Температура системы отопления норматив. Нормы и оптимальные значения температуры теплоносителя

Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?» . Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха . Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье ). По данному графику работают тепловые сети в Уфе (Башкирия).

Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5 , то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 о С .

Как правило, используются следующие температурные графики: 150/70 , 130/70 , 115/70 , 105/70 , 95/70 . Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.

Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70 , значит при -10 о С температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 о С при графике 105/70 или 65,3 о С при графике 95/70. Температура воды после системы отопления должны быть 51,7 о С.

Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 о С, а на ТЭЦ или котельной задается 87 градусов.


Температура
наружного
воздуха
Тнв, о С
Температура сетевой воды в подающем трубопроводе
Т1, о С
Температура воды в подающем трубопроводе системы отопления
Т3, о С
Температура воды после системы отопления
Т2, о С
150 130 115 105 95
8 53,2 50,2 46,4 43,4 41,2 35,8
7 55,7 52,3 48,2 45,0 42,7 36,8
6 58,1 54,4 50,0 46,6 44,1 37,7
5 60,5 56,5 51,8 48,2 45,5 38,7
4 62,9 58,5 53,5 49,8 46,9 39,6
3 65,3 60,5 55,3 51,4 48,3 40,6
2 67,7 62,6 57,0 52,9 49,7 41,5
1 70,0 64,5 58,8 54,5 51,0 42,4
0 72,4 66,5 60,5 56,0 52,4 43,3
-1 74,7 68,5 62,2 57,5 53,7 44,2
-2 77,0 70,4 63,8 59,0 55,0 45,0
-3 79,3 72,4 65,5 60,5 56,3 45,9
-4 81,6 74,3 67,2 62,0 57,6 46,7
-5 83,9 76,2 68,8 63,5 58,9 47,6
-6 86,2 78,1 70,4 65,0 60,2 48,4
-7 88,5 80,0 72,1 66,4 61,5 49,2
-8 90,8 81,9 73,7 67,9 62,8 50,1
-9 93,0 83,8 75,3 69,3 64,0 50,9
-10 95,3 85,6 76,9 70,8 65,3 51,7
-11 97,6 87,5 78,5 72,2 66,6 52,5
-12 99,8 89,3 80,1 73,6 67,8 53,3
-13 102,0 91,2 81,7 75,0 69,0 54,0
-14 104,3 93,0 83,3 76,4 70,3 54,8
-15 106,5 94,8 84,8 77,9 71,5 55,6
-16 108,7 96,6 86,4 79,3 72,7 56,3
-17 110,9 98,4 87,9 80,7 73,9 57,1
-18 113,1 100,2 89,5 82,0 75,1 57,9
-19 115,3 102,0 91,0 83,4 76,3 58,6
-20 117,5 103,8 92,6 84,8 77,5 59,4
-21 119,7 105,6 94,1 86,2 78,7 60,1
-22 121,9 107,4 95,6 87,6 79,9 60,8
-23 124,1 109,2 97,1 88,9 81,1 61,6
-24 126,3 110,9 98,6 90,3 82,3 62,3
-25 128,5 112,7 100,2 91,6 83,5 63,0
-26 130,6 114,4 101,7 93,0 84,6 63,7
-27 132,8 116,2 103,2 94,3 85,8 64,4
-28 135,0 117,9 104,7 95,7 87,0 65,1
-29 137,1 119,7 106,1 97,0 88,1 65,8
-30 139,3 121,4 107,6 98,4 89,3 66,5
-31 141,4 123,1 109,1 99,7 90,4 67,2
-32 143,6 124,9 110,6 101,0 94,6 67,9
-33 145,7 126,6 112,1 102,4 92,7 68,6
-34 147,9 128,3 113,5 103,7 93,9 69,3
-35 150,0 130,0 115,0 105,0 95,0 70,0

Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.

Расчет температурного графика

Методика расчета температурного графика описана в справочнике (Глава 4, п. 4.4, с. 153,).

Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т 1 , Т 3 , Т 2 и т. д.

К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.

Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:

  • расчетная температура в подающем трубопроводе тепловой сети Т 1
  • расчетная температура в обратном трубопроводе тепловой сети Т 2
  • расчетная температура в подающем трубопроводе системы отопления Т 3
  • Температура наружного воздуха Т н.в.
  • Температура внутри помещения Т в.п.
  • коэффициент «n » (он, как правило, не изменен и равен 0,25)
  • Минимальный и максимальный срез температурного графика Срез min, Срез max .

Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.

Диаграммы также перестроятся под новые значения.

Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.

Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.

Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.

Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.

Регулирование тепла от центральной системы можно производить двумя вариантами:

  1. Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
  2. Качественный. Меняется температура жидкости, а расход её не изменяется.

В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.

Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).

График зависимости может быть различный.

Конкретная диаграмма имеет зависимость от:

  1. Технико-экономических показателей.
  2. Оборудования ТЭЦ или котельной.
  3. Климата.

Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.

Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:

Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.

Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.

Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.

От чего зависит?

Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.

Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.

Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.

Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.

График температуры 95-70:

Температурный график 95-70

Как рассчитывается?

Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.

Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».

Исходными данными на теплогенерирующую станцию будут:

  1. Тнв – величина наружного воздуха.
  2. Твн – воздух в помещении.
  3. Т1 – теплоноситель от источника.
  4. Т2 – обратное поступление воды.
  5. Т3 – вход в здание.

Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.

При этом, на выходе они будут иметь 70°C.

Полученные результаты сносятся в единую таблицу, для последующего построения кривой:

Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.

Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.

Регулировка


Регулятор отопления

Автоматический контроль обеспечивается регулятором отопления.

В него входят следующие детали:

  1. Вычислительная и согласующая панель.
  2. Исполнительное устройство на отрезке подачи воды.
  3. Исполнительное устройство , выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
  4. Повышающий насос и датчик на линии подачи воды.
  5. Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.

Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.

Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.

Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.

Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.

Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.

Плюсы регулятора:

  1. Жёстко выдерживается температурная схема.
  2. Исключение перегрева жидкости.
  3. Экономичность топлива и энергии.
  4. Потребитель, независимо от расстояния, равноценно получает тепло.

Таблица с температурным графиком

Режим работы котлов зависит от погоды окружающей среды.

Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.

В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:

Температура наружного воздуха Температура сетевой воды в подающем трубопроводе Температура сетевой воды в обратном трубопроводе
+10 70 55
+9 70 54
+8 70 53
+7 70 52
+6 70 51
+5 70 50
+4 70 49
+3 70 48
+2 70 47
+1 70 46
0 70 45
-1 72 46
-2 74 47
-3 76 48
-4 79 49
-5 81 50
-6 84 51
-7 86 52
-8 89 53
-9 91 54
-10 93 55
-11 96 56
-12 98 57
-13 100 58
-14 103 59
-15 105 60
-16 107 61
-17 110 62
-18 112 63
-19 114 64
-20 116 65
-21 119 66
-22 121 66
-23 123 67
-24 126 68
-25 128 69
-26 130 70

СНиП

Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.

Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.

В этой статье я хочу рассказать каким образом и на основании чего производится регулирование температуры теплоносителя. Не думаю, что данная статья будет полезна или интересна работникам теплоэнергетики, так как ничего нового они из нее не почерпнут. А вот обычным гражданам она, надеюсь, окажется полезной.

4.11.1. Режим работы теплофикационной установки электростанции и районной котельной (давление в подающих и обратных трубопроводах и температура в подающих трубопроводах) должен быть организован в соответствии с заданием диспетчера тепловой сети.

Температура сетевой воды в подающих трубопроводах в соответствии с утвержденным для системы теплоснабжения температурным графиком должна быть задана по усредненной температуре наружного воздуха за промежуток времени в пределах 12 — 24 ч, определяемый диспетчером тепловой сети в зависимости от длины сетей, климатических условий и других факторов.

Температурный график разрабатывается для каждого города, в зависимости от местных условий. В нем четко определено какая должна быть температура сетевой воды в тепловой сети при конкретной температуре наружного воздуха. Например, при -35° температура теплоносителя должна быть 130/70. Первая цифра определяет температуру в подающем трубопроводе, вторая — в обратном. Задает эту температуру диспетчер тепловых сетей для всех теплоисточников (ТЭЦ, котельные).

Правила допускают отклонения от заданных параметров:

4.11.1. Отклонения от заданного режима за головными задвижками электростанции (котельной) должны быть не более:

  • по температуре воды, поступающей в тепловую сеть, ±3%;
  • по давлению в подающих трубопроводах ±5%;
  • по давлению в обратных трубопроводах ±0,2 кгс/см2 (±20 кПа).

4.12.36. Для водяных систем теплоснабжения в основу режима отпуска тепла должен быть положен график центрального качественного регулирования. Допускается применение качественно-количественного и количественного графиков регулирования отпуска тепла при необходимом уровне оснащения источников тепловой энергии, тепловых сетей и систем теплопотребления средствами автоматического регулирования, разработке соответствующих гидравлических режимов.

