Защитное действие молниеотводов и грозотросов ЛЭП. Зоны защиты стержневых молниеотводов

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ CCC Р

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭНЕРГОСИСТЕМ

РУКОВОДЯЩИЕ УКАЗАНИЯ
ПО РАСЧЕТУ ЗОН ЗАЩИТЫ СТЕРЖНЕВЫХ И ТРОСОВЫХ
МОЛНИЕОТВОДОВ

РД 34.21.121

МОСКВА 1974

Составлено ВЭИ, ГНИЭИ, Энергосетьпроектом

УТВЕРЖДАЮ:

Заместитель начальника

Главтехуправления

Ф. СИНЬЧУГОВ

ОБЩИЕ СВЕДЕНИЯ

Защитное действие молниеотводов основано на свойстве молнии с большей вероятностью поражать более высокие и хорошо заземленные металлические предметы по сравнению с рядом стоящими менее высокими. Молниеотвод, принимающий на себя разряд молнии, представляет собой возвышающееся над защищаемым сооружением металлическое устройство, состоящее из молниеприемника, токоотвода и заземлителя. Для защиты электротехнических установок от прямых разрядов молнии рекомендуется применять стержневые и тросовые молниеотводы. Стержневые молниеотводы выполняются в виде вертикальных металлических конструкций, установленных самостоятельно или на каких-либо сооружениях (например порталах, дымовых трубах), а тросовые - в виде горизонтально подвешенных проводов (тросов).

Степень защищенности сооружения молниеотводом определяется вероятностью прорыва молнии к защищаемому сооружению минуя молниеотвод. Вероятность прорыва молнии равна отношению числа разрядов молнии в защищаемое сооружение к общему числу разрядов молнии в молниеотвод и защищаемое сооружение.

Расчет молниезащиты ведется по зонам защиты. Вероятность прорыва молнии к любому объекту, расположенному внутри зоны защиты, не должна превышать допускаемой величины.

Очертания и размеры зоны защиты определяются числом, высотой и взаимным расположением молниеотводов и зависят от допускаемой вероятности прорыва молнии. Зона защиты тем меньше, чем меньшую вероятность прорыва молнии требуется обеспечить. Пространство между молниеотводами защищено более надежно, чем с внешней стороны молниеотводов. Защитное действие молниеотводов снижается с увеличением высоты защищаемого объекта.

Зоны защиты стержневых молниеотводов высотой до 60 м проверены многолетним опытом эксплуатации и обеспечивают достаточную надежность. Зоны защиты стержневых молниеотводов высотой более 60 м по методике настоящих Руководящих указаний определяются с расчетной вероятностью прорыва молний в объект не более 10 -2 , а тросовых молниеотводов - не более 10 -2 и 10 -3 . Указанная расчетная вероятность прорыва молнии установлена на основе лабораторных испытаний на модели, опыта эксплуатации и сведений о развитии разрядов молнии.

ЗОНЫ ЗАЩИТЫ СТЕРЖНЕВЫХ МОЛНИЕОТВОДОВ

1. Зона защиты одиночного стержневого молниеотвода высотой до 60 м имеет форму, показанную на рис. , размеры зоны определяются соотношением

Рис. 1. Зона защиты одиночного стержневого молниеотвода высотой до 60 м:

h - высота молниеотвода; h x - высота точки на границе защищаемой зоны; h a = h - h x - активная высота молниеотвода

Зона защиты одиночного стержневого молниеотвода высотой h от 60 до 250 м усечена на расстоянии D h от вершины (рис. ) и определяется соотношениями

Рис. 2. Зона защиты одиночного стержневого молниеотвода высотой более 60 м:

D h = 0,5(h - 60) при 60 < h £ 100 м; D h = 0,2 · h при h > 100 м

Рис. 3. Зависимость высоты одиночного стержневого молниеотвода высотой до 30 м от радиуса защиты на различных уровнях h x

Рис. 4. Номограмма для расчета зоны защиты одиночного стержневого молниеотвода высотой до 30 м

Для защищаемых объектов высотой 60 - 100 м высота молниеотвода h , определенная по номограмме рис. , сравнивается с критической высотой h кр , определяющей границу усечения зоны защиты,

Рис. 5. Номограмма для расчета зоны защиты одиночного стержневого молниеотвода высотой до 100 м

Вследствие усечения зон защиты при h меньше h кр высота молниеотвода выбирается равной критической.

При высоте молниеотводов h > 100 м построение зоны защиты производится непосредственно по формулам (), () и ().

2. Очертания зоны защиты двух стержневых молниеотводов (двойной молниеотвод) показаны на рис. для h £ 60 м и рис. для 60 £ h £ 250 м. Для каждого из молниеотводов высотой более 60 м зона защиты усекается на расстоянии D h от вершины, как и для одиночного молниеотвода.

Рис. 6. Зона защиты двух равновысоких стержневых молниеотводов высотой до 60 м:

а - расстояние между молниеотводами; в x - наименьшая ширина зоны защиты на уровне h x ; r x - радиус зоны защиты одиночного молниеотвода; R - радиус окружности, проходящей через вершины молниеотводов и точку 0 , находящуюся на уровне h 0

Рис. 7. Зона защиты двух стержневых молниеотводов высотой более 60 м:

D h = 0,5(h - 60) при 60 < h £ 100 м; D h = 0,2 h при h > 100 м

Построение внешней зоны молниеотводов производится аналогично построению зоны одиночного молниеотвода по формулам () или () в зависимости от высоты. Наименьшая ширина зоны защиты в х между молниеотводами на уровне h x определяется по кривым рис. и . Для молниеотводов высотой от 30 до 250 м значение обеих координат необходимо умножить на коэффициент .

Рис. 8. Значения наименьшей ширины зоны защиты в х двух стержневых молниеотводов высотой h £ 30 м для

Рис. 9. Значение наименьшей ширины зоны защиты в х двух стержневых молниеотводов для

Наименьшая высота зоны защиты h 0 для молниеотводов высотой до 30 м равна

(6)

для молниеотводов от 30 до 250 м

(7)

но не больше h кр , определяемой по формуле (), если h ³ 60 м.

