Режимы фрезеровки. Режимы резания при фрезеровании

Режимы резания, используемые на практике, в зависимости от обрабатываемого материала и типа фрезы.

Приведенная ниже таблица содержит справочную информацию параметров режима резания, взятые из практики нашего производства. От этих режимов рекомендуется отталкиваться при обработке различных материалов со схожими свойствами, но не обязательно строго придерживаться их.

Необходимо учитывать, что на выбор режимов резания, при обработке одного и того же материала одним и тем же инструментом, влияет множество факторов, основными из которых являются: жесткость системы Станок Приспособление Инструмент Деталь, охлаждение инструмента, стратегия обработки, высота слоя снимаемого за проход и размер обрабатываемых элементов.

Обрабаты-
ваемый материал
Тип работы Тип фрезы Частота, об/мин Подача (XY), мм/мин Примечание
Акрил V-гравировка 18000-24000 500-1500 По 0.2-0.5 мм за проход.
Раскрой
Выборка
18000-20000 2500-3500 Встречное фрезерование.
Не более 3-5 мм за проход.
ПВХ до 10 мм Раскрой
Выборка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-20000 3000-5000 Встречное фрезерование.
Двухслойный пластик Гравировка Конический гравер, плоский гравер 18000-24000 1000-2000 По 0.3-0,5 мм за проход.
Композит Раскрой Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-20000 3000-3500 Встречное фрезерование.
Дерево
ДСП
Раскрой
Выборка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-22000 2500-3500 Встречное фрезерование.
По 5 мм за проход (подбирать, чтобы не обугливалось при резке поперек слоев).
15000-16000 3000-4000 Не более 10 мм за проход.
Гравировка Фреза спиральная 2-заходная круглая d=3.175 мм До 15000 1500-2000 Не более 5 мм за проход.
Конический гравер d=3.175 мм или 6 мм 18000-24000 1500-2000 Не более 5 мм за проход (в зависимости от угла заточки и пятна контакта).
Шаг не более 50% от пятна контакта (T).
V-гравировка V-образный гравер d=6 мм., A=90, 60 град., T=0.2 мм До 15000 1500-2000 Не более 3 мм за проход.
МДФ Раскрой
Выборка
Фреза спиральная 1-заходная с удалением стружки вниз d=6 мм 20000-21000 2500-3500 Не более 10 мм за проход.
При выборке шаг не более 45% от d.
Фреза спиральная 2-заходная компрессионная d=6 мм 15000-16000 2500-3500 Не более 10 мм за проход.
Латунь
ЛС 59
Л-63бронза
БрАЖ
Раскрой
фрезеровка
Фреза спиральная 2-заходная d=2 мм 15000 500-1200 По 0,5 мм за проход.
Желательно использовать СОЖ.
Гравировка До 24000 500-1200 По 0.3 мм за проход.
Шаг не более 50% от пятна контакта (T).
Желательно использовать СОЖ.
Дюралюминий, Д16, АД31 Раскрой
фрезеровка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 15000-18000 800-1500 По 0,2-0,5 мм за проход.
Желательно использовать СОЖ.
Дюралюминий, Д16, АД31 Гравировка Конический гравер A=90, 60, 45, 30 град. До 24000 500-1200 По 0.3 мм за проход.
Шаг не более 50% от пятна контакта (T).
Желательно использовать СОЖ.
Магний Гравировка Конический гравер A=90, 60, 45, 30 град. 12000-15000 500-700 По 0,5 мм за проход.
Шаг не более 50% от пятна контакта (T).

*Фрезерной обработке лучше всего подвергать пластики полученные литьем, т.к. у них более высокая температура плавления.

*При резке акрила и алюминия желательно для охлаждения инструмента использовать смазывающую и охлаждающую жидкость (СОЖ), в качестве СОЖ может выступать обыкновенная вода или универсальная смазка WD-40 (в баллончике).

