Изгиб и прогиб. Прямой изгиб плоский поперечный изгиб

Прямой изгиб – это вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила.

Чистый изгиб – это частный случай прямого изгиба, при котором в поперечных сечениях стержня возникает только изгибающий момент, а поперечная сила равна нулю.

Пример чистого изгиба – участок CD на стержне AB . Изгибающий момент – это величина Pa пары внешних сил, вызывающая изгиб. Из равновесия части стержня слева от поперечного сечения mn следует, что внутренние усилия, распределенные по этому сечению, статически эквивалентны моменту M , равному и противоположно направленному изгибающему моменту Pa .

Чтобы найти распределение этих внутренних усилий по поперечному сечению, необходимо рассмотреть деформацию стержня.

В простейшем случае стержень имеет продольную плоскость симметрии и подвергается действию внешних изгибающих пар сил, находящихся в этой плоскости. Тогда изгиб будет происходить в той же плоскости.

Ось стержня nn 1 – это линия, проходящая через центры тяжести его поперечных сечений.

Пусть поперечное сечение стержня – прямоугольник. Нанесем на его грани две вертикальные линии mm и pp . При изгибе эти линии остаются прямолинейными и поворачиваются так, что остаются перпендикулярными продольным волокнам стержня.

Дальнейшая теория изгиба основана на допущении, что не только линии mm и pp , но все плоское поперечное сечение стержня остается после изгиба плоским и нормальным к продольным волокнам стержня. Следовательно, при изгибе поперечные сечения mm и pp поворачиваются относительно друг друга вокруг осей, перпендикулярных плоскости изгиба (плоскости чертежа). При этом продольные волокна на выпуклой стороне испытывают растяжение, а волокна на вогнутой стороне – сжатие.

Нейтральная поверхность – это поверхность, не испытывающая деформации при изгибе. (Сейчас она расположена перпендикулярно чертежу, деформированная ось стержня nn 1 принадлежит этой поверхности).

Нейтральная ось сечения – это пересечение нейтральной поверхности с любым с любым поперечным сечением (сейчас тоже расположена перпендикулярно чертежу).

Пусть произвольное волокно находится на расстоянии y от нейтральной поверхности. ρ – радиус кривизны изогнутой оси. Точка O – центр кривизны. Проведем линию n 1 s 1 параллельно mm . ss 1 – абсолютное удлинение волокна.

Относительное удлинение ε x волокна

Из этого следует, что деформации продольных волокон пропорциональны расстоянию y от нейтральной поверхности и обратно пропорциональны радиусу кривизны ρ .

Продольное удлинение волокон выпуклой стороны стержня сопровождается боковым сужением , а продольное укорочение вогнутой стороны – боковым расширением , как в случае простого растяжения и сжатия. Из-за этого вид всех поперечных сечений меняется, вертикальные стороны прямоугольника становятся наклонными. Деформация в боковом направлении z :



μ – коэффициент Пуассона.

Вследствие такого искажения все прямые линии поперечного сечения, параллельные оси z , искривляются так, чтоб остаться нормальными к боковым сторонам сечения. Радиус кривизны этой кривой R будет больше, чем ρ в таком же отношении, в каком ε x по абсолютной величине больше чем ε z , и мы получим

Этим деформациям продольных волокон отвечают напряжения

Напряжение в любом волокне пропорционально его расстоянию от нейтральной оси n 1 n 2 . Положение нейтральной оси и радиус кривизны ρ – две неизвестные в уравнении для σ x – можно определить из условия, что усилия, распределенные по любому поперечному сечению, образуют пару сил, которая уравновешивает внешний момент M .

Все вышесказанное также справедливо, если стержень не имеет продольную плоскость симметрии, в которой действует изгибающий момент, лишь бы только изгибающий момент действовал в осевой плоскости, которая заключает в себе одну из двух главных осей поперечного сечения. Эти плоскости называются главными плоскостями изгиба .

Когда имеется плоскость симметрии и изгибающий момент действует в этой плоскости, прогиб происходит именно в ней. Моменты внутренних усилий относительно оси z уравновешивают внешний момент M . Моменты усилий относительно оси y взаимно уничтожаются.

Глава 1. ИЗГИБ ПРЯМОЛИНЕЙНЫХ БАЛОК И БАЛОЧНЫХ СИСТЕМ

1.1. Основные зависимости теории изгиба балок

Балками принято называть стержни, работающие на изгиб под действием поперечной (нормальной к оси стержня) нагрузки. Балки – наиболее распространенные элементы судовых конструкций. Ось балки – геометрическое место центров тяжести ее поперечных сечений в недеформированном состоянии. Балка называется прямой, если осью является прямая линия. Геометрическое место центров тяжести поперечных сечений балки в изогнутом состоянии называется упругой линией балки. Принято следующее направление осей координат: ось OX совмещена с осью балки, а оси OY и OZ – с главными центральными осями инерции поперечного сечения (рис. 1.1).

Теория изгиба балок основывается на следующих допущениях.