3. Зона защиты трех и более молниеотводов значительно превышает сумму зон защиты одиночных молниеотводов.

Построение горизонтальных сечений зоны защиты на уровне h x показано на рис. - на примере трех и четырех стержневых молниеотводов. Размеры в х /2 определяются по кривым рис. и в зависимости от a / h a и высоты молниеотвода. Радиус защиты r x определяется так же, как и для одиночного молниеотвода. При произвольном расположении нескольких молниеотводов их зона защиты может быть определена суммированием зон любых трех соседних молниеотводов (рис. ).

Рис. 10. Зона защиты четырех стержневых молниеотводов одинаковой высоты; горизонтальное сечение зоны защиты на уровне h x

1, 2, 3, 4 - молниеотводы

Рис. 11. Зона защиты трех стержневых молниеотводов одинаковой высоты; горизонтальное сечение зоны защиты на уровне h x

1, 2, 3 - молниеотводы

Рис. 12. Зона защиты четырех стержневых произвольно расположенных молниеотводов одинаковой высоты; горизонтальное сечение зоны защиты на уровне h x

1, 2, 3, 4 - молниеотводы

Часть зоны защиты трех и более молниеотводов высотой выше 60 м, расположенная вне окружностей, проходящих через центры соседних трех молниеотводов, усекается на расстоянии D h от вершины. Часть зоны, расположенная внутри окружностей, не усекается. Величина D h определяется по формулам () и ().

Необходимым условием защищенности всей площади на уровне h x является:

для молниеотводов высотой h £ 30 м: D £ 8 · h a ;

для молниеотводов высотой 30 < h £ 250 м: D £ 8 · h a · p ,

где D - диаметр окружности, проведенной через три смежных молниеотвода.

ЗОНЫ ЗАЩИТЫ ТРОСОВЫХ МОЛНИЕОТВОДОВ

Зона защиты одиночного тросового молниеотвода (горизонтально подвешенного троса) имеет форму, показанную на рис. для молниеотводов высотой до 30 м и на рис. для молниеотводов высотой от 30 до 250 м. Зона защиты на уровне h x ограничивается двумя параллельными молниеотводу линиями, расположенными на расстоянии r x от вертикальной плоскости, проходящей через тросовый молниеотвод. Это расстояние r x , условно называемое по аналогии с одиночным стержневым молниеотводом радиусом защиты, определяются по формулам:

h < 30 м

(8)

для одиночного тросового молниеотвода высотой h от 30 до 250 м

Рис. 13. Зона защиты одиночного тросового молниеотвода высотой до 30 м:

A - горизонтальное сечение зоны защиты на уровне h x ; T - трос

Рис. 14. Зона защиты одиночного тросового молниеотвода высотой более 30 м

Зона защиты тросового молниеотвода высотой 30 < h < 250 м усекается сверху на величину

Рис. 15. Номограмма для расчета зоны защиты одиночного тросового молниеотвода высотой до 30 м

Рис. 16. Номограмма для расчета зоны защиты одиночного тросового молниеотвода высотой от 30 до 100 м

Высота молниеотвода h , определенная по номограмме (рис. ), сравнивается с критической высотой

при h < h кр высота молниеотвода выбирается равной h кр . Методика выбора тросовой защиты исходит из зависимости вероятности прорыва молнии от угла защиты троса (a ) и высоты опор ВЛ. Соответствие между изложенной здесь и в разделе грозозащиты ВЛ методикой устанавливается соотношением tg a = r x / h a .

4. Построение зоны защиты двух параллельных тросовых молниеотводов представлено на рис. и . Внешние области зоны защиты определяются как для одиночного тросового молниеотвода при h > 30 м и усекаются на расстоянии D h от вершины. Вертикальное сечение зоны защиты между двумя тросовыми молниеотводами ограничивается дугой окружности, проходящей через молниеотводы и среднюю точку между молниеотводами O , находящуюся на высоте

(11)

где a - расстояние между молниеотводами;

Рис. 17. Зона защиты двух тросовых молниеотводов 1 и 2 высотой до 30 м:

I - горизонтальное сечение на уровне h x ; II - вертикальное сечение зоны защиты

Рис. 18. Зона защиты двух тросовых молниеотводов высотой более 30 м

Р = 1 при h £ 30 м; 19 . Вокруг молниеотвода 1 большей высоты строится зона защиты, как для одиночного молниеотвода. Далее через вершину молниеотвода 2 меньшей высоты проводится горизонтальная линия до пересечения с зоной защиты молниеотвода 1. Принимая эту точку пересечения за вершину некоторого фиктивного молниеотвода 3 той же высоты, что и меньший молниеотвод, строится зона защиты для двух молниеотводов 2 и 3, очертания которой ограничивают внутренний участок суммарной зоны защиты.

Рис. 19. Зона защиты двух молниеотводов разной высоты:

1, 2 - молниеотводы; 3 - вершина фиктивного молниеотвода

Для стержневых молниеотводов высотой h > 60 м и тросовых h > 30 м зона защиты у их вершины усекается на расстоянии D h от вершины конкретно для каждого из молниеотводов и в соответствии с их типом.

Суммарная зона защиты тросового и стержневого молниеотводов определяется наложением их зон. Так же строится конфигурация зоны защиты у конца тросового молниеотвода. При этом конец троса следует рассматривать как стержневой молниеотвод соответствующей высоты.

Зоны защиты с вероятностью прорыва не более 10 -2 предназначены для открытых распределительных устройств станций и подстанций, а также для подсобных сооружений, нуждающихся в молниезащите. При этом вводы аппаратов и шинопроводы должны находиться по возможности в глубине зоны защиты, так как поражение их молнией представляет наибольшую опасность.

Зоны защиты с вероятностью прорыва не более 10 -3 предназначены для участков шинопроводов высокой ответственности, которые вследствие их большой высоты или длины могут подвергаться частым ударам молнии.