*При резке акрила, когда подсаживается (притупляется) фреза, необходимо понизить обороты до момента пока не пойдет колкая стружка (осторожнее с подачей при низких оборотах шпинделя - вырастает нагрузка на инструмент и соответственно вероятность его сломать).

*Для фрезеровки пластиков и мягких металлов, наиболее подходящими являются однозаходные (однозубые) фрезы (желательно с полированной канавкой для отвода стружки). При использовании однозаходных фрез создаются оптимальные условия для отвода стружки и соответственно отвода тепла из зоны реза.

*При фрезеровке пластиков, для улучшения качества реза, рекомендуется использовать встречное фрезерование.

*Для получения приемлемой шероховатости обрабатываемой поверхности, шаг между проходами фрезы/гравера необходимо делать равным или меньше рабочего диаметра фрезы(d)/пятна контакта гравера (T).

*Для улучшения качества обрабатываемой поверхности желательно не обрабатывать заготовку на всю глубину сразу, а оставить небольшой припуск на чистовую обработку.

*При резке мелких элементов необходимо снизить скорость резания, чтобы вырезанные элементы не откалывались в процессе обработки и не повреждались.

На практике:

Расчётные параметры - хорошо, но учесть полностью всё, практически не возможно. Существуют более полные формулы по расчётам режимов резания, в которых используют десятки параметров. Такие формулы применяют в массовом производстве, да и то, с последующей корректировкой. В единичном производстве применяют справочные таблицы и упрощенные формулы с обязательной корректировкой под конкретные условия. Накопленный опыт, позволяет быстро выбирать рациональные режимы резания.

Теоретические основы по выбору режимов резания

Скорость вращения и скорость подачи - это основные параметры для установки режимов резанья.

Скорость вращения (n) - зависит от характеристик шпинделя, инструмента и обрабатываемого материала. Для большинства современных шпинделей обороты варьируются в диапазоне 12 000 - 24 000 об/мин (для высокоскоростных 40 000 - 60 000 об/мин).

Скорость вращения вычисляется по формуле:

d - диаметр режущей части инструмента (мм)
П - число Пи, постоянная величина = 3.14
V - скорость резания (м/мин) - это путь пройденный точкой режущей кромки фрезы в единицу времени

Для расчетов скорость резания (V) берут из справочных таблиц в зависимости от обрабатываемого материала.

Часто начинающие фрезеровщики путают скорость резанья (V) со скоростью подачи (S), но на деле это совершенно разные параметры!

Примечание:
Для фрез с малым диаметром режущей части, расчетная скорость вращения (n) может оказаться значительно выше максимальной скорости вращения шпинделя, поэтому для дальнейшего расчета скорости подачи (S) необходимо брать фактическую, а не расчетную величину скорости вращения (n).

Скорость подачи (S) - это скорость перемещения фрезы, вычисляется по формуле:

fz - подача на один зуб фрезы (мм)
z - количество зубьев
n- скорость вращения (об/мин)
Скорость врезания по оси Z (Sz) берется как 1/3 от скорости подачи по оси XY (S)

Таблица выбора скорости резания (V) и подачи на зуб (fz)

Обрабатываемый материал

Скорость резания (V), м/мин

Подача на зуб (fz), мм
В зависимости от диаметра фрезы d

Оргстекло

Алюминий

Латунь, Бронза

Термопласты

Стеклопластик

Примечание:
Если система СПИД (Станок-Приспособление-Инструмент-Деталь) с низкой жесткостью, то величину скорости резания выбираем ближе минимальным значениям, если система СПИД имеет среднюю и высокую жесткость, то соответственно и величину выбираем ближе к средним и максимальным значениям.