Так что, дорогие граждане, не пытайтесь как-то воздействовать на тепловые сети, если вам стало очень жарко весной. Они ничего для вас не сделают, т. к. не имеют ни права ни возможности. Жалуйтесь в администрацию, тогда, возможно, они прикажут прекратить отопительный сезон раньше. Но помните, что весной температура на улице изменчива и, если сегодня тепло и вы добились отключения отопления, то завтра может стать очень холодно, а отключать оборудование гораздо быстрее, чем включать его в работу.

Теперь поговорим о том, как бывает холодно в квартире зимой, особенно когда основательно «подморозит». Если в квартире холодно , то кто обычно виноват? Правильно — тепловые сети! Так думают большинство граждан. Отчасти, они правы, но не все так просто.

Начнем с того, что в сильные морозы газоснабжающие организации могут ввести ограничение на поставки газа . Из-за этого котельным приходится поддерживать температуру теплоносителя «сколько получится». Как правило, градусов на 10 ниже, чем заложено в температурном графике. Электростанциям проще — они переходят на сжигание мазута, а котельным, которые зачастую стоят чуть ли не посреди жилых кварталов, жечь мазут разрешают только в аварийных случаях (например, полное прекращение газоснабжения), чтобы люди не замерзли совсем. Из-за ограничений поставок газа могут даже отключить горячую воду , чтобы снизить расходы теплоносителя и тем самым поддерживать температуру в системах отопления на нужном уровне. Так что не удивляйтесь в случае чего.

Также причиной того, что зимой в квартирах холодно, является высокая степень изношенности самих тепловых сетей, а в частности тепловой изоляции трубопроводов . В результате, в дома, которые находятся довольно далеко от теплоисточника теплоноситель «доходит» уже порядком остывший.

Ну и последняя причина, о которой я расскажу — это неудовлетворительная теплоизоляция самих квартир и домов. Щели в окнах, дверях, отсутствие теплоизоляции самого дома — все это приводит к тому, что тепло уходит в окружающую среду и нам холодно. Эту причину устранить можете вы сами. Установите новые окна, сделайте теплоизоляцию квартиры, поменяйте радиаторы отопления на новые, ведь со временем чугунные батареи забиваются и теплоотдача значительно снижается. Кстати, если покрасить батарею в черный цвет , то она будет греть лучше. Это не шутка, опыты подтверждают этот факт.

Ну вот, кажется, и все, что я хотел рассказать в этой статье. Так же хочу оговориться, что я писал статью, основываясь во многом на личном опыте. В разных регионах нашей страны ситуация может быть разной и в корне отличаться от того, что я тут понаписал. Но в целом, думаю, обстановка схожа. По крайней мере в крупных городах.

В статье мы выясним, как рассчитывается среднесуточная температура при проектировании систем отопления, как зависит от температуры на улице температура теплоносителя на выходе из элеваторного узла и какой может быть температура батарей отопления зимой.

Затронем мы и тему самостоятельной борьбы с холодом в квартире.

Холод зимой — больная тема для многих обитателей городских квартир.

Общая информация

Здесь мы приведем основные положения и выдержки из действующих СНиП.

Температура наружного воздуха

Расчетная температура отопительного периода, которая закладывается в проект систем отопления — это ни много ни мало усредненная температура наиболее холодных пятидневок за восемь самых холодных зим из последних 50 лет.

Такой подход позволяет, с одной стороны, быть готовыми к сильным морозам, которые случаются лишь раз в несколько лет, с другой — не вкладывать в проект излишних средств. В масштабах массовой застройки речь идет о весьма значительных суммах.

Целевая температура в помещении

Стоит сразу оговорить, что на температуру в помещении влияет не только температура теплоносителя в системе отопления.

Параллельно действует несколько факторов:

  • Температура воздуха на улице . Чем она ниже — тем больше утечка тепла через стены, окна и крыши.
  • Наличие или отсутствие ветра . Сильный ветер увеличивает теплопотери зданий, продувая через неуплотненные двери и окна подъезды, подвалы и квартиры.
  • Степень утепления фасада, окон и дверей в помещении . Понятно, что в случае герметично закрывающегося металлопластикового окна с двухкамерным стеклопакетом потери тепла будут куда ниже, чем с рассохшимся деревянным окном и остеклением в две нитки.