Надежность защиты повышается при размещении объектов во внутренней части зоны защиты многократных молниеотводов.

Вследствие вероятностного характера прорывов молнии выполнение молниезащиты, полностью исключающей поражение защищаемых объектов, не всегда целесообразно, а в ряде случаев технически не осуществимо. Оптимальная надежность молниезащиты определяется на основе сопоставления стоимости молниезащиты и возможного ущерба от поражения молнией.

Надежность молниезащиты характеризуется числом b прорывов молнии в год на защищаемое сооружение или числом лет, за которое ожидается один прорыв молнии в зону защиты

b = ψ · N ,

где ψ - вероятность прорыва в зону защиты (10 -2 или 10 -3 соответственно зоне);

N - суммарное число ударов в год в молниеотвод и защищаемое сооружение.

Ожидаемое число ударов молнии и год в одиночное возвышающееся сооружение (в том числе стержневой молниеотвод) высотой h метров:

N = п T π R 2 10 -6 , (12)

где n = 0,06 - число ударов молнии в землю площадью 1 км 2 на 1 ч грозы, ;

T - средняя интенсивность грозовой деятельности для данной местности, ч.

R = 3,5 · h - эквивалентный радиус окружности, описывающей площадь, с которой сооружение «собирает» молнии, м.

Число ударов молнии в год в группу возвышающихся сооружений (в том числе группу стержневых молниеотводов):

Т = nTS · 10 -6 , (13)

где S - площадь, ограниченная дугами окружностей, описанных радиусом R вокруг каждого молниеотвода, м 2 .

Число ударов в год в протяженное возвышающееся сооружение (в том числе тросовый молниеотвод) высотой h и длиной l , (м):

N = 2 nTlR · 10 -6 , (14)

где R = 3,5 h .

Число ударов в сооружение длиной l (м), шириной m (м) и высотой h (м) определяется по формуле (), где

S = (l + 7 h )(m + 7 h ). (15)

Сначала разберемся в сути понятия. Молниеотвод обозначает одно и тоже, что Грозозащита или Молниезащита и отличается от Громоотвода , которым называют чаще только молниеприемную часть системы защиты зданий и сооружений. То есть молниеотвод - это «молниеприемник + токоотвод + заземление», или внешняя составляющая системы. Если посмотреть на схему любой комплексной молниезащиты, будь то частный дом или здание промышленного, офисно-административного назначения, то это ее часть, которая предназначена именно для защиты от прямых ударов молнии.

Конструкции (виды) молниеотводов

Всего существует 3-и базовые схемы: стержневой (рисунки а, б), тросовый (в) и молниеотвод в виде молниеприемной сетки (или сетчатый) (г). Комбинированная схема предполагает сочетание базовых вариантов.

По количеству одинаковых молниеприемных частей - одиночный, двойной и т.д.

По характеру и месту установки стержневые делятся на молниеприемные стержни, сборные стержневые, которые могут устанавливаться на фланцах, кронштейнах, специальных опорах или быть отдельно стоящими. Молниеприемные мачты как правило имеют телескопическую конструкцию и метод установки на или в грунт.

Тросовый - это трос, натянутый между опорами. Контур может быть любым, в том числе замкнутым. К нему по сути относится и самый простой и дешевый вариант молниеотвода для частного дома или дачи, когда вместо троса на небольшом расстоянии от конька кровли натягивают проводник радиусом 8-10 мм (алюминиевый, стальной или медный в зависимости от материала и цвета кровли) на расстоянии не менее 20 мм от самого конька, выводят его концы за крайние точки на расстояние примерно 30 мм и загибают немного вверх.


Молниеприемная сетка используется на плоских или крышах с незначительным уклоном.

Итак, как мы сказали, система внешней молниезащиты может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие роль естественных молниеотводов), или может быть установлена на защищаемом здании и даже быть его частью.

Расчет молниеотвода

Выбор молниеотводов рекомендуют производить при помощи специальных компьютерных программ, способных на основании габаритов зданий, планов кровли и конструктивных элементов на ней вычислять вероятности прорыва молнии и зоны защиты. Вот почему надежнее обращаться в специализированные организации, которые быстро выдадут Вам различные варианты и конфигурации молниеотводов.

Хотя, если конфигурация защищаемого объекта позволяет обойтись простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры их можно определить самостоятельно, пользуясь заданными в Инструкциях СО 153-343.21.122-2003 и РД 34.21.122-87 зонами защиты.

Объект считается защищенным, если он целиком попадет в зону защиты молниеприемного устройства, которой присвоен требуемый уровень надежности.

Зона защиты одиночного стержневого молниеприемника (согласно СО 153-34.21.122-2003)

Стандартной зоной защиты в этом случае является круговой конус с вершиной, которая совпадает с вертикальной осью молниеотвода. Размеры зоны в этом случае определены 2-мя параметрами: высотой конуса h 0 и радиусом его основания r 0 .

В таблице ниже указаны их значения в зависимости от требуемой надежности защиты для молниеотводов высотой до 150 м от уровня земли. Для больших высот необходимо применение специальных программ и методик расчета.

Для других типов и комбинаций молниеотводов вариации расчета зон защиты смотрите в главе 3.3.2 СО 153-343.21.122-2003 и Приложении 3 РД 34.21.122-87.

Теперь, чтобы определить попадает ли ваш объект Х в зону защиты рассчитываем радиус горизонтального сечения r x на высоте h x и откладываем его от оси молниеприемника до крайней точки объекта.

Правила определения зон защиты для объектов высотой до 60 м (согласно МЭК 1024-1-1)

В Инструкции СО есть методика проектирования молниеотводов для обычных сооружений по стандарту МЭК 1024-1-1, которая может быть принята только, если расчеты по ней получаются более «жесткие», чем требования указанной Инструкции.