1. Фрезы подбирайте по принципу - наименьшая рабочая длина и наибольший рабочий диаметр необходимый для выполнения конкретной работы (фрезы с избыточной длиной и минимальным диаметром менее жесткие и склоны к образованию вибраций). Также при выборе диаметра фрезы учитывайте возможности станка, т.к. при использовании большого диаметра фрезы у шпинделя и привода станка может не хватить мощности
2. Правильно выбирайте конфигурацию фрезы. Стружечная канавка должна быть больше, чем объем снимаемого материала. Если стружка не будет свободно эвакуироваться из зоны резания, она забьет канал и инструмент начнет продавливать материал, а не резать его.
3. При обработке мягких материалов и материалов склонных к налипанию рекомендуется применять 1-заходные фрезы. Для обработки материалов средней жесткости рекомендуется применять 2-заходные фрезы. При обработке жестких материалов рекомендуется применять 3-х и более заходные фрезы.

Расчет режимов фрезерования заключается в определении скорости резания, частоты вращения фрезы, и выбора подачи. При фрезеровании различают два основных движения: вращение фрезы вокруг своей оси - главное движение и перемещение заготовки относительно фрезы - движение подачи. Скорость вращения фрезы называют скоростью резания, а скорость перемещения детали - подачей. Скорость резания при фрезеровании - это длина пути (в м ), которую проходит за 1 мин наиболее удаленная от оси вращения точка главной режущей кромки.

Скорость резания легко определить, зная диаметр фрезы и частоту ее вращения (число оборотов в минуту). За один оборот фрезы режущая кромка зуба пройдет путь, равный длине окружности, имеющей диаметр D:

l = πD, где l - путь режущей кромки за один оборот фрезы.

Длина пути

Длина пути, пройденная кромкой зуба фрезы в единицу времени,

L = ln = πDn, где n - частота вращения, об/мин .

Скорость резания

Принято обозначать диаметр фрезы в миллиметрах, а скорость резания в метрах в минуту (м/мин), поэтому написанную выше формулу можно записать в виде:

В производственных условиях часто требуется определить необходимую частоту вращения фрезы для получения заданной скорости, резания. В этом случае используют формулу:

Подача при фрезеровании

При фрезеровании различают подачу на зуб, на оборот и минутную подачу. Подачей на зуб S z называют расстояние, на которое перемещается заготовка (или фреза) за время поворота фрезы на один шаг, т. е. на угол между двумя соседними зубьями. Подачей на оборот S 0 называют расстояние, на которое перемещается обрабатываемая деталь (или фреза) за время одного полного оборота фрезы:

S 0 = S z Z

Минутная подача

Минутной подачей S м называют расстояние, на которое перемещается заготовка (или фреза) в процессе резания за 1 мин. Минутная подача измеряется в мм/мин:

S м = S 0 n, или S м = S z Zn

Определение времени фрезерования детали

Зная минутную подачу, легко подсчитать время, необходимое для фрезерования детали. Для этого достаточно разделить длину обработки (т. е. путь, который должна пройти заготовка по отношению к фрезе) на минутную подачу. Таким образом, по величине минутной подачи удобно судить о производительности обработки. Глубиной резания t называют расстояние (в мм) между обрабатываемой и обработанной поверхностями, измеренное перпендикулярно обработанной поверхности, или толщину слоя металла, снимаемого за один проход фрезы.

Скорость резания, подача и глубина резания являются элементами режима резания. При наладке станка устанавливают глубину резания, подачу и скорость резания, исходя из возможностей "режущего инструмента, способа фрезерования обрабатываемого материала и особенностей обработки. Чем большее количество металла в единицу времени фреза снимает с заготовки, тем выше будет производительность фрезерования. Естественно, что производительность фрезерования при прочих равных условиях будет повышаться с увеличением глубины резания, подачи или скорости резания.

Основными параметрами задающими режимы резания являются:

Частота вращения вала шпинделя (n)
-Скорость подачи (S)
-Глубина фрезерования за один проход

Требуемая частота вращения зависит от:

Типа и характеристик используемого шпинделя
-Режущего инструмента
-Обрабатываемого материала

Частота вращения шпинделя вычисляется по следующей формуле:

D - Диаметр режущей части рабочего инструмента, мм
π - число Пи, 3.14
V - скорость резания (м/мин) - путь пройденный точкой (краем) режущей кромки фрезы в минуту.

Скорость резания (V) берется из справочных таблиц (См ниже).

