Главный комплекс гистосовместимости hla. Главный комплекс гистосовместимости (HLA): структура, гены

Антигены гистосовместимости - это гликопротеины, существующие на поверхности всех клеток. Первоначально были определены как главные антигены-мишени в реакциях на трансплантат. Пересадка ткани взрослого донора особи того же вида (аллотрансплантация) или иного вида (ксенотрансплантация) приводит обычно к ее отторжению. Эксперименты по пересадке кожи между разными линиями мышей показали, что отторжение трансплантата обусловлено иммунной реакцией на чужеродные антигены, находящиеся на поверхности его клеток. Позднее было показано, что в этих реакциях участвуют Т-клетки. Реакции направлены против генетически «чужеродных» вариантов гликопротеинов клеточной поверхности, получивших название молекул гистосовместимости (т.е. совместимости тканей).

Главные молекулы гистосовместимости - семейство гликопротеинов, кодируемое генами, составляющими главный комплекс гистосовместимости (МНС - major histocompatibility complex ). В пределах МНС локализованы гены, контролирующие главные трансплантационные антигены и гены, определяющие интенсивность иммунного ответа на тот или иной конкретный антиген, - так называемые Ir-гены (immune response ). Молекулы МНС имеются на поверхности клеток всех высших позвоночных. Впервые они были найдены у мышей и названы антигенами Н2 (histocompatibility-2 ). У человека они носят название HLA (лейкоцитарных, human leucocyte-associated ), так как были первоначально обнаружены на лейкоцитах.



Существует два основных класса молекул МНС, каждый из которых представляет собой набор гликопротеинов клеточной поверхности. Молекулы МНС класса I экспрессируются практически на всех клетках, молекулы класса II - на клетках, участвующих в иммунных ответах (лимфоцитах, макрофагах). Молекулы класса I узнаются цитотоксическими Т-клетками (киллерами), которые должны взаимодействовать с любой клеткой организма, оказавшейся зараженной вирусом, тогда как молекулы класса II узнаются Т-хелперами (Тх), которые взаимодействуют в основном с другими клетками, участвующими в иммунных ответах, такими как В-лимфоциты и макрофаги (антигенпредставляющие клетки).

Согласно клонально-селекционной теории иммунитета , в организме существуют многочисленные группы (клоны) лимфоцитов, генетически запрограммированные реагировать на один или несколько антигенов. Поэтому каждый конкретный антиген оказывает избирательное действие, стимулируя только те лимфоциты, которые имеют сродство к его поверхностным детерминантам.

При первой встрече с антигеном (т.н. первичный ответ ) лимфоциты стимулируются и подвергаются трансформации в бластные формы, которые способны к пролиферации и дифференцировке в иммуноциты. В результате пролиферации увеличивается число лимфоцитов соответствующего клона, «узнавших» антиген. Дифференцировка приводит к появлению двух типов клеток - эффекторных и клеток памяти . Эффекторные клетки непосредственно участвуют в ликвидации или обезвреживании чужеродного материала. К эффекторным клеткам относятся активированные лимфоциты и плазматические клетки. Клетки памяти - это лимфоциты, возвращающиеся в неактивное состояние, но несущие информацию (память) о встрече с конкретным антигеном. При повторном введении данного антигена они способны обеспечивать быстрый иммунный ответ большей интенсивности (т.н.вторичный ответ ) вследствие усиленной пролиферации лимфоцитов и образования иммуноцитов.

В зависимости от механизма уничтожения антигена различают клеточный иммунитет и гуморальный иммунитет.

При клеточном иммунитете эффекторными клетками являются цитотоксические Т-лимфоциты, или лимфоциты-киллеры (убийцы). Они непосредственно участвуют в уничтожении чужеродных клеток других органов или патологических собственных (например, опухолевых) клеток, и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродных тканей в условиях трансплантации или при действии на кожу химических (сенсибилизирующих) веществ, вызывающих повышенную чувствительность (т.н. гиперчувствительность замедленного типа) и другие реакции.

При гуморальном иммунитете эффекторными клетками являются плазматические клетки, которые синтезируют и выделяют в кровь антитела.

Некоторые термины из практической медицины:

· агаммаглобулинемия (agammaglobulinaemia ; а- + гаммаглобулины + греч. haima кровь; син.: гипогаммаглобулинемия, синдром дефицита антител) -- общее название группы болезней, характеризующихся отсутствием или резким снижением уровня иммуноглобулинов в сыворотке крови;

· аутоантигены (ауто- + антигены) -- собственные нормальные антигены организма, а также антигены, возникающие под действием различных биологических и физико-химических факторов, по отношению к которым образуются аутоантитела;

· аутоиммунная реакция -- иммунная реакция организма на аутоантигены;

· аллергия (allergia ; греч. allos другой, иной + ergon действие) -- состояние измененной реактивности организма в виде повышения его чувствительности к повторным воздействиям каких-либо веществ или к компонентам собственных тканей; в основе аллергии лежит иммунный ответ, протекающий с повреждением тканей;

· иммунитет активный иммунитет, возникающий в результате иммунного ответа организма на введение антигена;

· Основными клетками, осуществляющими иммунные реакции, являются Т- и В-лимфоциты (и производные последних – плазмоциты), макрофаги, а также ряд взаимодействующих с ними клеток (тучные клетки, эозинофилы и др.).

· Лимфоциты

· Популяция лимфоцитов функционально неоднородна. Различают три основных вида лимфоцитов: Т-лимфоциты , В-лимфоциты и так называемые нулевые лимфоциты (0-клетки). Лимфоциты развиваются из недифференцированных лимфоидных костномозговых предшественников и при дифференцировке получают функциональные и морфологические признаки (наличие маркеров, поверхностных рецепторов), выявляемые иммунологическими методами. 0-лимфоциты (нулевые) лишены поверхностных маркеров и рассматриваются как резервная популяция недифференцированных лимфоцитов.

· Т-лимфоциты - самая многочисленная популяция лимфоцитов, составляющая 70-90% лимфоцитов крови. Они дифференцируются в вилочковой железе - тимусе (отсюда их название), поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы - лимфатических узлах (глубокая часть коркового вещества), селезенке(периартериальные влагалища лимфоидных узелков), в одиночных и множественных фолликулах различных органов, в которых под влиянием антигенов образуются Т-иммуноциты (эффекторные) и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. Эти рецепторы являются продуктами генов иммунного ответа . Т-лимфоциты обеспечивают клеточный иммунитет, участвуют в регуляции гуморального иммунитета, осуществляют продукцию цитокинов при действии антигенов.

· В популяции Т-лимфоцитов различают несколько функциональных групп клеток: цитотоксические лимфоциты (Тц), или Т-киллеры (Тк), Т-хелперы (Тх), Т-супрессоры (Тс). Тк участвуют в реакциях клеточного иммунитета, обеспечивая разрушение (лизис) чужеродных клеток и собственных измененных клеток (например, опухолевых клеток). Рецепторы позволяют им распознавать белки вирусов и опухолевых клеток на их поверхности. При этом активизация Тц (киллеров) происходит под влиянием антигенов гистосовместимости на поверхности чужеродных клеток.

· Кроме того, Т-лимфоциты участвуют в регуляции гуморального иммунитета с помощью Тх и Тс. Тх стимулируют дифференцировку В-лимфоцитов, образование из них плазмоцитов и продукцию иммуноглобулинов (Ig). Tx имеют поверхностные рецепторы, которые связываются с белками на плазмолемме В-клеток и макрофагов, стимулируя Тх и макрофаги к пролиферации, продукции интерлейкинов (пептидных гормонов), а В-клетки - к продукции антител.

· Таким образом, главной функцией Тх является распознавание чужеродных антигенов (представляемых макрофагами), секреция интерлейкинов, стимулирующих В-лимфоциты и другие клетки для участия в иммунных реакциях.

· Снижение в крови числа Тх ведет к ослаблению защитных реакций организма (эти лица более подвержены инфекциям). Отмечено резкое снижение числа Тх у лиц, инфицированных вирусом СПИДа.

· Тс способны ингибировать активность Тх, В-лимфоцитов и плазмоцитов. Они участвуют в аллергических реакциях, реакциях гиперчувствительности. Тс подавляют дифференцировку В-лимфоцитов.

· Одной из основных функций Т-лимфоцитов является продукция цитокинов , которые оказывают стимулирующее или тормозящее влияние на клетки, участвующие в иммунном ответе (хемотаксические факторы, макрофаги ингибирующий фактор - МИФ, неспецифические цитотоксические вещества и др.).