По ней могут быть применены следующие 3-и способа для разных случаев:

  • метод защитного угла для простых по форме или маленьких частей больших сооружений
  • метод фиктивной сферы для сооружений сложной формы
  • защитная сетка в общем случае и в особенности для защиты поверхностей

В таблице для разных категорий (уровней) молниезащиты (подробнее о категориях или классах здесь) приведены соответствующие значения параметров каждого из методов (радиус фиктивной сферы, предельно допустимые угол защиты и шаг ячейки сетки).

Метод угла защиты для кровельных надстроек

Величина угла выбирается по графику на диаграмме для соответствующей высоты молниеотвода, которая отсчитывается от защищаемой поверхности, и класса молниезащиты здания.

Зона защиты, как уже было сказано выше, - это круговой конус с вершиной в верхней точке стержня молниепремника.

Метод фиктивной сферы

Применяется, когда сложно определить размеры зоны защиты для отдельных конструкций или частей здания по методу защитного угла. Ее границей является воображаемая поверхность, которую очерчивает сфера выбранного радиуса r (см. таблицу выше), если бы ее прокатили по вершине сооружения, обходя молниеотводы. Соответственно объект считается защищенным, если эта поверхность не имеет с ним общих точек пересечения или касания.

Молниеприемная сетка

Это проводник, уложенный сверху на кровлю с выбранным в зависимости от класса молниезащиты здания шагом ячейки. При этом все металлические элементы на крыше (зенитные фонари, вентиляционные шахты, воздухозаборники, трубы и т.п.) обязательно должны быть соединены с сеткой. Иначе для них необходимо смонтировать дополнительные молниеприемники. Более подробно о конструктивных особенностях и вариантах монтажа можно прочитать в материале «Молниезащита на плоской кровле» .

Шаг ячейки по российским нормам выбирают исходя из категории молниезащиты здания (может быть меньше, но никак не больше).

Молниеприемная сетка монтируется с соблюдением ряда условий:

  • проводники прокладывают наикратчайшими путями
  • при ударе молнии у тока для отвода к заземлению должна быть возможность выбора хотя бы 2-х разных путей
  • при наличии конька и наклоне кровли более, чем 1 к 10, проводник нужно обязательно проложить по нему
  • никакие части и элементы, выполненные из металла, не должны выступать за внешний контур сетки
  • обязателен внешний контур сетки из проводника, смонтированный по краю периметра крыши, а край крыши должен выступать за габариты здания

Материалы и сечения проводников молниеотвода

В качестве материалов, используемых для производства молниеприемного оборудования и токоотводов используются оцинкованная и нержавеющая сталь, медь и алюминий. К ним предъявляются требования коррозионной стойкости и механической прочности, если используется защитное покрытие, то оно должно иметь хорошую адгезию с основным материалом.

В таблице указаны требования к профилю проводников и стержней по минимальной площади сечения и диаметра (согласно ГОСТ 62561.2-2014)

Монтаж молниеотвода для частного дома и промышленного здания

Рассмотрим какие же элементы монтажа включают в себя обычно система внешней молниезащиты. На рисунках ниже показаны примеры молниеотвода частного дома и промышленного здания.

Соответсвующими номерами здесь обозначены следующие изделия и их наименования:

Круглые и плоские проводники, тросы

Компоненты молниезащиты на плоских кровлях, перемычки и компенсаторы

Компоненты молниезащиты на скатных кровлях, кровельные держатели проводника

Компоненты молниезащиты на металлических кровлях, кровельные держатели проводника

Токоотводы, держатели токоотводов

Стержни земляного ввода, соединительные проводники, смотровые колодцы, держатели проводников

Клеммы для водосточных желобов, клеммы, соединительные компоненты

Молниеприемники, компоненты

Изолированная молниезащита

Монтаж можно разделить на три этапа: устройство молниеприемной части внешней молниезащитной системы (молниеприемники и их элементы крепления), прокладка токоотводов (кровельная и фасадная часть здания) и земляные работы по устройству заземления. Как правило у всех компаний стоимость работ составляет некоторый процент от цены материалов.

Компания МЗК-Электро предлагает отличные цены на молниеотводы и комплектующие. Ассортимент изделий на нашем складе составляет более 1.500 позиций, закупка осуществляется напрямую по дилерским контрактам у прямых производителей, что предполагает обязательную сертификацию и гарантию. Все изделия имеют необходимые сертификаты качества и гарантию. Мы также занимаемся проектированием и монтажом любых систем молниезащиты зданий и сооружений, как для частных домовладельцев, так и промышленных предприятий. Познакомиться с нашими ценами можно в соответствующем разделе .

Расчет стоимости

Выберете размер... 10х15 15х15 20х15 20х20 20х30 30х30 30х40

Выберете размер... 10 12 14 16 18 20 22

Наши объекты

    АО "Мосводоканал", Физкультурно-оздоровительный комплекс дома отдыха «Пялово»

    Адрес объекта: Московская область, Мытищинский район, дер. Пруссы, д. 25

    Вид работ: Проектирование и монтаж системы внешней молниезащиты.

    Состав молниезащиты: По плоской кровле защищаемого сооружения уложена молниеприемная сетка. Две дымоходные трубы защищены посредством установки на них молниеприемных стержней длиной 2000 мм и диаметром 16 мм. В качестве молниеприемного проводника использована сталь горячего цинкования диаметром 8 мм (сечение 50 кв.мм в соответствии с РД 34.21.122-87). Токоотводы проложены за водосточными трубами на хомутах с зажимными клеммами. Для токоотводов использован проводник из стали горячего цинкования диаметром 8 мм.

    ГТЭС Терешково

    Адрес объекта: г. Москва. Боровское ш., коммунальная зона «Терешково».

    Вид работ: монтаж системы внешней молниезащиты (молниеприемная часть и токоотводы).

    Комплектующие: производства фирмы OBO Bettermann.

    Исполнение: Общее количество проводника из стали горячего цинкования для 13 сооружений в составе объекта составило 21.5000 метров. По кровлям прокладывается молниеприемная сетка с шагом ячейки 5х5 м, по углам зданий монтируются по 2 токоотвода. В качестве элементов крепления использованы стеновые держатели, промежуточные соединители, держатели для плоской кровли с бетоном, скоростные соединительные клеммы.