Любопытно: сейчас наметилась тенденция именно к строительству многоквартирных домов с максимальной степенью термоизоляции.
В Крыму, где живет автор, новые дома строятся сразу с утеплением фасада минеральной ватой или пенопластом и с герметично закрывающимися дверями подъездов и квартир.

  • И, наконец, собственно температура радиаторов отопления в квартире .

Итак, каковы действующие нормативы температур в помещениях разного назначения?

  • В квартире: угловые комнаты — не ниже 20С, прочие жилые комнаты — не ниже 18С, ванная комната — не ниже 25С.
    Нюанс: при расчетной температуре воздуха ниже -31С для угловой и прочих жилых комнат берутся более высокие значения, +22 и +20С (источник — постановление Правительства РФ от 23.05.2006 «Правила предоставления коммунальных услуг гражданам»).
  • В детском саду: 18-23 градуса в зависимости от назначения помещения для туалетов, спален и игровых комнат; 12 градусов для прогулочных веранд; 30 градусов для помещений бассейнов.
  • В учебных заведениях: от 16С для спален школ-интернатов до +21 в классных помещениях.
  • В театрах, клубах, прочих увеселительных заведениях: 16-20 градусов для зрительного зала и +22С для сцены.
  • Для библиотек (читальных залов и книгохранилищ) норма — 18 градусов.
  • В продовольственных магазинах нормальная зимняя температура 12, а в непродовольственных — 15 градусов.
  • В спортзалах поддерживается температура 15-18 градусов.

  • В больницах поддерживаемая температура зависит от назначения помещения. Скажем, рекомендованная температура после отопластики или родов — +22 градуса, в палатах для недоношенных детей поддерживается +25, а для больных тиреотоксикозом (избыточным выделением гормонов щитовидной железой) — 15С. В хирургических палатах норма — +26С.

Температурный график

Какой должна быть температура воды в трубах отопления?

Она определяется четырьмя факторами:

  1. Температурой воздуха на улице.
  2. Типом системы отопления. Для однотрубной системы максимальная температура воды в системе отопления согласно действующим нормам — 105 градусов, для двухтрубной — 95. Максимальный перепад температур между подачей и обраткой — соответственно 105/70 и 95/70С.
  3. Направлением подачи воды в радиаторы. Для домов верхнего розлива (с подачей на чердаке) и нижнего (с попарной закольцовкой стояков и расположением обеих ниток в подвале) температуры различаются на 2 — 3 градуса.
  4. Типом отопительных приборов в доме. Радиаторы и имеют разную теплоотдачу; соответственно, для обеспечения одинаковой температуры в помещении температурный режим отопления должен различаться.

Итак, какой должна быть температура отопления — воды в трубах подачи и обратки — при разных уличных температурах?

Приведем лишь небольшую часть температурной таблицы для расчетной температуры окружающего воздуха -40 градусов.

  • При нуле градусов температура подающего трубопровода для радиаторов с разной разводкой — 40-45С, обратного — 35-38. Для конвекторов 41-49 подача и 36-40 обратка.
  • При -20 для радиаторов подача и обратка должны иметь температуру 67-77/53-55С. Для конвекторов 68-79/55-57.
  • При -40С на улице для всех отопительных приборов температура достигает максимально допустимой: 95/105 в зависимости от типа системы отопления на подаче и 70С на обратном трубопроводе.

Полезные дополнения

Для понимания принципа работы системы отопления многоквартирного дома, разделения зон ответственности, нужно знание еще нескольких фактов.

Температура теплотрассы на выходе с ТЭЦ и температура отопления в системе вашего дома — это абсолютно разные вещи. При тех же -40 ТЭЦ или котельная будет выдавать около 140 градусов на подаче. Вода не испаряется только благодаря давлению.

В элеваторном узле вашего дома часть воды из обратного трубопровода, возвращающаяся из системы отопления, подмешивается к подаче. Сопло впрыскивает струю горячей воды с большим давлением в так называемый элеватор и вовлекает массы остывшей воды в повторную циркуляцию.

Зачем это нужно?

Чтобы обеспечить:

  1. Разумную температуру смеси . Напомним: температура отопления в квартире не может превышать 95-105 градусов.

Внимание: для детских садов действует другая норма температуры: не выше 37С. Низкую температуру отопительных приборов приходится компенсировать большой площадью теплообмена.
Именно поэтому в детских садах стены украшены радиаторами столь большой длины.