· Натуральные киллеры . Среди лимфоцитов в крови, кроме вышеописанных Тц, выполняющих функцию киллеров, имеются так называемые натуральные киллеры (Нк, NK ), которые также участвуют в клеточном иммунитете. Они образуют первую линию защиты против чужеродных клеток, действуют немедленно, быстро разрушая клетки. Нк в собственном организме разрушают опухолевые клетки и клетки, инфицированные вирусом. Тц образуют вторую линию защиты, так как для их развития из неактивных Т-лимфоцитов требуется время, поэтому они вступают в действие позже Нк. Нк - это большие лимфоциты диаметром 12-15 мкм, имеют дольчатое ядро и азурофильные гранулы (лизосомы) в цитоплазме.

· Развитие Т- и В-лимфоцитов

· Родоначальником всех клеток иммунной системы является кроветворная стволовая клетка (СКК). СКК локализуются в эмбриональном периоде в желточном мешке, печени, селезенке. В более поздний период эмбриогенеза они появляются в костном мозге и продолжают пролиферировать в постнатальной жизни. Из СКК в костном мозге образуется клетка-предшественник лимфопоэза (лимфоидная мультипотентная родоначальная клетка), которая генерирует два типа клеток: пре-Т-клетки (предшественники Т-клеток) и пре-В-клетки (предшественники В-клеток).

· Дифференцировка Т-лимфоцитов

· Пре-Т-клетки мигрируют из костного мозга через кровь в центральный орган иммунной системы - вилочковую железу (тимус). Еще в период эмбрионального развития в вилочковой железе создается микроокружение, имеющее значение для дифференцировки Т-лимфоцитов. В формировании микроокружения особая роль отводится ретикулоэпителиальным клеткам этой железы, способным к продукции ряда биологически активных веществ. Мигрирующие в вилочковую железу пре-Т-клетки приобретают способность реагировать на стимулы микроокружения. Пре-Т-клетки в вилочковой железе пролиферируют, трансформируются в Т-лимфоциты, несущие характерные мембранные антигены (CD4+, CD8+). Т-лимфоциты генерируют и «поставляют» в кровообращение и в тимусзависимые зоны периферических лимфоидных органов 3 типа лимфоцитов: Тц, Тх и Тс. Мигрирующие из вилочковой железы «девственные» Т-лимфоциты (виргильные Т-лимфоциты) являются короткоживущими. Специфическое взаимодействие с антигеном в периферических лимфоидных органах служит началом процессов их пролиферации и дифференцировки в зрелые и долгоживущие клетки (Т-эффекторные и Т-клетки памяти), составляющие большую часть рециркулирующих Т-лимфоцитов.

· Из вилочковой железы мигрируют не все клетки. Часть Т-лимфоцитов погибает. Существует мнение, что причиной их гибели служит присоединение антигена к антигенспецифическому рецептору. В вилочковой железе нет чужеродных антигенов, поэтому данный механизм может служить для удаления Т-лимфоцитов, способных реагировать с собственными структурами организма, т.е. выполнять функцию защиты от аутоиммунных реакций. Гибель части лимфоцитов является генетически запрограммированной (апоптоз).

· Дифференцировочные антигены Т-клеток . В процессе дифференцировки лимфоцитов на их поверхности появляются специфические мембранные молекулы гликопротеидов. Такие молекулы (антигены) можно обнаружить с помощью специфических моноклональных антител. Получены моноклональные антитела, которые реагируют лишь с одним антигеном клеточной мембраны. С помощью набора моноклональных антител можно идентифицировать субпопуляции лимфоцитов. Имеются наборы антител к дифференцировочным антигенам лимфоцитов человека. Антитела составляют относительно немного групп (или «кластеров»), каждая из которых узнает один единственный белок клеточной поверхности. Создана номенклатура дифференцировочных антигенов лейкоцитов человека, выявляемых моноклональными антителами. Эта CD-номенклатура (CD - cluster of differentiation - кластер дифференцировки) базируется на группах моноклональных антител, реагирующих с одними и теми же дифференцировочными антигенами.

· Получены многоклональные антитела к ряду дифференцировочных антигенов Т-лимфоцитов человека. При определении общей популяции Т-клеток могут быть использованы моноклональные антитела специфичностей CD (CD2, CD3, CDS, CD6, CD7).

· Известны дифференцировочные антигены Т-клеток, которые характерны либо для определенных стадий онтогенеза, либо для различающихся по функциональной активности субпопуляций. Так, CD1 - маркер ранней фазы созревания Т-клеток в вилочковой железе. В процессе дифференцировки тимоцитов на их поверхности экспрессируются одновременно маркеры CD4 и CD8. Однако в последующем маркер CD4 исчезает с части клеток и сохраняется только на субпопуляции, переставшей экспрессировать антиген CD8. Зрелые CD4+ клетки являются Тх. Антиген CD8 экспрессируется примерно на ⅓ периферических Т-клеток, которые созревают из CD4+/CD8+ Т-лимфоцитов. Субпопуляция CD8+ Т-клеток включает цитотоксические и супрессорные Т-лимфоциты. Антитела к гликопротеинам CD4 и CD8 широко используются для того, чтобы различать и разделять Т-клетки соответственно на Тх и Тц.

· Кроме дифференцировочных антигенов, известны специфические маркеры Т-лимфоцитов.

· Т-клеточные рецепторы для антигенов представляют собой антителоподобные гетеродимеры, состоящие из полипептидных α- и β-цепей. Каждая из цепей имеет длину в 280 аминокислот, большая внеклеточная часть каждой цепи свернута в два Ig-подобных домена: один вариабельный (V) и один константный (С). Антителоподобный гетеродимер кодируется генами, которые собираются из нескольких генных сегментов в процессе развития Т-клеток в вилочковой железе.

· Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов.

· Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфический тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совершается в центральных органах иммунитета (тимус, костный мозг или фабрициева сумка у птиц) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение (ретикулярная строма или ретикулоэпителиальные клетки в тимусе).

· Антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов происходят при встрече с антигенами в периферических лимфоидных органах, при этом образуются эффекторные клетки и клетки памяти (сохраняющие информацию о действовавшем антигене).

· Образующиеся Т-лимфоциты составляют пул долгоживущих , рециркулирующих лимфоцитов, а В-лимфоциты - короткоживущих клеток.

66. Хар-ка В-лимфоцитов.

В-лимфоциты являются основными клетками, участвующими в гуморальном иммунитете. У человека они образуются из СКК красного костного мозга, затем поступают в кровь и далее заселяют В-зоны периферических лимфоидных органов - селезенки, лимфатических узлов, лимфоидные фолликулы многих внутренних органов. В крови их содержится 10-30% от всей популяции лимфоцитов.

Для В-лимфоцитов характерно наличие на плазмолемме поверхностных иммуноглобулиновых рецепторов (SIg или MIg) для антигенов. Каждая В-клетка содержит 50000...150000 антигенспецифических молекул SIg. В популяции В-лимфоцитов находятся клетки с различными SIg: большинство (⅔) содержат IgM, меньшее число (⅓) - IgG и около 1-5 % - IgA, IgD, IgE. В плазмолемме В-лимфоцитов имеются также рецепторы для комплемента (С3) и Fc-рецепторы.

При действии антигена В-лимфоциты в периферических лимфоидных органах активизируются, пролиферируют, дифференцируются в плазмоциты, активно синтезирующие антитела различных классов, которые поступают в кровь, лимфу и тканевую жидкость.

Дифференцировка В-лимфоцитов

Предшественники В-клеток (пре-В-клетки) развиваются в дальнейшем у птиц в фабрициевой сумке (bursa), откуда произошло название В-лимфоциты, у человека и млекопитающих - в костном мозге.

Сумка Фабрициуса (bursa Fabricii) - центральный орган иммунопоэза у птиц, где происходит развитие В-лимфоцитов, находится в области клоаки. Для ее микроскопического строения характерно наличие многочисленных складок, покрытых эпителием, в которых расположены лимфоидные узелки, ограниченные мембраной. В узелках содержатся эпителиоциты и лимфоциты на различных стадиях дифференцировки. В период эмбриогенеза в центре фолликула формируется мозговая зона, а на периферии (снаружи от мембраны) - корковая зона, в которую, вероятно, мигрируют лимфоциты из мозговой зоны. В связи с тем что в сумке Фабрициуса у птиц образуются исключительно В-лимфоциты, она является удобным объектом для изучения строения и иммунологических характеристик этого вида лимфоцитов. Для ультрамикроскопического строения В-лимфоцитов характерно наличие в цитоплазме групп рибосом в виде розеток. Эти клетки имеют более крупные ядра и менее плотный хроматин, чем у Т-лимфоцитов, в связи с увеличением содержания эухроматина.