Обращаем ваше внимание на то, что скорость подачи (S) и скорость резания (V) это не одно и то же!!!

При расчетах, для фрез малого диаметра значение частоты вращения шпинделя может получиться больше, чем количество оборотов, которое в состоянии обеспечить шпиндель. В данном случае за основу дальнейших расчетов величины (n) берется фактическая максимальная частота вращения шпинделя.

Скорость подачи (S) - скорость перемещения режущего инструмента (оси X/Y), вычисляется по формуле:

fz - подача на один зуб фрезы (мм)
z - количество зубьев фрезы
n - частота вращения шпинделя (об/мин)
Подача на зуб берется из справочных таблиц по обработке тех или иных материалов.

Таблица для расчета режимов резания:

После теоретических расчетов по формулам требуется подкорректировать значение скорости подачи. Необходимо учитывать жесткость станка. Для станков с высокой жесткостью и качеством механики значения скорости подачи выбираются ближе к максимальным расчетным. Для станков с низкой жесткостью следует выбрать меньшие значения скорости подачи.

Глубина фрезерования за один проход (ось Z) зависит от жесткости фрезы, длины режущей кромки и жесткости станка. Подбирается опытным путем, в ходе наблюдения за работой станка, постепенным увеличением глубины резания. Если при работе возникают посторонние вибрации, получаемый рез низкого качества - следует уменьшить глубину за проход и произвести коррекцию скорости подачи.

Скорость врезания по высоте (ось Z) следует выбирать примерно 1/3 - 1/5 от скорости подачи (S).

При выборе фрез нужно учитывать следующие их характеристики:
-Диаметр и рабочая длина. Геометрия фрезы.
-Угол заточки
-Количество режущих кромок
-Материал и качество изготовления фрезы.
Лучше всего отдавать предпочтение фрезам имеющих максимальный диаметр и минимальную длину для выполнении конкретного вида работ.

Короткая фреза большого диаметра обладает повышенной жесткостью, создает значительно меньше вибраций при интенсивной работе, позволяет добиться лучшего качества съема материала. Выбирая фрезу большого диаметра следует учитывать механические характеристики станка и мощность шпинделя, чтобы иметь возможность получить максимальную производительность при обработке.

Для обработки мягких материалов лучше использовать фрезы с острым углом заточки режущей кромки, для твердых - более тупой угол в диапазоне до 70-90 градусов.

Пластики и мягкие материалы лучше всего обрабатывать однозаходными фрезами. Древесину и фанеру - двухзаходными. Черные металлы - 3х/4х заходными.
Материал и качество фрезы определяют срок службы, качество реза и режимы. С фрезами низкого качества сложно добиться расчетных значений скорости подачи на практике.

Примерные режимы резания используемые на практике.

Данная таблица имеет ознакомительный характер. Более точные режимы обработки определяются исходя из качества фрез, вида станка, и др. Подбираются опытным путем.

Установки для автоматической сварки продольных швов обечаек - в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Последовательность расчета режимов резания при обработке заготовок различными фрезами изложена в справочнике Режимы резания металлов: Справочник / Ю.В. Барановский, Л.А. Брахман, А.И. Гдалевич и др. - М.: НИИТАвтопром, 1995. - 456 с. (разд. 2, карта Ф-1). Для примера рассмотрим методику расчета режимов резания на одношпиндельных фрезерных станках с прямолинейной подачей.

1. Расчет длины рабочего хода L р.х. , мм (при обработке нескольких деталей их комплект рассматривается как одна деталь), с учетом длин L, рассчитанных для отдельных инструментов, и последовательности их работы производится по формуле

L р.х. =L р + L п + L д,

где L р - длина резания, равная длине обработки, измеренной в направлении подачи; L п - величина подвода, врезания и перебега инструмента (значение L п см. в Приложении 5 справочника Режимы резания металлов: Справочник / Ю.В. Барановский, Л.А. Брахман, А.И. Гдалевич и др. - М.: НИИТАвтопром, 1995. - 456 с.); L д - дополнительная величина хода, вызванная в ряде случаев особенностями наладки и конфигурации деталей.