МОЛНИЕОТВОД - устройство для защиты зданий и сооружений от прямых ударов молнии. М. включает в себя четыре основные части: молниеприемник, непосредственно воспринимающий удар молнии; токоотвод, соединяющий молниеприемник с заземлителем; заземлитель, через который ток молнии стекает в землю; несущую часть (опору или опоры), предназначенную для закрепления молниеприемника и токоотвода.

В зависимости от конструкции молниеприемника различают стержневые, тросовые, сетчатые и комбинированные М.

По числу совместно действующих молниеприемников их делят на одиночные, двойные и многократные.

Кроме того, по месту расположения М. бывают отдельно стоящие, изолированные и не изолированные от защищаемого здания. Защитное действие М. основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Благодаря этому свойству более низкое по высоте защищаемое здание практически не поражается молнией, если оно входит в зону защиты М. Зоной защиты М. называется часть пространства, примыкающая к нему и с достаточной степенью надежности (не менее 95%) обеспечивающая защиту сооружений от прямых ударов молнии. Наиболее часто для защиты зданий и сооружений применяют стержневые М.

Тросовые М. чаще всего применяют для защиты зданий большой длины и высоковольтных линий. Эти М. изготавливают в виде горизонтальных тросов, закрепленных на опорах, по каждой из которых прокладывают токоотвод. Стержневые и тросовые М. обеспечивают одинаковую степень надежности защиты.

В качестве молниеприемников можно использовать металлическую крышу, заземленную по углам и по периметру не реже чем через каждые 25 м, или наложенную на неметаллическую крышу сетку из стальной проволоки диаметром не менее 6 мм, имеющую площадь ячеек до 150 мм2, с узлами, закрепленными сваркой, и заземленную так же, как металлическая крыша. К сетке или токопроводяшей кровле присоединяют металлические колпаки над дымовыми и вентиляционными трубами, а в случае отсутствия колпаков - специально наложенные на трубы проволочные кольца.



М. стержневой - М. с вертикальным расположением молниеприемника.

М. тросовый (протяженный) - М. с горизонтальным расположением молниеприемника, закрепленного на двух заземленных опорах.

ЗОНЫ ЗАЩИТЫ МОЛНИЕОТВОДОВ

Обычно зону защиты обозначают по максимальной вероятности прорыва, соответствующей ее внешней границе, хотя в глубине зоны вероятность прорыва существенно уменьшается.

Расчетный метод позволяет построить для стержневых и тросовых молниеотводов зону защиты с произвольным значением вероятности прорыва, т.е. для любого молниеотвода (одиночного или двойного) можно построить произвольное количество зон защиты. Однако для большинства народнохозяйственных зданий достаточный уровень защиты можно обеспечить, пользуясь двумя зонами, с вероятностью прорыва 0,1 и 0,01.

В терминах теории надежности вероятность прорыва - это параметр, характеризующий отказ молниеотвода как защитного устройства. При таком подходе двум принятым зонам защиты соответствует степень надежности 0,9 и 0,99. Эта оценка надежности справедлива при расположении объекта вблизи границы зоны защиты, например объекта в виде кольца, соосного со стержневым молниеотводом. У реальных же объектов (обычных зданий) на границе зоны защиты, как правило, расположены лишь верхние элементы, а большая часть объекта помещается в глубине зоны. Оценка надежности зоны защиты по ее внешней границе приводит к чрезмерно заниженным значениям. Поэтому, чтобы учесть существующее на практике взаимное расположение молниеотводов и объектов, зонам защиты А и Б приписана в РД 34.21.122-87 ориентировочная степень надежности 0,995 и 0,95 соответственно.

Одиночный стержневой молниеотвод.

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус (рис. П3.1), вершина которого находится на высоте h0

1.1. Зоны защиты одиночных стержневых молниеотводов высотой h? 150 м имеют следующие габаритные размеры.

Зона A: h0 = 0,85h,

r0 = (1,1 - 0,002h)h,

rx = (1,1 - 0,002h)(h - hx/0,85).

Зона Б: h0 = 0,92h;

rx =1,5(h - hx/0,92).

Для зоны Б высота одиночного стержневого молниеотвода при известных значениях h и может быть определена по формуле

h = (rx + 1,63hx)/1,5.

Рис. П3.1. Зона защиты одиночного стержневого молниеотвода:

I - граница зоны защиты на уровне hx, 2 -то же на уровне земли

Одиночный тросовый молниеотвод.

Зона защиты одиночного тросового молниеотвода высотой h? 150 м приведена на рис. П3.5, где h - высота троса в середине пролета. С учетом стрелы провеса троса сечением 35-50 мм2 при известной высоте опор hоп и длине пролета а высота троса (в метрах) определяется:

h = hоп - 2 при а < 120 м;

h = hоп - 3 при 120 < а < 15Ом.

Рис. П3.5. Зона защиты одиночного тросового молниеотвода. Обозначения те же, что и на рис. П3.1

Зоны защиты одиночного тросового молниеотвода имеют следующие габаритные размеры.

Для зоны типа Б высота одиночного тросового молниеотвода при известных значениях hx и rx определяется по формуле

Вертикальный заземлитель выполняется путем последовательного механизированного погружения резьбовых электродов длиной 1,2-3 метра, соединяемых между собой латунными муфтами. Стальные электроды диаметром 14,2-17,2 мм, с электрохимическим медным покрытием (чистота 99,9%) толщиной 0,25 мм. гарантирует высокую коррозионную стойкость и срок службы заземлителя в грунте не менее 40 лет. Высокая механическая прочность заземлителя позволяет погружать его на глубину до 30 метров. Медное покрытие электродов обладает высокой адгезией и пластичностью, позволяющей погружать стержни в грунт без нарушения целостности и отслаивания медного слоя.