В-лимфоциты отличаются от других типов клеток способностью синтезировать иммуноглобулины. Зрелые В-лимфоциты экспрессируют Ig на клеточной мембране. Такие мембранные иммуноглобулины (MIg) функционируют как антигенспецифические рецепторы.

Пре-В-клетки синтезируют внутриклеточный цитоплазматический IgM, но не имеют поверхностных иммуноглобулиновых рецепторов. Костномозговые виргильные В-лимфоциты имеют IgM-рецепторы на своей поверхности. Зрелые В-лимфоциты несут на своей поверхности иммуноглобулиновые рецепторы различных классов - IgM, IgG и др.

Дифференцированные В-лимфоциты поступают в периферические лимфоидные органы, где при действии антигенов происходят пролиферация и дальнейшая специализация В-лимфоцитов с образованием плазмоцитов и В-клеток памяти (ВП).

В ходе своего развития многие В-клетки переключаются с выработки антител одного класса на выработку антител других классов. Этот процесс называется переключением класса. Все В-клетки начинают свою деятельность по синтезу антител с выработки молекул IgM, которые встраиваются в плазматическую мембрану и служат рецепторами для антигена. Затем, еще до взаимодействия с антигеном, большая часть В-клеток переходит к одновременному синтезу молекул IgM и IgD. Когда виргильная В-клетка переходит от выработки одного лишь мембраносвязанного IgM к одновременному синтезу мембраносвязанных IgM и IgD, переключение происходит, вероятно, благодаря изменению процессинга РНК.

При стимуляции антигеном некоторые из этих клеток активируются и начинают выделять антитела IgM, преобладающие в первичном гуморальном ответе.

Другие стимулированные антигеном клетки переключаются на выработку антител классов IgG, IgE или IgA; В-клетки памяти несут эти антитела на своей поверхности, а активные В-клетки их секретируют. Молекулы IgG, IgE и IgA в совокупности называются антителами вторичных классов, так как они, по-видимому, образуются только после антигенной стимуляции и преобладают во вторичных гуморальных ответах.

При помощи моноклональных антител удалось выявить определенные дифференцировочные антигены, которые еще до появления цитоплазматических µ-цепей позволяют отнести несущий их лимфоцит к В-клеточной линии. Так, антиген CD19 является самым ранним маркером, позволяющим отнести лимфоцит к В-клеточному ряду. Он присутствует на пре-В-клетках в костном мозге, на всех периферических В-клетках.

Антиген, выявляемый моноклональными антителами группы CD20, специфичен для В-лимфоцитов и характеризует более поздние стадии дифференцировки.

На гистологических срезах антиген CD20 выявляется на В-клетках герминативных центров лимфоидных узелков, в корковом веществе лимфатических узлов. В-лимфоциты несут также ряд других (например, CD24, CD37) маркеров.

67. Макрофаги играют важную роль как в естественном, так и в приобретенном иммунитете организма. Участие макрофагов в естественном иммунитете проявляется в их способности к фагоцитозу и в синтезе ряда активных веществ - пищеварительных ферментов, компонентов системы комплемента, фагоцитина, лизоцима, интерферона, эндогенного пирогена и др., являющихся основными факторами естественного иммунитета. Их роль в приобретенном иммунитете заключается в пассивной передаче антигена иммунокомпетентным клеткам (Т- и В-лимфоцитам), в индукции специфического ответа на антигены. Макрофаги также участвуют в обеспечении иммунного гомеостаза путем контроля над размножением клеток, характеризующихся рядом отклонений от нормы (опухолевые клетки).

Для оптимального развития иммунных реакций при действии большинства антигенов необходимо участие макрофагов как в первой индуктивной фазе иммунитета, когда они стимулируют лимфоциты, так и в его конечной фазе (продуктивной), когда они участвуют в выработке антител и разрушении антигена. Антигены, фагоцитированные макрофагами, вызывают более сильный иммунный ответ по сравнению с теми, которые не фагоцитированы ими. Блокада макрофагов введением в организм животных взвеси инертных частиц (например, туши) значительно ослабляет иммунный ответ. Макрофаги способны фагоцитировать как растворимые (например, белки), так и корпускулярные антигены. Корпускулярные антигены вызывают более сильный иммунный ответ.

Некоторые виды антигенов, например пневмококки, содержащие на поверхности углеводный компонент, могут быть фагоцитированы лишь после предварительнойопсонизации . Фагоцитоз значительно облегчается, если антигенные детерминанты чужеродных клеток опсонизированы, т.е. соединены с антителом или комплексом антитела и комплемента. Процесс опсонизации обеспечивается присутствием на мембране макрофага рецепторов, которые связывают часть молекулы антитела (Fc-фрагмент) или часть комплемента (С3). С мембраной макрофага у человека непосредственно могут связываться только антитела класса IgG, когда они находятся в комбинации с соответствующим антигеном. IgM могут связываться с мембраной макрофага в присутствии комплемента. Макрофаги способны «распознавать» растворимые антигены, например гемоглобин.

В механизме распознавания антигена выделяют два этапа, тесно связанных друг с другом. Первый этап заключается в фагоцитозе и переваривании антигена. Во втором этапе в фаголизосомах макрофага накапливаются полипептиды, растворимые антигены (сывороточные альбумины) и корпускулярные бактериальные антигены. В одних и тех же фаголизосомах может быть обнаружено несколько введенных антигенов. Изучение иммуногенности различных субклеточных фракций выявило, что наиболее активное антителообразование вызывает введение в организм лизосом. Антиген обнаруживается также в мембранах клеток. Выделяемая макрофагами большая часть переработанного материала антигенов оказывает стимулирующее влияние на пролиферацию и дифференцировку клонов Т- и В-лимфоцитов. Небольшое количество антигенного материала может длительное время сохраняться в макрофагах в виде химических соединений, состоящих не менее чем из 5 пептидов (возможно, в связи с РНК).

В В-зонах лимфатических узлов и селезенки имеются специализированные макрофаги (дендритные клетки), на поверхности многочисленных отростков которых сохраняются многие антигены, попадающие в организм и передающиеся соответствующим клонам В-лимфоцитов. В Т-зонах лимфатических фолликулов расположены интердигитирующие клетки, влияющие на дифференцировку клонов Т-лимфоцитов.

Таким образом, макрофаги принимают непосредственное активное участие в кооперативном взаимодействии клеток (Т- и В-лимфоцитов) в иммунных реакциях организма.

Методом хромосомной гибридизации установлено, что система МНС локализуется на коротком плече 6 аутосомной хромосомы человека, а у мышей – на 17 хромосоме.

Рис. 1. Схематическое изображение хромосомы 6.

Главный комплекс гистосовместимости занимает значительный участок ДНК, включающий до 4*106 пар оснований или около 50 генов. Основной особенностью комплекса является значительная полигенность (наличие нескольких неаллельных близкосцепленных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции) и ярковыраженный полиморфизм - присутствие многих аллельных форм одного и того же гена. Все гены комплекса наследуются по кодоминантному типу.

Полигенность и полиморфизм (структурная вариабельность) определяют антигенную индивидуальность особей данного вида.

Все гены MHC делятся на три группы. Каждая группа включает гены, контролирующие синтез полипептидов одного из трех классов MHC (I, II и III) (рис. 3.5). Между молекулами первых двух классов имеются выраженные структурные различия, но при этом по общему плану строения все они однотипны. В то же время между продуктами генов класса III, с одной стороны, и классов I и II, с другой стороны, не найдено никакого функционального или структурного сходства. Группа из более чем 20 генов класса III вообще функционально обособлена - некоторые из этих генов кодируют, например, белки системы комплемента (C4 , C2 , фактор B) или молекулы, участвующие в процессинге антигена.

Область локализации генов, кодирующих комплекс молекул MHC мыши, обозначается как H-2 , для человека - HLA .

HLA-A , HLA-B и HLA-С - локусы хромосомы, гены которых контролируют синтез "классических" молекул (антигенов) I класса MHC человека и кодируют тяжелую цепь (альфа-цепь). Область этих локусов занимает участок длиной более 1500 т.п.н.

Синтез молекул (антигенов) II класса MHC человека контролируют гены области HLA-D , которые кодируют не менее шести вариантов альфа- и десяти вариантов бета-цепей (рис.3.5). Эти гены занимают три локуса HLA-DP , HLA-DQ и HLA-DR . К продуктам их экспрессии относится большинство молекул II класса.

Кроме того, к области HLA-D относятся гены HLA-LMP и HLA-TAP . Низкомолекулярные белки, контролируемые этими генами, принимают участие в подготовке чужеродного антигена к презентации Т-клеткам.

