уровни, а попасть в следующую разрешенную зону, которая совершенно пуста, они не могут, потому что энергия, полученная от электрического поля, много меньше ширины Δ запрещенной зоны.

При температуре, отличной от нуля, электроны, в принципе, могут перейти в зону проводимости и стать носителями электрического тока. Однако для того чтобы число электронов, перешедших в эту зону, было достаточно большим, нужно диэлектрик нагреть до такой высокой температуры, что он расплавится, прежде чем ток достигнет измеримой величины. При комнатной температуре ток в диэлектрике практически не течет.

Полупроводники.

От диэлектрика полупроводник отличается только тем, что ширина Δ запрещенной зоны, отделяющей валентную зону от зоны проводимости, у него много меньше (в десятки раз). При T = 0 валентная зона в полупроводнике, как и в диэлектрике, целиком заполнена, и ток по образцу течь не может. Но благодаря тому, что энергия Δ невелика, уже при незначительном повышении температуры часть электронов может перейти в зону проводимости (рис. 3). Тогда электрический ток в веществе станет возможным, причем сразу по двум «каналам».

Во-первых, в зоне проводимости электроны, приобретая энергию в электрическом поле, переходят на более высокие энергетические уровни. Во-вторых, вклад в электрический ток дают... пустые уровни, оставленные в валентной зоне электронами, ушедшими в зону проводимости. Действительно, принцип Паули разрешает любому электрону занять освободившийся уровень в валентной зоне. Но, заняв этот уровень, он оставляет свободным свой собственный уровень и т. д. Если следить не за движением электронов по уровням в валентной зоне, а за движением самих пустых уровней, то оказывается, что эти уровни, имеющие научное название дырки , тоже становятся носителями тока. Число дырок, очевидно, равно числу электронов, ушедших в зону проводимости (так называемых электронов проводимости ), но дырки обладают положительным зарядом, потому что дырка - это отсутствующий электрон.

Таким образом, в полупроводнике электрический ток - это ток электронов в зоне проводимости и дырок в валентной зоне. Такая проводимость полупроводника называется собственной .

Электроны и дырки при движении по кристаллу взаимодействуют с атомами кристаллической решетки, теряя при этом свою энергию. С этими потерями связано электрическое сопротивление вещества. При увеличении температуры потери энергии возрастают, так что сопротивление полупроводника должно было бы с ростом температуры тоже увеличиваться. Но при повышении температуры растет число электронов , переходящих в зону проводимости, а следовательно, и число дырок r валентной зоне. Это значит, что растет (и очень быстро) общее число носителей тока. Из-за этого сопротивление полупроводника с повышением температуры не растет, а падает. Полупроводник и можно определить как вещество, практически не проводящее ток при абсолютном нуле температур, но сопротивление которого с ростом температуры резко падает .

В природе, однако, полупроводников с собственной проводимостью не существует: в них всегда имеются примеси других веществ, которые и определяют их электрические свойства. Наличие примесей приводит к тому, что в запрещенной зоне полупроводника появляются дополнительные энергетические уровни, с которых или на которые тоже возможны электронные переходы. Широкое применение полупроводников в технике стало возможным только после того, как технологи научились управлять содержанием примесей в полупроводниках и по своему усмотрению делать их проводимость (примесную проводимость ) почти чисто электронной или чисто дырочной.

Оказывается, можно подобрать такие примеси, атомы которых легко отдают электроны. Освободившиеся при этом дополнительные уровни энергии располагаются внутри запрещенной зоны полупроводника вблизи ее верхнего края (рис. 4, а). Такие примеси называются донорными примесями , а уровни - донорными уровнями. Из рисунка 4, а видно, что при одной и той же температуре электронам с таких уровней гораздо легче перейти в зону проводимости, чем электронам из валентной зоны, поэтому примесные уровни и станут основными поставщиками электронов в зону проводимости. Но при этом в валентной зоне дырок появляться не будет, и проводимость полупроводника станет почти чисто электронной. Такие полупроводники называются полупроводниками n -типа.

Существуют и такие примеси, атомы которых легко присоединяют к себе электроны (акцепторные примеси ). Дополнительные уровни их электронов (акцепторные уровни) тоже располагаются внутри запрещенной зоны полупроводника, но вблизи ее дна (рис. 4, б). В этом случае электронам из валентной зоны легче перейти на акцепторные уровни примеси, чем в зону проводимости. Тогда в валентной зоне появятся дырки без того, чтобы в зоне проводимости появились электроны. Получится полупроводник с почти чисто дырочной проводимостью, или полупроводник p -типа.

Электроны в металлах окончательно «забывают» свое атомное происхождение, их уровни образуют одну очень широкую зону. Она всегда заполнена лишь частично (число электронов меньше числа уровней) и потому может называться зоной проводимости (рис. 6). Ясно, что в металлах ток может течь и при нулевой температуре . Более того, с помощью квантовой механики можно доказать, что в идеальном металле (решетка которого не имеет дефектов) при T = 0 ток должен течь без сопротивления !

К сожалению, идеальных кристаллов не бывает, а нулевой температуры достичь невозможно. В действительности электроны теряют энергию, взаимодействуя с колеблющимися атомами решетки, так что сопротивление реального металла растет с температурой (в отличие от сопротивления полупроводника). Но самое главное - это то, что при любой температуре электропроводность металла значительно выше электропроводности полупроводника потому, что в металле гораздо больше электронов, способных проводить электрический ток.