  1. Большой объем воды, вовлеченной в циркуляцию . Если убрать сопло и пустить воду с подачи напрямую — температура обратки будет мало отличаться от подачи, что резко увеличит потери тепла на трассе и нарушит работу ТЭЦ.

Если заглушить подсос воды с обратки — циркуляция станет настолько медленной, что обратный трубопровод зимой может просто перемерзнуть.

Зоны ответственности разделены так:

  • За температуру воды, нагнетаемой в теплотрассы, отвечает производитель тепла — местная ТЭЦ или котельная;
  • За транспортировку теплоносителя с минимальными потерями — организация, обслуживающая тепловые сети (КТС — коммунальные тепловые сети).

  • За обслуживание и настройку элеваторного узла — ЖЭУ . При этом, однако, диаметр сопла элеватора — то, от чего зависит температура радиаторов — согласовывается с КТС.

Если у вас дома холодно и все отопительные приборы — те, что установлены строителями, вы урегулируете этот вопрос с жилищниками. Рекомендованные санитарными нормами температуры они обязаны обеспечить.

Если вами предпринята какая-либо модификация системы отопления, например, — тем самым вы берете на себя всю полноту ответственности за температуру в вашем жилье.

Как бороться с холодом

Будем, однако, реалистами: чаще всего решать проблему холода в квартире приходится самим, своими руками. Не всегда жилищная организация может обеспечить вас теплом в разумные сроки, да и санитарные нормы удовлетворят не каждого: хочется, чтобы дома было тепло.

Как будет выглядеть инструкция по борьбе с холодом в многоквартирном доме?

Перемычки перед радиаторами

Перед отопительными приборами в большинстве квартир стоят перемычки, которые призваны обеспечить циркуляцию воды в стояке при любом состоянии радиатора. Долгое время они снабжались трехходовыми кранами, затем стали ставиться без какой-либо запорной арматуры.

Перемычка в любом случае уменьшает циркуляцию теплоносителя через отопительный прибор. В том случае, когда ее диаметр равен диаметру подводки, эффект особенно выражен.

Простейший способ сделать свою квартиру теплее — врезать в саму перемычку и подводку между ней и радиатором дроссели.

С их помощью возможна удобная регулировка температуры батарей отопления: при перекрытой перемычке и открытом полностью дросселе на радиатор температура максимальна, стоит открыть перемычку и прикрыть второй дроссель — и жара в комнате сходит на нет.

Большое достоинство такой доработки — минимальная стоимость решения. Цена дросселя не превышает 250 рублей; сгоны, муфты и контргайки и вовсе стоят копейки.

Важно: если ведущий к радиатору дроссель хоть немного прикрыт, дроссель на перемычке открывается полностью. Иначе регулировка температуры отопления выльется в остывшие у соседей батареи и конвектора.

Теплые полы

Даже если радиатор в комнате висит на возвратном стояке с температурой около 40 градусов, с помощью модификации отопительной системы можно сделать комнату теплой.

Выход — низкотемпературные системы отопления.

В городской квартире трудно применить из-за ограниченности высоты помещения: подъем уровня пола на 15-20 сантиметров будет означать вовсе уж низкие потолки.

Куда более реальный вариант — теплый пол. За счет куда большей площади теплоотдачи и более рационального распределения тепла в объеме комнаты низкотемпературное отопление прогреет комнату лучше, чем раскаленный радиатор.

Как выглядит реализация?

  1. На перемычку и подводку так же, как в предыдущем случае, ставятся дроссели.
  2. Отвод от стояка на отопительный прибор подключается к металлопластиковой трубе, которая укладывается в стяжку на полу.

Чтобы коммуникации не портили внешний вид комнаты, они убираются в короб. Как вариант — врезка в стояк переносится ближе к уровню пола.

Заключение

Дополнительную информацию о работе централизованных систем отопления вы сможете найти в видео в конце статьи. Теплых зим!

Компьютеры уже давно и успешно работают не только на столах офисных работников, но и в системах управления производственными и технологическими процессами. Автоматика успешно управляет параметрами систем теплоснабжения зданий, обеспечивая внутри них...

Заданную необходимую температуру воздуха (иногда для экономии меняющуюся в течение суток).

Но автоматику необходимо грамотно настроить, дать ей исходные данные и алгоритмы для работы! В этой статье рассматривается оптимальный температурный график отопления – зависимость температуры теплоносителя водяной системы отопления при различных температурах наружного воздуха.