Гены локусов человека HLA-A , HLA-B и HLA-С кодируют тяжелую цепь (альфа-цепь) "классических" молекул I класса MHC. Кроме того, найдены многочисленные дополнительные гены вне этих локусов, кодирующие "неклассические" молекулы MHC класса I и расположенные в таких локусах HLA , как HLA-X HLA-F, HLA-E, HLA-J, HLA-H, HLA-G, HLA-F.

Молекулы главного комплекса гистосовместимости.

Методами рентгеноструктурного анализа выяснена пространственная организация молекул MHC:

Молекулы MHC класса I (аллельные варианты HLA: HLA-A , HLA-B , HLA-С) экспрессируются на клеточной поверхности и представляют собой гетеродимер, состоящий из одной тяжелой альфа-цепи (45 кДа), нековалентно связанной с однодоменным бета2-микроглобулином (12 кДа), который встречается также в свободной форме в сыворотке крови их называют классическими трансплатационными антигенами.

Тяжелая цепь состоит из внеклеточной части (образующей три домена: альфа1-, альфа2- и альфа3-домены), трансмембранного сегмента и цитоплазматического хвостового домена. Каждый внеклеточный домен содержит примерно 90 аминокислотных остатков, и все их вместе можно отделить от клеточной поверхности путем обработки папаином.

В альфа2- и альфа3-доменах имеется по одной внутрицепочечной дисульфидной связи, замыкающей в петлю 63 и 68 аминокислотных остатков, соответственно.

Домен альфа3 гомологичен по аминокислотной последовательности C-доменам иммуноглобулинов, и конформация альфа3-домена напоминает складчатую структуру доменов иммуноглобулинов.

Бета2-микроглобулин (бета2-m) необходим для экспрессии всех молекул MHC класса I и имеет неизменную последовательность, но у мыши встречается в двух формах, различающихся заменой одной аминокислоты в позиции 85. По структуре этот белок соответствует C-домену иммуноглобулинов. Бета2-микроглобулин способен также нековалентно взаимодействовать с неклассическими молекулами класса I , например, с продуктами генов CD1 .

В зависимости от вида и гаплотипа внеклеточная часть тяжелых цепей MHC класса I в разной степени гликозилирована.

Трансмембранный сегмент MHC I класса состоит из 25 преимущественно гидрофобных аминокислотных остатков и пронизывает липидный бислой, вероятнее всего, в альфа-спиральной конформации.

Основное свойство молекул I класса - связывание пептидов (антигенов) и представление их в иммуногенной форме для Т-клеток - зависит от доменов альфа1 и альфа2. Эти домены имеют значительные альфа- спиральные участки, которые при взаимодействии между собой образуют удлиненную полость (щель), служащую местом связывания процессированного антигена. Образовавшийся комплекс антигена с альфа1- и альфа2-доменами и определяет его иммуногенность и возможность взаимодействовать с антигенраспознающими рецепторами Т-клеток.

К классу I относятся антигены A , антигены AB и антигены AC .

Антигены класса I присутствуют на поверхности всех ядросодержащих клеток и тромбоцитов.

Молекулы MHC класса II являются гетеродимерами, построенными из нековалентно сцепленных тяжелой альфа- и легкой бета-цепей.

Ряд фактов указывает на близкое сходство альфа- и бета-цепей по общему строению. Внеклеточная часть каждой из цепей свернута в два домена (альфа1, альфа2 и бета1, бета2, соответственно) и соединена коротким пептидом с трансмембранным сегментом (длиной примерно 30 аминокислотных остатков). Трансмембранный сегмент переходит в цитоплазматический домен, содержащий примерно 10-15 остатков.

Антигенсвязывающая область молекул MHC класса II формируется альфа-спиральными участками взаимодействующих цепей подобно молекулам I класса, но при одном существенном отличии: антигенсвязывающая полость молекул MHC класса II формируется не двумя доменами одной альфа-цепи, а двумя доменами разных цепей - доменами альфа1 и бета1.

Общее структурное сходство между двумя классами молекул MHC очевидно. Это - однотипность пространственной организации всей молекулы, количество доменов (четыре), конформационное строение антигенсвязывающего участка.

В структуре молекул II класса антигенсвязывающая полость открыта больше, чем у молекул I класса, поэтому в ней могут поместиться более длинные пептиды.

Важнейшая функция антигенов MHC (HLA) класса II - обеспечение взаимодействия между Т-лимфоцитами и макрофагами в процессе иммунного ответа. Т-хелперы распознают чужеродный антиген лишь после его переработки макрофагами, соединения с антигенами HLA класса II и появления этого комплекса на поверхности макрофага.

Антигены класса II присутствуют на поверхности В-лимфоцитов, активированных Т-лимфоцитов, моноцитов, макрофагов и дендритных клеток.

Гены MHC класса II кодируют связанные с мембраной трансмембранные пептиды (гликопротеины). Молекулы антигенов гистосовместимости класса II (DR , DP , DQ) также как и класса I являются гетеродимерными белками, состоящими из тяжелой альфа-цепи (33 кДа) и легкой бета-цепи (26 кДа), кодируемые генами HLA -комплекса. Обе цепи формируют по два домена: альфа1 и альфа2, а также бета1 и бета2.

Продукты MHC класса II ассоциированы, главным образом, с B- лимфоцитами и макрофагами и служат распознаваемыми структурами для T- хелперов.

Гены MHC класса III, расположенные в пределах группы генов MHC или тесно сцепленные с ней, контролируют некоторые компоненты комплемента: C4 и C2 , а также фактор B , находящиеся скорее в плазме крови, чем на поверхности клеток. И в отличие от молекул MHC классаI и класса II не не участвуют в контроле иммунного ответа.

Термин MHC класса IV употребляется для описания некоторых локусов, сцепленных с MHC.

Изучение экспрессии молекул I и II классов MHC на различных типах клеток выявило более широкое тканевое распространение молекул I класса в сравнении с молекулами II класса. Если молекулы I класса экспрессируются практически на всех изученных клетках, то молекулы II класса экспрессируются, в основном, на иммунокомпетентных клетках или клетках, принимающих относительно неспецифическое участие в формировании иммунного ответа, таких, как клетки эпителия.

В табл. 1 представлены данные о характере тканевого распределения молекул МНС у мышей и человека.

табл. 1 Тканевое распределение молекул I и II классов МНС у мышей и человека

Тип клеток

Н-2 коплекс мышей

HLA комплекс человека

Класс I

Класс II

Класс I

Класс II

Тимоциты

Макрофаги

Гранулоциты

Ретикулоциты

Эритроциты

Тромбоциты

Фибробласты

Эпителиальные клетки

Эпидермальные клетки

Сердечная мышца

Скелетная мышца

Плацента

Сперматозоиды

Яйцеклетки

Трофобласт

Бластоциты

Эмбриональная ткань

Представительство молекул I класса почти на всех типах клеток коррелирует с доминирующей ролью этих молекул в отторжении аллогенного трансплантата. Молекулы II класса менее активны в процессе тканевого отторжения. Сравнительные данные о степени участия молекул I и II классов MHC в некоторых иммунных реакциях демонстрируют, что некоторые свойства МНС в большей степени связаны с одним из классов, тогда как другие являются характерной особенностью обоих классов(табл. 2)

Табл. 2 Участие молекул I и II классов МНС в некоторых иммунных реакциях

1877 0

Структура молекул главного комплекса гистосовместимости I класса

На рис. 9.3, А показана общая схема молекулы главного комплекса гистосовместимости (МНС) I класса человека или мыши. Каждый ген МНС I класса кодирует трансмембранный гликопротеин, молекулярной массой около 43 кДа, который обозначается как α или тяжелая цепь. Он включает три внеклеточных домена: α1, α2 и α3. Каждая молекула МНС I класса экспрессируется на клеточной поверхности в нековалентной связи с инвариантным полипептидом , называемым β2-микроглобулином (β2-m молекулярная масса 12 кДа), который кодируется на другой хромосоме.

Рис. 9.3. Разные изображения молекулы главного комплекса гистосовместимости I класса

Он имеет структуру, гомологичную единичному домену Ig, и в самом деле является представителем этого суперсемейства. Таким образом, на клеточной поверхности структура МНС I класса плюс β2m имеет вид четырехдоменнои молекулы, в которой к мембране примыкают домен α3 молекулы МНС I класса и β2m.

Последовательности различных аллельных форм молекул главного комплекса гистосовместимости I класса очень схожи. Различия аминокислотных последовательностей среди молекул МНС сосредоточены на ограниченном участке их внеклеточных доменов α1 и α2. Таким образом, индивидуальная молекула МНС I класса может быть разделена на неполиморфную, или инвариантную, область (одинаковую для всех аллельных форм 1 класса) и полиморфную, или вариабельную, область (уникальную последовательность для данного аллеля). Т-клеточные молекулы CD8 связываются с инвариантными областями всех молекул главного комплекса гистосовместимости I класса.