2. Назначение расчетной подачи на зуб фрезы S z , мм/зуб, производят по карте Ф-2. При этом учитывают следующие исходные данные: обрабатываемый материал и его твердость; тип и инструментальный материал фрезы; в зависимости от типа фрезы - глубина резания t, ширина фрезерования B, диаметр фрезы d и число зубьев z. Например, при обработке чугуна торцовыми и дисковыми фрезами подачу на зуб фрезы S о можно выбрать по табл. 2.8 (фрагмент карты Ф-2), а соответствующую ей подачу S о определить по формуле

Примечания. 1. Большие значения подач необходимо применять при жесткой технологической системе, меньшие - при ее пониженной жесткости.
2. Меньшие значения подач необходимо применять при прорезывании глубоких пазов и при работе фрезами небольших размеров.

3. Назначение стойкости инструмента T р, мин, производится по карте Ф-3 в зависимости от типа фрезы и ее диаметра d, площади фрезеруемой поверхности F и коэффициента загрузки фрезы К по формуле

Т р = Т м λК,

где Т м - стойкость в минутах основного времени; λ - коэффициент времени резания; К - коэффициент, учитывающий неравномерность загрузки инструмента.

Значения входящих в формулу коэффициентов указаны в карте Ф-3.

4. Расчет скорости резания v, м/мин, частоты вращения шпинделя n, об/мин, и минутной подачи S м, мм/мин, для различных фрез производится в четыре этапа в зависимости от обрабатываемого материала, типа и инструментального материала фрезы, диаметра фрезы d и числа зубьев z, подачи S z , глубины резания t или ширины фрезерования B, а также стойкости инструмента T р.


1 - Данные по обрабатываемости конструкционных материалов, инструментальным материалам и смазочно-охлаждающим жидкостям представлены в Приложениях 1, 2, 3 справочника Режимы резания металлов: Справочник / Ю.В. Барановский, Л.А. Брахман, А.И. Гдалевич и др. - М.: НИИТАвтопром, 1995. - 456 с.

4.2. Расчет частоты вращения шпинделя п, соответствующей рекомендуемой скорости v, для каждого инструмента по формуле

п = 1000v/(πd).

4.3. Назначение частоты вращения шпинделя n по паспорту станка (не рекомендуется превышать минимальные значения, определенные на этапе 4.2, более чем на 15 %).

Скорость резания v, м/мин, определяется по формуле:

v=v табл K 1 K 2

где v табл - скорость резания по таблице, м/мин; K 1 - коэффициент, зависящий от марки обрабатываемого чугуна и инструментального материала; K 2 - коэффициент, зависящий от стойкости инструмента T р.

4.4. Расчет минутной подачи мм/мин, по формуле

и уточнение ее по паспорту станка.

5. Расчет основного времени T o , мин, при обработке комплекта деталей, установленных на столе станка,

T o = L р.х. S м,

где L р.х. - длина рабочего хода, мм (см. этап 1); S м - минутная подача, мм/мин (см. этап 4.4).

6. Корректирование режимов резания в соответствии с данными Приложения 7 (Режимы резания металлов: Справочник / Ю.В. Барановский, Л.А. Брахман, А.И. Гдалевич и др. - М.: НИИТАвтопром, 1995. - 456 с.), когда время T o , рассчитанное на этапе 5, меньше основного времени, соответствующего заданной производительности.

7. Выполнение проверочных расчетов по мощности резания N p состоит из двух этапов.

7.1. Определение значения кВт, для каждой фрезы по формуле, приведенной в карте Ф-6:

где N r - мощность резания по данным графика (см. карту Ф-6), определяемая в зависимости от объема срезаемого слоя Q в единицу времени (при колеблющихся значениях мощности резания из-за переменного числа одновременно работающих зубьев значение N r , принимают равным среднему значению мощности); К - коэффициент, зависящий от обрабатываемого материала и его твердости.