Эта тема уже рассматривалась в статье о . Здесь мы не будем рассчитывать теплопотери объекта, а рассмотрим ситуацию, когда эти теплопотери известны из предшествующих расчетов или из данных фактической эксплуатации действующего объекта. Если объект действующий, то лучше взять значение теплопотерь при расчетной температуре наружного воздуха из статистических фактических данных предыдущих лет эксплуатации.

В упомянутой выше статье для построения зависимостей температуры теплоносителя от температуры наружного воздуха решается численным методом система нелинейных уравнений. В этой статье будут представлены «прямые» формулы для вычисления температур воды на «подаче» и на «обратке», представляющие собой аналитическое решение задачи.

О цветах ячеек листа Excel, которые применены для форматирования в статьях, можно прочесть на странице « ».

Расчет в Excel температурного графика отопления.

Итак, при настройке работы котла и/или теплового узла от температуры наружного воздуха системе автоматики необходимо задать температурный график.

Возможно, правильнее датчик температуры воздуха разместить внутри здания и настроить работу системы управления температурой теплоносителя от температуры внутреннего воздуха. Но часто бывает сложно выбрать место установки датчика внутри из-за разных температур в различных помещениях объекта или из-за значительной удаленности этого места от теплового узла.

Рассмотрим пример. Допустим, у нас имеется объект – здание или группа зданий, получающие тепловую энергию от одного общего закрытого источника теплоснабжения – котельной и/или теплового узла. Закрытый источник – это источник, из которого запрещен отбор горячей воды на водоснабжение. В нашем примере будем считать, что кроме прямого отбора горячей воды отсутствует и отбор тепла на нагрев воды для горячего водоснабжения.

Для сравнения и проверки правильности расчетов возьмем исходные данные из вышеупомянутой статьи «Расчет водяного отопления за 5 минут!» и составим в Excel небольшую программу расчета температурного графика отопления.

Исходные данные:

1. Расчетные (или фактические) теплопотери объекта (здания) Q р в Гкал/час при расчетной температуре наружного воздуха t нр записываем

в ячейку D3: 0,004790

2. Расчетную температуру воздуха внутри объекта (здания) t вр в °C вводим

в ячейку D4: 20

3. Расчетную температуру наружного воздуха t нр в °C заносим

в ячейку D5: -37

4. Расчетную температуру воды на «подаче» t пр в °C вписываем

в ячейку D6: 90

5. Расчетную температуру воды на «обратке» t ор в °C вводим

в ячейку D7: 70

6. Показатель нелинейности теплоотдачи примененных приборов отопления n записываем

в ячейку D8: 0,30

7. Текущую (интересующую нас) температуру наружного воздуха t н в °C заносим

в ячейку D9: -10

Значения в ячейках D 3 – D 8 для конкретного объекта записываются один раз и далее не меняются. Значение в ячейке D 8 можно (и нужно) изменять, определяя параметры теплоносителя для различной погоды.

Результаты расчетов:

8. Расчетный расход воды в системе G р в т/час вычисляем

в ячейке D11: =D3*1000/(D6-D7) =0,239

G р = Q р *1000/(t пр t ор )

9. Относительный тепловой поток q определяем

в ячейке D12: =(D4-D9)/(D4-D5) =0,53

q =(t вр t н )/(t вр t нр )

10. Температуру воды на «подаче» t п в °C рассчитываем

в ячейке D13: =D4+0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =61,9

t п = t вр +0,5*(t пр t ор )* q +0,5*(t пр + t ор -2* t вр )* q (1/(1+ n ))

11. Температуру воды на "обратке" t о в °C вычисляем

в ячейке D14: =D4-0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =51,4

t о = t вр -0,5*(t пр t ор )* q +0,5*(t пр + t ор -2* t вр )* q (1/(1+ n ))

Расчет в Excel температуры воды на «подаче»t п и на «обратке»t о для выбранной температуры наружного воздухаt н выполнен.

Сделаем аналогичный расчет для нескольких различных наружных температур и построим температурный график отопления. (О том, как строить графики в Excel можно прочитать .)

Произведем сверку полученных значений температурного графика отопления с результатами, полученными в статье «Расчет водяного отопления за 5 минут!» — значения совпадают!

Итоги.

Практическая ценность представленного расчета температурного графика отопления заключается в том, что он учитывает тип установленных приборов и направление движения теплоносителя в этих приборах. Коэффициент нелинейности теплоотдачи n , оказывающий заметное влияние на температурный график отопления у разных приборов различный.