Все молекулы МНС I класса, подвергнутые рентгеновской кристаллографии, имеют одинаковую общую структуру, изображенную на рис. 9.3, Б и В. Наиболее интересной особенностью строения молекулы является то, что максимально удаленная от мембраны часть молекулы, состоящая из доменов α1 и α2, имеет глубокую бороздку или полость. Эта полость в молекуле МНС I класса является местом связывания пептидов. Полость напоминает корзину с неровным дном (сплетенную из аминокислотных остатков в виде плоской β-складчатой структуры), а окружающие стенки представлены α-спиралями. Полость закрыта с обоих концов, поэтому в нее вмещается цепочка, состоящая из восьми или девяти аминокислотных последовательностей.

Сравнивая последовательности и структуру полости у разных молекул главного комплекса гистосовместимости I класса, можно обнаружить, что дно каждой из них различно и состоит из нескольких карманов, специфичных для каждого аллеля (рис. 9.3, Г). Форма и заряд этих карманов на дне полости помогают определить, какие пептиды связываются с каждой аллельной формой молекулы МНС. Карманы также помогают закрепить пептиды в таком положении, в котором они могут распознаваться специфичными TCR. На рис. 9.3, Г и 8.2 показано взаимодействие пептида, размещенного в полости, и участков молекулы МНС I класса с Т-клеточным рецептором.

Центр связанного пептида - единственная часть белка, не спрятанная внутри молекулы главного комплекса гистосовместимости, - взаимодействует с CDR3-TCR α и β, которые являются наиболее вариабельными в Т-клеточном рецепторе. Это означает, что для распознавания пептида TCR необходим контакт с небольшим количеством аминокислот центра пептидной цепочки.

Отдельная молекула МНС I класса может связываться с разными пептидами, но преимущественно с теми, которые обладают определенными (специфичными) мотивами (последовательностями). Такими специфичными последовательностями являются инвариантно расположенные 8 - 9 аминокислотных остатков (якорные последовательности), обладающие высоким сродством к аминокислотным остаткам в пептидсвязывающей полости данной молекулы МНС. При этом аминокислотные последовательности в позициях, не являющихся якорными, могут быть представлены любым набором аминокислотных остатков.

Так, например, человеческая молекула I класса HLA-А2 связывается с пептидами, имеющими во второй позиции лейцин, а в девятой - валин; в отличие от нее другая молекула HLA-A связывает только белки, у которых в якорную последовательность входят фенилаланин или тирозин в позиции 5 и лейцин в позиции 8. Другие позиции в связываемых пептидах могут быть заполнены любыми аминокислотами.

Таким образом, каждая из молекул главного комплекса гистосовместимости может связываться с большим количеством пептидов, обладающих различными аминокислотными последовательностями. Это помогает объяснить, почему ответы, опосредованные Т-клетками, могут развиться, за редким исключением, по меньшей мере к одному эпитопу почти всех белков и почему случаи отсутствия иммунного ответа на белковый антиген очень редки.

Структура молекул главного комплекса гистосовместимости II класса

Гены α и β МНС II класса кодируют цепи массой около 35000 и 28000 Да соответственно. На рис. 9.4, А показано, что молекулы МНС II класса, как и I класса, являются трансмембранными гликопротеинами с цитоплазматическими «хвостами» и внеклеточными доменами, похожими на Ig; домены обозначают α1, α2, β1, и β2.

Молекулы главного комплекса гистосовместимости II класса также являются членами суперсемейства иммуноглобулинов. Как и у молекул МНС I класса, в состав молекулы МНС II класса входят вариабельные, или полиморфные (различные у разных аллелей), и инвариабельные, или неполиморфные (общие для всех аллелей), области. T-клеточная молекула CD4 прикрепляется к неизменяемой части всех молекул главного комплекса гистосовместимости II класса.


Рис. 9.4. Разные изображения молекулы главного комплекса гистосовместимости II класса

На вершине молекулы МНС II класса также есть выемка или полость, способная связываться с пептидами (рис. 9.4, Б и В), которая структурно аналогична полости молекулы МНС I класса. Однако в молекуле главного комплекса гистосовместимости II класса полость формируется путем взаимодействия доменов разных цепочек, а и р. На рис. 9.4, В показано, что дно полости молекулы МНС II класса состоит из восьми β-складок, причем домены α1 и β1 образуют по четыре из них каждый; спиральные фрагменты доменов α1 и β1 формируют каждый по одной стенке полости.

В отличие от полости молекулы МНС I класса полость молекулы главного комплекса гистосовместимости II класса открыта с обеих сторон, что позволяет связывать более крупные белковые молекулы. Таким образом, полость молекулы МНС II класса может связывать пептиды, длина которых варьирует от 12 до 20 аминокислот в линейной цепочке, при этом концы пептида оказываются за пределами полости. На рис. 9.4, Г показано, что TCR взаимодействует не только с пептидом, связанным с молекулой МНС II класса, но и с фрагментами самой молекулы главного комплекса гистосовместимости II класса.

Пептиды, которые связываются с различными молекулами МНС II класса, также должны обладать определенными мотивами (последовательностями); поскольку длина пептидов в этом случае более вариабельна, чем у пептидов, которые могут прикрепляться к молекуле МНС I класса, мотивы чаше располагаются в центральной области пептида, т.е. в том месте, которое соответствует внутренней поверхности полости молекулы главного комплекса гистосовместимости II класса.

Р.Койко, Д.Саншайн, Э.Бенджамини

ГЕНЕТИКА ГЛАВНОГО КОМПЛЕКСА ГИСТОСОВМЕСТИМОСТИ

МНС (Major Histocompatibility Complex) - главный комплекс гистосовместимости - система генов, кодирующих антигены, определяющих функционирование иммунной системы

HLA (Human Leucocyte Antigen) - главный комплекс гистосовместимости человека

История открытия

Открытие МНС.

Нобелевская премия 1980 г.

Жан Доссе

Открыл первый антиген гистосовместимости человека (HLA)

Джордж Снелл

Открыл антигены гистосовместимости у мыши (комплекс Н-2)

Барух Бенацерраф

Открыл гены иммунного ответа (Ir-гены)

Функции МНС

  • · Распознавание «свой - чужой» - реакция отторжения трансплантата, РТПХ (реакция трансплантат против хозяина)
  • · Регуляция взаимодействий клеток иммунной системы - рестрикция вовлечения в иммунный ответ лимфоцитов, через презентацию АГ
  • · Регуляция силы иммунного ответа на антиген - гены иммунного ответа (Ir) - от англ. immune response

ХАРАКТЕРИСТИКИ МНС

Гены комплекса MHC (в отличие от генов TCR и Ig) не подвергаются рекомбинации.

Механизм их приспособления к вариабельности (неограниченному множеству потенциальных АГ) заключается в их генетическом полиморфизме, полигенности и кодоминантном типе наследования

ПОЛИМОРФИЗМ

Существование большого количества различных специфичностей HLA-генов в пределах каждого локуса. Гены отличаются между собой по нуклеотидным последовательностям, входящим в вариабельный участок ДНК

ПОЛИГЕННОСТЬ

Наличие нескольких неаллельных близкосцепленных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции

ПОЛИГЕННОСТЬ и ПОЛИМОРФИЗМ

Система HLA, включает гены

1 класса: А, В, С; 2 класса: DR, DP, DG

ГЕНЕТИЧЕСКАЯ КАРТА МНС

Номер хромосомы человек - 6р 21.1-21.3

Гены MHC делятся на три группы.

Каждая группа включает гены, контролирующие синтез полипептидов одного из трех классов MHC

· MHC-I класс

Гены групп HLA-A, HLA-B и HLA-C кодируют молекулы MHC класса I.

· MHC-II класс

Гены групп HLA-DP, HLA-DQ и HLA-DR кодируют молекулы MHC класса II. гистосовместимость генетический полиморфизм вирусный

  • · MHC-III обозначает область между MHC-I и MHC-II, здесь картированы гены, кодирующие некоторые компоненты системы комплемента (C4a и C4b, С2, фактора В), цитокинов - (TNF-б и лимфотоксина), 21-гидроксилазы (фермента, участвующего в биосинтезе стероидных гормонов) и др.
  • · Неклассические гены не принадлежат ни к одному из классов MHC. Описано 6 таких генов в области расположения генов MHC-I (Е, F, G, Н, J, X), и 6 - в области MHC-II (DM, DO, CLIP, TAP, LMP, LNA)

НАСЛЕДОВАНИЕ МНС

Гены MHC кодоминантны, т.е. одновременно экспрессируются гены материнской и отцовской хромосом. Генов MHC-I по 3 (А, В, С) в каждой из гомологичных хромосом, генов MHC-II - также по 3 (DP, DQ, DR); следовательно, если у матери и отца нет одинаковых аллелей, то каждый человек имеет как минимум 12 различных основных аллелей каждого гена MHC классов I и II, вместе взятых.