Значения этого коэффициента приведены ниже.


Значение Q, см 3 /мин, определяют по формуле

Q=tBS м / 1000,

где t - глубина резания, мм; В - ширина фрезерования, мм; S м - минутная подача, мм/мин.

7.2. Проверка мощности двигателя производится по данным Приложения 6 справочника Режимы резания металлов: Справочник / Ю.В. Барановский, Л.А. Брахман, А.И. Гдалевич и др. - М.: НИИТАвтопром, 1995. - 456 с..

  • 2.2.1. Выбор конструкции фрезы.
  • 2.2.2. Выбор материала режущей части.
  • 2.2.3. Выбор типа и диаметра фрезы.
  • 2.2.4. Выбор геометрических параметров
  • 2.3. Выбор схемы фрезерования
  • 2.4. Назначение режима резания
  • 2.5. Проверка выбранного режима резания
  • 2.6. Расчёт времени выполнения операции и использования оборудования
  • 2.6.1. Основное время
  • 2.6.2 Вспомогательное время.
  • 2.6.3. Оперативное время.
  • 2.6.4. Время на обслуживание рабочего места и время на личные надобности
  • 2.6.5. Штучно - калькуляционное время
  • 2.6.6. Расчёт потребности в оборудовании.
  • 2.6.7. Технико-экономическая эффективность.
  • 3. Пример расчета режима резания
  • 3.1. Условия задачи.
  • 3.1.1 Исходные данные.
  • 3.1.2. Цель расчётов.
  • 3.2. Порядок расчета.
  • 3.2.1. Выбор режущего инструмента и оборудования.
  • 3.2.2. Расчёт элементов режима резания.
  • 3.2.2.1. Назначение глубины резания.
  • 3.2.2.2. Назначение подачи.
  • 3.2.2.3. Определение скорости резания.
  • 3.2.2.4. Уточнение режимов резания
  • 3.2.3. Проверка выбранного режима резания
  • 3.2.4. Расчёт времени выполнения операции.
  • 3.2.4.1. Расчёт основного времени.
  • 3.2.4.2. Определение штучного времени.
  • 3.2.4.3. Определение штучно-калькуляционного времени
  • 3.2.5. Определение технико - экономической эффективности
  • 3.2.5.1. Определение потребного количества станков
  • 3.2.5.2. Коэффициент основного вpемени
  • 3.2.5.3. Коэффициент использования мощности станка
  • Приложения
  • Стандартные торцовые фрезы
  • Фрезы торцовые с механическим креплением многогранных пластин (гост 26595-85)
  • Фрезы торцовые насадные со вставными ножами, оснащенными пластинами из твердого сплава (гост 24359-80)
  • Фрезы торцовые концевые и насадные с механическим креплением круглых твердосплавных пластин
  • Марки твёрдого сплава для торцовых фрез
  • Геометрические параметры режущей части торцовых фрез с пластинами из твердого сплава
  • Геометрические параметры режущей части торцовых фрез из быстрорежущей стали р18
  • 2. Задние углы a в град.
  • Подачи при черновом фрезеровании торцовыми фрезами с пластинами из твердого сплава
  • Подачи при черновом фрезеровании торцовыми фрезами из быстрорежущей стали
  • Подачи на оборот фрезы, мм/об, при чистовом фрезеровании: а. Торцовыми фрезами из быстрорежущей стали
  • Б. Торцовыми фрезами с пластинами из твердого сплава
  • Значения коэффициента Сv и показателей степени в формуле скорости резания при торцовом фрезеровании
  • Поправочный Кmv , учитывающий физико-механические свойства обрабатываемого материала.
  • Значения коэффициента Кг и показатели степени nv в формуле для рассчета коэффициента обрабатываемости Кmv
  • Поправочный коэффициент Кпv, зависимости скорости резания от состояние поверхности заготовки
  • Поправочный коэффициент Киv зависимости скорости резания от материала режущей части инструмента
  • Значения коэффициента Ср и показателей степени в формуле главной составляющей силы резания Рz при торцовом фрезеровании
  • Поправочный коэффициент Кmр зависимости силы резания от качества обрабатываемого материала для обработки стали и чугуна,
  • Поправочный коэффициент Кvр зависимости главной составляющей
  • Вспомогательное время на установку и снятие детали
  • Вспомогательное время на рабочий ход
  • Подготовительно-заключительное время
  • Вспомогательное время на измерения
  • Обработанной поверхности
  • Варианты заданий по расчёту режима резания при торцовом фрезеровании стали
  • Расчет режимов резания при фрезеровании Методические рекомендации