Молниеприемник непосредственно воспринимает прямой удар молнии. Поэтому он должен надежно противостоять механическим и тепловым воздействиям тока и высокотемпературного канала молнии. Несущая конструкция несет на себе молниеприемник и токоотвод, объединяет все элементы молниеотвода в единую, жесткую, механически прочную конструкцию. В электроустановках молниеотводы устанавливаются вблизи токоведущих частей, находящихся под рабочим напряжением. Падение молниеотвода на токоведущие элементы электроустановки вызывает тяжелую аварию. Поэтому несущая конструкция молниеотвода должна иметь высокую механическую прочность, которая исключила бы в эксплуатации случаи падения молниеотвода на оборудование электростанций и подстанций. Молниеотвод должен иметь надёжную связь с землёй с сопротивлением 5-25 Ом растеканию импульсного тока. Защитное свойство стержневых молниеотводов заключается в том, что они ориентируют на себя лидер формирующегося грозового разряда. Разряд происходит обязательно в вершину молниеотвода, если он формируется в некоторой области, расположенной над молниеотводом. Эта область имеет вид расширяющегося вверх конуса и называется зоной 100%-го поражения.

Опытными данными установлено, что высота ориентировки молнии H зависит от высоты молниеотвода h. Для молниеотводов высотой до 30 метров:

а для молниеотводов высотой более 30 метров H=600 м.

где - активная часть молниеотвода, соответствующая его превышению над высотой защищаемого объекта:

Рисунок 1.1 Зона защиты одиночного стержневого молниеотвода: 1 - граница зоны защиты; 2 - сечение зоны защиты на уровне.

Для расчёта радиуса защиты в любой точке защитной зоны, в том числе и на уровне высоты защищаемого объекта, используется формула:

где - поправочный коэффициент, равный 1 для молниеотводов высотой меньше 30 метров и равный для более высоких молниеотводов.

Зоны защиты протяженных объектов в которых используется несколько молниеотводов, целесообразно, чтобы зоны их 100%-го поражения смыкались над объектом или даже перекрывали друг друга, исключая вертикальный прорыв молнии на объект защиты Расстояние (S) между осями молниеотводов должно быть равно или меньше величины, определяемой из зависимости:

Зона защиты двух и четырёх стержневых молниеотводов в плане на уровне высоты защищаемого объекта имеет очертания, приведённые на рисунке 1.3, а, б.

Наименьшая ширина зоны защиты, показанный на чертеже радиус защиты определяется так же, как и для одиночного молниеотвода, а определяется по специальным кривым. На рисунке 1.2 показаны конструкции стержневых молниеотводов. Если у молниеотводах высотой до 30 метров, расположенных на расстоянии, наименьшая ширина зоны защиты равна нулю.

Рисунок 1.2 Конструкции стержневых молниеотводов на железобетонных опорах: а -из вибрированного бетона; б - центрифугированного бетона

Рисунок 1.3 Стержневые молниеотводы на металлических опорах: а - тросовый молниеотвод (несущая конструкция); б - стержневой молниеотвод (несущая конструкция)

На рисунке 1.3 показаны конструкции стержневых молниеотводов на металлических опорах. Радиусы защиты определяются в этом случае так же, как и для одиночных молниеотводов. Размер определяется по кривым для каждой пары молниеотводов. Диагональ четырёхугольника или диаметр окружности, проходящей через вершины треугольника, образованного тремя молниеотводами, по условиям защищённости всей площади должны удовлетворять зависимости:

Для молниеотводов высотой меньше 30 м:

Для молниеотводов высотой более 30 м:

Отдельно стоящие стержневые молниеотводы с металлическими опорами устанавливаются на железобетонных фундаментах. Токоотводамп для таких молниеотводов служат несущие конструкции. На металлических и железобетонных конструкциях ОРУ, как правило, устанавливаются молниеотводы с металлическими несущими частями. Конструкция их крепления определяется особенностями той конструкции ОРУ, к которой крепится стержневой молниеотвод. Обычно конструкция молниеотводов, устанавливаемых на конструкциях ОРУ, представляет собой стальную трубу, нередко состоящую из труб нескольких диаметров. Молниеотводы высотой более 5 м в основании имеют решетчатую конструкцию из угловой стали. Потенциал на молниеотводе в момент разряда определяется зависимостью:

где - импульсное сопротивление заземления молниеотвода 5-25 Ом;

Ток молнии в хорошо заземлённом объекте.

Потенциал на молниеотводе определяется:

где - крутизна фронта волны тока;

  • - точка молниеотвода на высоте объекта;
  • - удельная индуктивность молниеотвода.

Для расчёта минимального допустимого приближения объекта к молниеотводу можно исходить из зависимости:

где - допустимая импульсная напряжённость электрического поля в воздухе, принимаемая 500 кВ/м.

Руководящие указания по защите от перенапряжений рекомендуют расстояние до молниеотвода принимать равным:

Эта зависимость справедлива при токе молнии, равным 150 кА, крутизне тока 32 кА/мксек и индуктивности молниеотвода 1,5 мкГн/м. Независимо от результатов расчёта, расстояние между объектом и молниеотводом должно быть не менее 6 метров.

Тросовый молниеотвод. Значения коэффициентов k и z берутся в зависимости от допускаемой вероятности прорыва молнии в зону защиты. Вероятность прорыва молнии в зону защиты равна отношению числа разрядов молнии в защищаемое сооружение к общему числу разрядов молнии в молниеотвод и защищаемое сооружение. Если допускается вероятность прорыва молнии в зону защиты 0,01, то коэффициент 1, а при допускаемой вероятности 0,001, т. е. защитные зоны тросовых молниеотводов несколько меньше защитных зон стержневых молниеотводов. Форма зоны защиты двух параллельных тросовых молниеотводов высотой до 30 м. Внешние границы зоны защиты каждого троса определяются так же, как и для одиночного тросового молниеотвода. В зависимости от конструкции опор, могут быть применены один или два троса, наглухо присоединённые к металлической опоре или к заземляющим металлическим спускам деревянных опор. Для предохранения троса от пережога током молнии и контроля заземления опоры крепления троса производится с помощью одного подвесного изолятора, шунтированного искровым промежутком. Эффективность тросовой защиты тем выше, чем меньше угол, образованный вертикалью, проходящей через трос, и линией, соединяющей трос с крайним из проводов. Этот угол называют защитным углом, принимая его величину в пределах

Зона защиты двух тросовых молниеотводов высотой более 30 м. Метод построения зоны защиты для этого случая такой же, как и для тросовых молниеотводов высотой до 30 м, но на расстоянии от вершины зона усекается так же, как у одиночных тросовых молниеотводов. Ширина защитной зоны, исключающей прямое поражение проводов на уровне высоты их подвеса, определяется зависимостью:

Эта зависимость справедлива для высоты подвеса троса 30 м и ниже.