Кодоминантность

Известно около 2000 аллельных генов.

Аллели HLA I класса - более 900

Аллели HLA II класса - более 600

Продукты генов МНС играют центральную роль в распознавании «свой-чужой» при иммунном реагировании

СТРОЕНИЕ

классических МНС

Класс I

Класс II

ЛОКУСЫ ЛОКУСЫ

А, В, С DP, DQ, DR

МНС I класса

Молекула I класса состоит из 2-х цепей. Тяжелой б-цепи и легкой в2-микроглобулина

б-цепь, включает три фрагмента: внеклеточный, трансмембранный и цитоплазматический.

Внеклеточный содержит 3 домена - б1, б2 и б3. Связывание антигенного пептида происходит в щели, образованной б1- и б2-доменами.

Экзонная организация генов, кодирующих б-цепь молекул I класса

  • 1 экзон, кодирующий сигнальный пептид,
  • 4 экзона, кодирующие 3 внешних и трансмембранный домены,
  • 2 экзона, кодирующие небольшой цитоплазматический домен

Экспрессия и функции МНС 1 класса

Экспрессия антигены представлены на всех клетках, тканях и органах, поэтому они являются главными трансплантационными антигенами.

  • · Реакция отторжения трансплантата;
  • · Рестрикция активности цитотоксических реакций Т-киллеров.

Презентация АГ

MHC-I «обслуживают» зону цитозоля, сообщающегося через ядерные поры с содержимым ядра. Здесь происходит фолдинг синтезированных белковых молекул.

При возникновении ошибок (в том числе и при синтезе вирусных белков) белковые продукты расщепляются в мультипротеазных комплексах (протеосомы). Образующиеся пептиды связываются с молекулами MHC-I, которые представляют T-лимфоцитам внутриклеточно образующиеся пептидные АГ. Поэтому CD8+ T-лимфоциты, которые распознают комплексы АГ с MHC-I, участвуют в первую очередь в защите от вирусных, а также внутриклеточных бактериальных инфекций

Этапы подготовки вирусных белков к взаимодействию с молекулами I класса главного комплекса гистосовместимости

I этап - разрушение вирусных белков, находящихся в цитозоле, с помощью протеазного комплекса - протеосомы.

II этап - транспорт образовавшихся пептидов во внутреннее пространство эндоплазматического ретикулума с помощью ТАР-1 и ТАР-2, образующих гетеродимер на эндоплазматической мембране.

III этап - встреча транспортируемых пептидов с молекулами I класса МНС. Взаимодействие пептида с молекулой I класса приводит к отсоединению калнексина. Образовавшийся комплекс пептид: молекула I класса готов к дальнейшему транспорту к плазматической мембране.

IV этап - комплекс через аппарат Гольджи транспортируется к клеточной поверхности, вирусный пептид в комплексе с молекулой I класса МНС становится доступным (иммуногенным) для его распознавания TCR

МНС II класса

Молекула II класса гетеродимер из двух нековалентно связанных цепей б и в, каждая из которых включает два домена: б1, б2 и в1, в2 (соответственно). Антигенсвязывающую областьобразуют б1- и в1-домены.

Экзонная организация генов, кодирующих б и в-цепи молекул II класса

  • 1 экзон кодирует лидерную последовательность.
  • 2 и 3 экзоны - первые (б-1 или в-1) и вторые (б-2 или в-2) внешние домены соответственно.
  • 4 экзон кодирует трансмембранный участок и часть цитоплазматического фрагмента.
  • 5 и 6 экзон - цитоплазматический «хвост»

Экспрессия и функции МНС II класса

Экспрессия антигены представлены на макрофагах, В-лимфоцитах и активированных Т-лимфоцитах.

Реакция трансплантат против хозяина

Рестрикция взаимодействий:

  • · Т-h1
  • · Т-h2

MHC-II. Зона «обслуживания» связана с внеклеточной средой и с клеточными органоидами (аппарат Гольджи, ЭПС, лизосомы, эндосомы и фагосомы).

Пептиды, образующиеся в данной зоне, имеют внеклеточное происхождение - это продукты протеолиза белков, захваченных клеткой посредством эндоцитоза или фагоцитоза. Молекулы MHC-II с помощью кальнексина экспонируются внутрь везикул (эндосом или фаголизосом) и только здесь, связавшись с пептидным АГ, принимают необходимую конформацию для дальнейшей экспрессии на мембране клетки.

Таким образом, молекулы MHC-II осуществляют представление АГ при развитии иммунных реакций на внеклеточные инфекции. Главную роль в этих реакциях играют CD4+ T-лимфоциты, распознающие АГ в комплексе с MHC-II. Этапы подготовки вирусных белков к взаимодействию с молекулами II класса главного комплекса гистосовместимости.

I этап - поглощение бактерий или их токсинов фагоцитирующей, способной к презентации антигена клеткой и разрушение захваченного материала до отдельных пептидов в фаголизосомах.

II этап - во внутреннем пространстве ЭПР происходит сборка молекул II класса, которые до встречи с пептидом комплексированы со с инвариантной цепью (Ii). Этот белок защищает молекулу II класса от случайной встречи с бактериальными пептидами в эндоплазматическом ретикулуме. Комплекс молекулы II класса с Ii покидает эндоплазматический ретикулум в составе вакуоли.

III этап - вакуоль, содержащая комплекс молекулы II класса с Ii, сливается с фаголизосомой. Протеазы разрушают Ii белок и снимают запрет на взаимодействие МНС II с бактериальными пептидами. Комплекс пептид + МНС II в составе секреторной вакуоли перемещается к мембране. Результат - экспрессия АГ пептида в комплексе с МНС II класса на клеточной поверхности.

Это обеспечивает доступность АГ пептида для TCR Т-клеток.

СРАВНЕНИЕ МНС I и II класса

Строение молекул HLA класса II принципиально сходно со строением молекул I класса, несмотря на различие в составе образующих их субъединиц.

ТМ - трансмембранный домен, ЦИТ - цитоплазматический домен, ВК - внеклеточный домен

Экспрессия на клеточной мембране

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФГБОУ ВПО «Московская государственная академия ветеринарной медицины и биотехнологии имени К.И. Скрябина»

Кафедра Иммунологии

На тему: «Главный комплекс гистосовместимости, его основные биологические функции»

Выполнила:

Студентка 2 курса ФВМ 14 группы СО

Матвеева О.В.

Москва 2014г.

Введение

2. МНС функции

4. МНС 1 класса

5. МНС 2 класса

6. МНС 3 класса

Введение

Развитие медицины на некотором этапе показало зависимость процессов, протекающих в организме от особенностей генетического строения. Как выяснилось, закономерность этих процессов заложена в структуре молекулы ДНК. Изучая такие закономерности, можно прогнозировать заболевания, определять риск и предрасположенность к данному заболеванию, разрабатывать профилактические мероприятия. Весьма распространенными заболеваниями являются инфекционные, поэтому их изучение имеет значительное практическое применение. В данной работе изучается зависимость наличия тех или иных совокупностей генов и ряда инфекционных заболеваний.

Открытие и исследование системы гистосовместимости человека HLA, МНС у животных, (Human Leukocyte Antigen - человеческий антиген лейкоцитов) является одним из важнейших достижений медицины и биологии ХХ века. Знания в этой области накапливаются чрезвычайно быстро. Так, первый антиген системы HLA-MAK - был открыт в 1954 г. Доссе, а в настоящее время уже установлено более 100 антигенов. Система HLA является одной из наиболее изученных среди сложных генетических систем человека, и МНС у животных. Столь быстрые темпы накопления знаний обусловлены значением изучения данной системы для решения таких важных проблем медицины, как трансплантация органов и тканей, борьба с онкологическими и аутоиммунными заболеваниями.

В последние годы было установлено, что система гистосовместимости принимает непосредственное участие в регуляции иммунного ответа, и сами гены иммунного ответа входят в состав этой системы или тесно связаны с нею. Сформировалось также представление о роли антигенов системы HLA в развитии кооперативного иммунного ответа и поддержании иммунологического гомеостаза в целом.