    Часть I - торцовое фрезерование

    В части I методических указаний даны общие теоретические сведения о фрезеровании, изложена последовательность операций по расчёту режима резания при торцовом фрезеровании на основе справочных данных. Методические указания могут быть использованы при выполнении домашнего задания, в курсовом и дипломном проектировании студентами факультетов ТС в АПК, ПРИМА и Инженерно-педагогического, а также при проведении практических и научно-исследовательских работ.

    Рис.9, табл.ХХ, список библ. - ХХ наименований.

    1.1. Элементы теории резания

    Фрезерование является одним из наиболее распространённых и высокопроизводительных способов механической обработки резанием. Обработка производится многолезвийным инструментом - фрезой.

    При фрезеровании главное движение резания D r - вращение инструмента, движение подачи D S - перемещение заготовки (Рис. 1.), на карусельно - фрезерных и барабанно-фрезерных станках движение подачи может осуществляться вращением заготовки вокруг оси вращающегося барабана или стола, в отдельных случаях движение подачи может осуществляться перемещением инструмента (копировальное фрезерование).

    Фрезерованием обрабатываются горизонтальные, вертикальные, наклонные плоскости, фасонные поверхности, уступы и пазы различного профиля. Особенностью процесса резания при фрезеровании является то, что зубья фрезы не находятся в контакте с обрабатываемой поверхностью всё время. Каждое лезвие фрезы последовательно вступает в процесс резания, изменяя толщину срезаемого слоя от наибольшей к наименьшей, или наоборот. Одновременно в процессе резания могут находиться несколько режущих кромок. Это вызывает ударные нагрузки, неравномерность протекания процесса, вибрации и повышенный износ инструмента, повышенные нагрузки на станок.

    При обработке цилиндрическими фрезами (режущие кромки расположены на цилиндрической поверхности) рассматривается два способа обработки в зависимости от направления движения подачи заготовки:

    Встречное фрезерование, когда направление движения режущей кромки фрезы, находящейся в процессе резания, противоположно направлению движения подачи;

    Попутное фрезерование, когда направление движения режущей кромки фрезы, находящейся в процессе резания, совпадает с направлением движения подачи.

    При встречном фрезеровании нагрузка на зуб возрастает от нуля до максимума, силы, действующие на заготовку, стремятся оторвать её от стола, а стол поднять. Это увеличивает зазоры в системе СПИД (станок - приспособление - инструмент - деталь), вызывает вибрации, ухудшает качество обработанной поверхности. Этот способ хорошо применим для обработки заготовок с коркой, производя резание из-под корки, отрывая её, тем самым значительно облегчая резание. Недостатком такого способа является большое скольжение лезвия по предварительно обработанной и наклёпанной поверхности. При наличии некоторого округления режущей кромки она не сразу вступает в процесс резания, а поначалу проскальзывает, вызывая большое трение и износ инструмента по задней поверхности. Чем меньше толщина срезаемого слоя, тем больше относительная величина проскальзывания, тем большая часть мощности резания расходуется на вредное трение.

    При попутном фрезеровании этого недостатка нет, но зуб начинает работу с наибольшей толщины срезаемого слоя, что вызывает большие ударные нагрузки, однако исключает начальное проскальзывание зуба, уменьшает износ фрезы и шероховатость поверхности. Силы, действующие на заготовку, прижимают её к столу, а стол - к направляющим станины, что уменьшает вибрации и повышает точность обработки.