Пятнадцатый вебинар из серии "Заземление и молниезащита: вопросы и проблемы, возникающие при проектировании"

Как это неудивительно, но тросовый молниеотвод - самый распространенный тип молниеотвода, а его эффективность обследована в наилучшей степени, потому что миллионы километров воздушных линий электропередачи защищены именно тросовыми молниеотводами, одиночными или двойными. Международная организация СИГРЭ в течение многих лет собирает мировой опыт эксплуатации тросовой молниезащиты. Надежность их действия в зависимости от высоты подвеса и угла защиты достоверно установлена по крайней мере до уровня 0,999. Следует отметить, что статистическая методика расчета вероятности прорыва, по которой определялись зоны защиты молниеотводов в национальных нормативах РД 34.21.122-87 и СО-153-34.21.122-2003, в основном калибровалась по опыту эксплуатации грозотросов.

Важным моментом является существенно большая эффективность тросовых молниеотводов по сравнению со стержневыми той же высоты. Если сравнить надежность защиты системы стержневых молниеотводов и грозотросов при равном числе опор, на которых установлены молниеприемники, то различие в числе ожижаемых прорывов молнии к защищаемым объектам окажется, как минимум, в пределах порядка величины.

При прочих равных условиях наибольшая надежность защиты обеспечивается организацией замкнутых тросовых молниеотводов или расположением грозотросов с отрицательными углами защиты. Это позволяет минимизировать высоту подвеса грозотросов и тем самым заметно сократить число ударов молнии в защищаемую территорию, а следовательно, и число опасных электромагнитных воздействий на цепи микроэлектроники, в т.ч. подземные.

Другим принципиальным преимуществом тросовой молниезащиты является возможность установки опор грозотросов за пределами защищаемой территории без сколько-нибудь существенных материальных затрат. Тем самым можно существенно ослабить кондуктивную связь между заземлителями этих опор и контуром заземления защищаемого объекта, что практически полностью ликвидирует проникновение тока молнии в его подземные коммуникации. Наконец, благодаря удалению опор грозотросов от защищаемой территории удается либо полностью подавить формирование скользящих искровых каналов от точки ввода в грунт тока молнии, либо ориентировать их в безопасном для объекта направлении.

Итог - замена стержневых молниеотводов грозотросами в ряде практически значимых ситуаций позволяет одновременно решить проблему электромагнитной совместимости.

Текст вебинара. Страница 1

Быстрая навигация по слайдам:

Примерное время чтения: 60 минут

— Приятно поздравить вас с первым сентября, потому что хоть сегодня и седьмое, но для нас все равно это первое сентября. Я когда готовился к этому семинару, я поймал себя на такой мысли. Вы знаете, что все мы к пожилым годам становимся маленько пижонами, и когда меня спрашивают о моей профессии, я с удовольствием говорю, что специалист по молниезащите, что я занимаюсь ультравысокими напряжениями и это вызывает некое уважение к моей персоне для меня приятной. Но на чем я себя поймал, что сегодня-то оказывается говорить об ультравысоких напряжениях особенно не приходится, потому что те вопросы, которые связаны сегодня с молниезащитой по уровню напряжения опускаются все ниже и ниже и наконец мы дошли до того, что занимаясь молниезащитой, мы начинаем говорить о единицах вольт, потому что главное несчастье, которое несет сегодня молния - это все-таки электромагнитные наводки в цепях управления автоматики, релейные защиты в каналах передачи информации этот вопрос будет важный, самый важный сегодня. И говоря о тросовых молниеотводах, я буду все-таки все время оглядываться на эту самую знаменитую проблему электромагнитной совместимости, потому что она сегодня для специалистов по молниезащите наиболее важная.

— Так вот, если говорить о тросовых молниеотводах, то надо обратиться к нормативному документу СО-153, где написано, что молниеприемники могут быть стержневыми, состоят из натянутых проводов, то бишь тросов и сеток. Так вот стержни проектировщики признают, сетки они тоже почему-то признают. Хотя эффективность этих сеток исключительно мала. А с тросами положение маленько натянутое.

— Почему-то проектировщики не очень любят тросовые молниеотводы, хотя тросовые молниеотводы - это наиболее распространенные молниеотводы в мире, потому что миллионы в буквальном смысле слова миллионы километров линий электропередач защищены тросовыми молниеотводами. И если говорить о том, что мы знаем, о молниеотводах, то больше всего нам известно о том, как ведут себя именно тросовые молниеотводы, как они защищают провода линий электропередачи и вся информация, которая у нас сегодня есть - это информация, которая притянута именно из тросовых молниеотводов. Еще в середине прошлого века два наших крупных специалиста по молниезащите Владимир Владимирович Бургсдорф и Михаил Владимирович Костенко обобщили ту информацию, которая набрала СИГРЭ - это международная комиссия по дальним электрическим сетям и эта самая комиссия обработала данные, которые дают возможность посчитать вероятность прорыва молнии сквозь тросовую молниезащиту. Так вот те расчетные формулы, которые были предложены нашими с вами специалистами Бургсдорфом и Костенко, они фигурируют до сих пор и эти формулы они в двух разных видах. В одном случае логарифм от вероятности прорыва молнии дается в обычной величине, а в другом случае в процентах, только этим и отличаются эти две формулы.