1. Главный комплекс гистосовместимости (МНС)

Главный комплекс гистосовместимости - это группа генов и кодируемых ими антигенов клеточной поверхности, которые играют важнейшую роль в распознавании чужеродного и развитии иммунного ответа.

Открытие MHC произошло при исследовании вопросов внутривидовой пересадки тканей. Генетические локусы, ответственные за отторжение чужеродных тканей, образуют в хромосоме область, названную главным комплексом гистосовместимости (MHC)

Затем, первоначально в гипотетической, на основании клеточной феноменологии, а затем в экспериментально хорошо документированной форме с использованием методов молекулярной биологии было установлено, что Т-клеточный рецептор распознает не собственно чужеродный антиген, а его комплекс с молекулами, контролируемыми генами главного комплекса гистосовместимости. При этом и молекула MHC и фрагмент антигена контактируют с ТКР.

MHC кодирует два набора высокополиморфных клеточных белков, названных молекулами MHC класса I и класса II. Молекулы класса I способны связывать пептиды из 8-9 аминокислотных остатков, молекулы класса II - несколько более длинные.

Высокий полиморфизм молекул MHC, а также способность каждой антигенпрезентирующей клетки (АПК) экспрессировать несколько разных молекул MHC обеспечивают возможность презентации T-клеткам множества самых различных антигенных пептидов.

Следует отметить, что хотя молекулы MHC и называются обычно антигенами, они проявляют антигенность только в том случае, когда распознаются иммунной системой не собственного, а генетически иного организма, например, при аллотрансплантации органов.

Наличие в МНС генов, большинство из которых кодирует иммунологически значимые полипептиды, заставляет думать, что этот комплекс эволюционно возник и развивался специально для осуществления иммунных форм защиты.

Существуют еще и молекулы MHC класса III, но молекулы MHC класса I и молекулы MHC класса II являются наиболее важными в иммунологическом смысле.

ген высокополиморфный иммунный клеточный

2. МНС функции

Молекулы MHC первоначально идентифицировали по их способности вызывать отторжение трансплантата, они выполняют в организме и другие биологически важные функции. Во-первых, они принимают непосредственное участие в инициации иммунного ответа, контролируя молекулы, представляющие антиген в иммуногенной форме для его распознавания цитотоксическими T-клетками и хелперными T-клетками. В этот процесс включены гены LMP и TAP как вспомогательные при образовании иммуногенного комплекса этих молекул с антигеном. Во-вторых, в МНС локализованы гены, контролирующие синтез иммунорегуляторных и эффекторных молекул - цитокинов ФНО-альфа, ФНО-бета, а также некоторых компонентов комплемента.

Следует отметить их роль в качестве поверхностных клеточных маркеров, распознаваемых цитотоксическими T- лимфоцитами и T-хелперами в комплексе с антигеном. Молекулы, кодируемые комплексом Tla (область части генов MHC), вовлечены в процессы дифференцировки, особенно у эмбриона, а возможно, и в плаценте. MHC принимает участие в самых разных неиммунологических процессах, многие из которых опосредованы гормонами, например, регуляция массы тела у мышей или яйценоскости кур. Молекулы MHC класса I могут входить в состав гормональных рецепторов. Так, связывание инсулина заметно снижается, если с поверхности клетки удалить антигены MHC класса I, но не класса II. Кроме того, описаны случаи ассоциации продуктов MHC с рецепторами глюкагона, эпидермального фактора роста и гамма-эндорфина.

3. МНС антигены, общая характеристика

Антигены главного комплекса гистосовместимости (MHC) - это группа поверхностных белков различных клеток организма, играющих ключевую роль в опосредованных клетками иммунных реакциях. Антигены MHC кодируются комплексом генов, обозначаемым HLA у человека и H-2 у мыши.

Первоначально молекулы MHC (антигены MHC) идентифицировали по их способности вызывать сильные трансплантационные реакции. Выяснилось, что у каждого вида позвоночных существует одна группа тесно сцепленных генетических локусов, имеющая решающее значение при трансплантации ткани от одной особи другой особи внутри одного и того же вида (аллотрансплантация). Хотя антигенам MHC принадлежит ведущая роль в отторжении трансплантатов в случае несовпадения донора и реципиента по этим антигенам, данный феномен является лишь частным случаем проявления их биологической функции, и название MHC связано с тем, что именно при трансплантации исследователи впервые столкнулись с проявлением функции генов и антигенов гистосовместимости.

Поверхностные рецепторы T-лимфоцитов узнают антиген лишь в том случае, если он находится на поверхности клетки в комплексе с антигенами MHC, этот процесс носит название " представление антигена ". Аналогичную роль молекулы MHC выполняют и в B-клеточном ответе.

Таким образом, помимо того, что эта группа сцепленных генетических локусов (MHC) контролирует иммунный ответ на аллотрансплантаты, данная группа локусов играет важнейшую роль в контроле клеточных взаимодействий, лежащих в основе физиологических иммунных реакций: молекулы, кодируемые MHC, связываются с пептидными антигенами, вследствие чего эти антигены узнаются специфичными рецепторами T- и B-лимфоцитов.

Многие свойства, связанные с MHC, не являются генетически неделимыми и локализованы в разных участках генетической карты. MHC содержит три класса генов. Поэтому принято подразделять продукты MHC на антигены класса I, II и III. Многие черты MHC свойственны в большей степени одному или другому классу, хотя очевидно, что в той или иной мере некоторые качества характерны для обоих классов. Различия функций, определяемых антигенами класса I и II, отражаются в структурных различиях основных субъединиц антигенов.

Обнаружено две группы антигенов MHC (антигенов MHC класса I и антигенов MHC класса II), участвующих в регуляции иммунного ответа. Эти группы антигенов по-разному экспрессируются на клетках организма и, хотя они выполняют однотипную функцию, между ними имеется "распределение обязанностей".

Антигены MHC класса I представляют собой антигены, синтезируемые самой клеткой (вирусные, опухолевые, собственные мутированные), в то время как антигены MHC класса II - это экзогенные (пришедшие извне) антигены.

Иммунный ответ против антигенов, которые представляются антигенпрезентирующими клетками Т-хелперам, в результате феномена генетической рестрикции развивается только при наличии у антигенпрезентирующих клеток антигенов гистосовместимости класса II собственного генотипа.

Цитотоксические T-лимфоциты (Т-киллеры) распознают клетки-мишени лишь при наличии на их поверхности антигенов MHC класса I собственного генотипа.

В том случае, когда взаимодействующие в иммунном ответе клетки несут различные аллели MHC, иммунный ответ развивается не против представляемого чужеродного антигена (например, вирусного или бактериального), а против отличающихся антигенов MHC. Данный феномен лежит в основе того, что антигены MHC обеспечивают распознавание в организме "своего" и "чужого".

Таким образом, благодаря указанным функциям антигенов MHC осуществляется выявление и удаление из организма как экзогенных антигенов, так и собственных трансформированных клеток.

4. МНС 1 класса

Молекулы MHC класса 1 экспрессируются на клеточной поверхности и представляют собой гетеродимер, состоящий из одной тяжелой альфа-цепи, нековалентно связанной с однодоменным бета2-микроглобулином, который встречается также в свободной форме в сыворотке крови их называют классическими трансплатационными антигенами.

Тяжелая цепь состоит из внеклеточной части (образующей три домена: альфа1-, альфа2- и альфа3-домены), трансмембранного сегмента и цитоплазматического хвостового домена. Каждый внеклеточный домен содержит примерно 90 аминокислотных остатков, и все их вместе можно отделить от клеточной поверхности путем обработки папаином.

В альфа2- и альфа3-доменах имеется по одной внутрицепочечной дисульфидной связи, замыкающей в петлю 63 и 68 аминокислотных остатков, соответственно.

Домен альфа3 гомологичен по аминокислотной последовательности C-доменам иммуноглобулинов, и конформация альфа3-домена напоминает складчатую структуру доменов иммуноглобулинов.

Бета2-микроглобулин (бета2-m) необходим для экспрессии всех молекул MHC класса I и имеет неизменную последовательность, но у мыши встречается в двух формах, различающихся заменой одной аминокислоты в позиции 85. По структуре этот белок соответствует C-домену иммуноглобулинов. Бета2-микроглобулин способен также нековалентно взаимодействовать с неклассическими молекулами класса I, например, с продуктами генов CD1.

В зависимости от вида и гаплотипа внеклеточная часть тяжелых цепей MHC класса I в разной степени гликозилирована.

Трансмембранный сегмент MHC I класса состоит из 25 преимущественно гидрофобных аминокислотных остатков и пронизывает липидный бислой, вероятнее всего, в альфа-спиральной конформации.