— Так вот если обобщить эти две формулы, то получается вот какая вещь. Получается, что в зависимости от угла защиты вероятность прорыва молнии сильно нарастает, то есть надежность защиты ухудшается, если же угол начать уменьшать и тем более перейти к отрицательным углам защиты, то надежность защиты становится исключительно высокой. Если брать эту теоретическую кривую, то посмотрите, только небольшой кусочек этой кривой дан сплошными линиями. Этот кусочек, который дан сплошными линиями, говорит, что здесь экспериментальных точек достаточно много и здесь можно рассчитывать на то, что данные, которые дают расчетные формулы, они действительно обоснованы большим опытом эксплуатации. Доходит эта сплошная кривая примерно до уровня 10-3, то есть из тысячи молний одна прорывается к защищаемому объекту. Это те предельные значения, которые сегодня можно использовать для тестирования любых расчетных методик, если говорить по совести, то те зоны стержневых молниеотводов, которые вы так любите, и которые приводятся в нормативных документах в РД-34 или в СО-153. Эти самые зоны получены калибровкой тех данных, которые даются тросовыми молниеотводами. Не было бы тросовых молниеотводов, не было бы, откровенно говоря, и зон защиты стержневых молниеотводов. Вот какова сегодня ситуация.

— Но дело не в этом, а в том, что если вы посмотрите на зоны защиты стрежневых молниеотводов. Вот я табличку просто скачал из СО-153. И зоны защиты тросовых молниеотводов, то вы увидите, что размеры этих зон практически одни и те же. Они если и отличаются для тросовых и стержневых молниеотводов, то они отличаются в пределах десятка, полутора десятка процентов. И на этом фоне я сейчас вам скажу такие крамольные слова, что надежность тросовых молниеотводов практически оказывается несоизмеримо выше привычных вам стрежневых молниеотводов. На фоне тех двух таблиц, которые скачены из руководящих указаний - это выглядит, может быть даже дико, но, тем не менее - это голый факт.

— И теперь для того, чтобы этот голый факт продемонстрировать, я хочу показать вам вот какую вещь. У меня есть объект. Объект такой - это большой предположим цех или большой склад размером 100 * 100 метров и высотой 20 метров. Я хочу применить для защиты этого склада стержневые молниеотводы и хочу предложить тросовые молниеотвод. Я беру 4 опоры, ставлю эти 4 опоры по углам складского помещения и смотрю, ставлю на них стержневые молниеприемники. И у меня есть кривая, которая показывает, как в зависимости от высоты стержневых молниеприемников меняется вероятность прорыва молнии. Я буду ориентировать на вероятность прорыва в 0,01, то есть на надежность защиты в 0,99 и смотреть какие стержни мне нужны. Оказывается, что мне нужны стержневые молниеотводы высотой примерно в 40 метров. Но если я возьму эти же самые опоры и натяну по этим опорам по периметру складского помещения трос, то тоже самое надежность защиты в 0,01, я получу при высоте подвеса троса 28 метров. Представляете, разница в 12 метров - это разница не только в деньгах, которая пойдет на стоимость опор.

— Из-за чего? Вот очень важно понять из-за чего это преимущество. Посмотрите, нарисованы примитивные картинки. Стержневой молниеотвод, рядом стоит условно какой-то объект. Эту картинку я уже показывал на каком-то из семинаров. Смотрите, Господь Бог посылает нам молнии с разных сторон. Посмотрим на молнию из точки А и молнию из точки Б. У этих молний разная вероятность прорыва к защищаемому объекту. Из точки А канал идет к объекту первоначально. Из точки Б он идет первоначально к молниеотводу. Разница в этих расстояниях и определяет надежность защиты. Стержневой молниеотвод хорошо защищает объекты только с одной стороны - с тыла. Если же говорить о молниях, которые идут с противоположной стороны, то здесь защита оказывается существенно более слабая и это подтверждается просто разностью одного и другого расстояния. А что теперь будет, если я буду отодвигаться в сторону от объекта или в сторону от молниеотвода? Оказывается, что если я буду отодвигаться от объекта горизонтально в бок, то у меня разность этих самых расстояний уменьшается, и надежность защиты у меня начинает очень сильно падать. А если я буду отодвигаться в сторону от молниеотвода, то разность этих расстояний будет увеличиваться и надежность защиты будет возрастать, так вот тросы хороши тем, что с какой стороны не шла бы молния, в первую очередь на ее пути будет вставать трос. И благодаря такой тросовой молниезащите, которая окружает защищаемую территорию, очень сильно возрастает надежность защиты.

— Этот момент отражен в нормативном документе. В нормативном документе в СО-153-34.21.122 хорошо вам известном есть раздел, в который мало кто из вас лазил - это раздел расчета замкнутого тросового молниеотвода. Смотрите, о чем идет речь. Вот у вас объект, это фронтальная проекция. Наверху стоят опоры и на этих опорах подвешен по внешнему периметру стержневой молниеотвод. Теперь, с какой бы стороны не шла молния: справа, слева, от сюда, от сюда, откуда бы она не шла, она первоначально натыкается на этот самый тросовый молниеотвод. И в результате этого дела очень сильно повышается надежность защиты. Например, если я размещу тросовые молниеотводы с выносом в сторону всего на 2 метра, то посмотрите, надежность защиты в 0,99, когда одна молния из ста только прорывается, обеспечивается для объекта высотой в 20 метров в том случае, когда высота молниеотвода составляет всего меньше 2-х метров над крышей защищаемого объекта. Тросы оказываются чрезвычайно перспективными в этом отношении они не просто перспективны, они еще кроме того почти не повышают высоту здания - это значит, они не стягивают на себя дополнительные молнии. И это значит, что надежность защиты электромагнитных наводок у вас становится более надежной. Вот в чем первое и самое главное преимущество тросовых молниеотводов. Тросовый молниеотводы при высокой надежности защиты обходится малым превышением над защищаемым объектом и это очень хорошее и очень благоприятное качество их, которое вы проектировщики почти не используете.