Основное свойство молекул I класса - связывание пептидов (антигенов) и представление их в иммуногенной форме для Т-клеток - зависит от доменов альфа1 и альфа2. Эти домены имеют значительные альфа- спиральные участки, которые при взаимодействии между собой образуют удлиненную полость (щель), служащую местом связывания процессированного антигена. Образовавшийся комплекс антигена с альфа1- и альфа2-доменами и определяет его иммуногенность и возможность взаимодействовать с антигенраспознающими рецепторами Т-клеток.

К классу I относятся антигены A, антигены AB и антигены AC.

Антигены класса I присутствуют на поверхности всех ядросодержащих клеток и тромбоцитов.

5. МНС 2 класса

Молекулы MHC класса II являются гетеродимерами, построенными из нековалентно сцепленных тяжелой альфа- и легкой бета-цепей.

Ряд фактов указывает на близкое сходство альфа- и бета-цепей по общему строению. Внеклеточная часть каждой из цепей свернута в два домена (альфа1, альфа2 и бета1, бета2, соответственно) и соединена коротким пептидом с трансмембранным сегментом (длиной примерно 30 аминокислотных остатков). Трансмембранный сегмент переходит в цитоплазматический домен, содержащий примерно 10-15 остатков.

Антигенсвязывающая область молекул MHC класса II формируется альфа-спиральными участками взаимодействующих цепей подобно молекулам I класса, но при одном существенном отличии: антигенсвязывающая полость молекул MHC класса II формируется не двумя доменами одной альфа-цепи, а двумя доменами разных цепей - доменами альфа1 и бета1.

Общее структурное сходство между двумя классами молекул MHC очевидно. Это - однотипность пространственной организации всей молекулы, количество доменов (четыре), конформационное строение антигенсвязывающего участка, близкие мол. веса.

В структуре молекул II класса антигенсвязывающая полость открыта больше, чем у молекул I класса, поэтому в ней могут поместиться более длинные пептиды.

Важнейшая функция антигенов MHC (HLA) класса II - обеспечение взаимодействия между Т-лимфоцитами и макрофагами в процессе иммунного ответа. Т-хелперы распознают чужеродный антиген лишь после его переработки макрофагами, соединения с антигенами HLA класса II и появления этого комплекса на поверхности макрофага.

Антигены класса II присутствуют на поверхности В-лимфоцитов, активированных Т-лимфоцитов, моноцитов, макрофагов и дендритных клеток.

6. МНС 3 класса

Гены MHC класса III, расположенные в пределах группы генов MHC или тесно сцепленные с ней, контролируют некоторые компоненты комплемента C4 и C2, а также фактор B, находящиеся в плазме крови, и на поверхности некоторых клеток. И в отличие от молекул MHC классаI и класса II не не участвуют в контроле иммунного ответа.

7. МНС иммунобиологические свойства комплекса

Изучение экспрессии молекул I и II классов MHC на различных типах клеток выявило более широкое тканевое распространение молекул I класса в сравнении с молекулами II класса. Если молекулы I класса экспрессируются практически на всех изученных клетках, то молекулы II класса экспрессируются, в основном, на иммунокомпетентных клетках или клетках, принимающих относительно неспецифическое участие в формировании иммунного ответа, таких, как клетки эпителия.

Представительство молекул I класса почти на всех типах клеток коррелирует с доминирующей ролью этих молекул в отторжении аллогенного трансплантата. Молекулы II класса менее активны в процессе тканевого отторжения. Сравнительные данные о степени участия молекул I и II классов MHC в некоторых иммунных реакциях демонстрируют, что некоторые свойства МНС в большей степени связаны с одним из классов, тогда как другие являются характерной особенностью обоих классов.

8. Геномная организация MHC: общая характеристика

Главный комплекс гистосовместимости расположен у человека на 6-й, а у мышей - на 17-й хромосоме и занимает значительный участок ДНК, включающий до 4*106 пар оснований или около 50 генов. Основной особенностью комплекса является значительная полигенность (наличие нескольких неаллельных близкосцепленных генов, белковые продукты которых сходны в структурном отношении и выполняют идентичные функции) и ярковыраженный полиморфизм - присутствие многих аллельных форм одного и того же гена. Все гены комплекса наследуются по кодоминантному типу.

Полигенность и полиморфизм (структурная вариабельность) определяют антигенную индивидуальность особей данного вида.

Все гены MHC делятся на три группы. Каждая группа включает гены, контролирующие синтез полипептидов одного из трех классов MHC (I, II и III). Между молекулами первых двух классов имеются выраженные структурные различия, но при этом по общему плану строения все они однотипны. В то же время между продуктами генов класса III, с одной стороны, и классов I и II, с другой стороны, не найдено никакого функционального или структурного сходства. Группа из более чем 20 генов класса III вообще функционально обособлена - некоторые из этих генов кодируют, например, белки системы комплемента (C4, C2, фактор B) или молекулы, участвующие в процессинге антигена.

Область локализации генов, кодирующих комплекс молекул MHC мыши, обозначается как H-2, для человека - HLA.

Список использованной литературы

1.Воронин Е.С., Петров А.М., Серых М.М., Девришов Д.А. Иммунология - М.: Колос-Пресс. 2002г. 408л.

2. Сочнев А.М., Алексеев Л.П., Тананов А.Т. Антигены системы HLA при различных заболеваниях и трансплантации. - Рига, 1987.

3. Зарецкая Ю. М., Клиническая иммуногенетика. - М.: Медицина. 1983. - 208 с.

4.Ярилин А.А, Основы иммунологии - Медицина, 1999г. 305с.

5. Иммунология. В. Г. Галактионов Издательство: МГУ, 1998г.- 480с.

6. Иммунология. А. Ройт, Дж. Бростофф, Д. Мейл Издательство: Мир 2001г. 592.

Размещено на Allbest.ru

Подобные документы

    История открытия витамина К, его основные формы, физико-химические свойства, источники и метаболизм. Обмен витамина К в организме, участие в свертывании крови. Профилактическое и лечебное применение витамина К при болезнях печени, желудка и кишечника.

    реферат , добавлен 22.05.2013

    Механизмы регуляции иммунного ответа и нейроиммунное взаимодействие. Глюкокортикоидные гормоны и иммунологические процессы. Нейропептиды и регуляция иммунного ответа. Регуляция иммунного ответа адренокортикотропным гормоном, тиротропином, соматотропином.

    презентация , добавлен 20.04.2015

    Изучение особенностей центральной модуляции функций иммунной системы посредством центрально обусловленных изменений уровня различных гормонов в крови. Описание путей и механизмов регуляции иммунного ответа. Гормональная регуляция иммунного ответа.

    презентация , добавлен 17.05.2015

    Определение понятия иммунного ответа организма. Пути и механизмы регуляции иммунного ответа с помощью нейромедиаторов, нейропептидов и гормонов. Основные клеточные регуляторные системы. Глюкокортикоидные гормоны и иммунологические процессы в организме.

    презентация , добавлен 20.05.2015

    Основные структуры мозга, регулирующие интенсивность иммунного ответа: заднее и переднее гипоталамическое поле, гиппокамп, ретикулярная формация среднего мозга, ядра шва и миндалины. Регуляция иммунного ответа аргинин-вазопрессином и окситоцином.

    презентация , добавлен 06.04.2015

    Пути и механизмы регуляции иммунного ответа. Нейроиммунное взаимодействие, его направления и принципы. Регуляция иммунного ответа адренокортикотропным гормоном, тиротропином, соматотропином. Глюкокортикоидные гормоны и иммунологические процессы.

    презентация , добавлен 11.03.2015

    Особенности и биохимическая основа патогенеза атеросклероза. Взаимоотношение воспаления и атеросклероза, его роль в развитии болезни. Действие на процессы клеточной адаптации вирусов и токсинов, изменение функции генов, деструкция клеточных мембран.

    доклад , добавлен 02.12.2010

    Понятие иммунного ответа организма, регулирование его интенсивности нейрогуморальным способом. Особенности осуществления модуляции функций иммунной системы. Нервная и гуморальная регуляция иммунного ответа. Механизм нейроиммунного взаимодействия.

    презентация , добавлен 13.04.2015

    Пути и механизмы регуляции иммунного ответа: доиммунные (проникновение антигена в ткани и сорбция антигена в лимфоидной ткани) и иммунные. Нейропептиды, симпатический и парасимпатический отделы вегетативной нервной системы и регуляция иммунного ответа.

    презентация , добавлен 23.12.2014

    Первичные и врожденные нарушения нормального иммунного статуса, обусловленные дефектом одного или нескольких механизмов иммунного ответа. Факторы, определяющие неспецифическую резистентность. Действие гормонов, нейромедиаторов и пептидов на клетки.