1. Принимается гипотеза плоских сечений, согласно которой поперечные сечения балки, первоначально плоские и нормальные к оси балки, остаются после ее изгиба плоскими и нормальными к упругой линии балки. Благодаря этому деформацию изгиба балки можно рассматривать независимо от деформации сдвига, которая вызывает искажение плоскостей поперечных сечений балки и их поворот относительно упругой линии (рис. 1.2, а ).

2. Нормальными напряжениями в площадках, параллельных оси балки, пренебрегают из-заих малости (рис. 1.2, б ).

3. Балки считаются достаточно жесткими, т.е. прогибы их малы по сравнению с высотой балок, а углы поворота сечений малы по сравнению с единицей (рис.1.2, в ).

4. Напряжения и деформации связаны линейной зависимостью, т.е. справедлив закон Гука (рис. 1.2, г ).


Рис. 1.2. Допущения теории изгиба балок

Будем рассматривать появляющиеся при изгибе балки в ее сечении изгибающие моменты и перерезывающие силы как результат действия мысленно отбрасываемой по сечению части балки на оставшуюся ее часть.

Момент всех действующих в сечении усилий относительно однойиз главных осей называется изгибающим моментом. Изгибающий момент равен сумме моментов всех сил (включая опорные реакции и моменты), действующих на отброшенную часть балки, относительно указанной оси рассматриваемого сечения.

Проекция на плоскость сечения главного вектора усилий, действующих в сечении, называется перерезывающей силой. Она равна сумме проекций наплоскость сечения всех сил (включая опорные реакции), действующих на отброшенную часть балки .

Ограничимся рассмотрением изгиба балки, происходящего в плоскости XOZ . Такой изгиб будет иметь место в случае, когда поперечная нагрузка действует в плоскости, параллельной плоскости XOZ , а ее равнодействующая в каждом сечении проходит через точку, называемую центром изгиба сечения. Заметим, что для сечений балок,имеющих две осисимметрии, центр изгиба совпадает с центром тяжести, а для сечений, имеющих одну ось симметрии, он лежит на осисимметрии, но не совпадает с центром тяжести.

Нагрузка входящих в состав судового корпуса балок может быть либо распределенной (чаще всего равномерно распределенной вдоль оси балки, или изменяющейся по линейному закону), либо приложенной в виде сосредоточенных сил и моментов.

Обозначим интенсивность распределенной нагрузки (нагрузку, приходящуюся на единицу длины оси балки) через q (x ), внешнюю сосредоточенную силу – как Р , а внешний изгибающий момент – как М . Распределенная нагрузка и сосредоточенная сила положительны, если направления их действия совпадают с положительным направлением оси OZ (рис. 1.3,а ,б ). Внешний изгибающий момент положителен, если он направлен по часовой стрелке (рис.1.3,в ).

Рис. 1.3. Правило знаков для внешних нагрузок

Обозначим прогиб прямой балки при ее изгибе в плоскости XOZ через w , а угол поворота сечения – через θ. Примем правило знаков для элементов изгиба (рис. 1.4):

1) прогиб положителен, если он совпадает с положительным направлением оси OZ (рис. 1.4, а ):

2) угол поворота сечения положителен, если в результате изгиба сечение поворачивается по часовой стрелке (рис. 1.4, б );

3) изгибающие моменты положительны, если балка под их воздействием изгибается выпуклостью вверх (рис. 1.4, в );

4) перерезывающие силы положительны, если они поворачивают выделенный элемент балки против часовой стрелки (рис. 1.4, г ).


Рис. 1.4. Правило знаков для элементов изгиба

На основании гипотезы плоских сечений можно видеть (рис. 1.5), что относительное удлинение волокна ε x , отстоящего на z от нейтральной оси, будет равно

ε x = −z /ρ ,(1.1)

где ρ – радиус кривизны балки в рассматриваемом сечении.

Рис. 1.5. Схема изгиба балки

Нейтральной осью поперечного сечения называется геометрическое место точек, для которых линейная деформация при изгибе равна нулю. Между кривизной и производными от w (x ) существует зависимость

В силу принятого допущения о малости углов поворота для достаточно жестких балок величина мала по сравнению с единицей , поэтому можно считать, что

Подставив 1/ρ из (1.2) в (1.1), получим

Нормальные напряжения от изгиба σ x на основании закона Гука будут равны

Поскольку из определения балок следует, что продольное усилие, направленное вдоль оси балки, отсутствует, главный вектор нормальных напряжений должен обращаться в нуль, т.е.

где F – площадь поперечного сечения балки.

Из (1.5) получим, что статический момент площади сечения балки равен нулю. Это значит, что нейтральная ось сечения проходит через его центр тяжести.

Момент внутренних усилий, действующих в поперечном сечении относительно нейтральной оси, M y будет

Если учесть, что момент инерции площади сечения относительно нейтральной оси OY равен , и подставить это значение в (1.6), то получим зависимость, которая выражает основное дифференциальное уравнение изгиба балки

Момент внутреннихусилий в сечении относительно оси OZ будет

Поскольку оси OY и OZ по условию являются главными центральными осями сечения, то .

Отсюда следует, что при действии нагрузки в плоскости, параллельной главной плоскости изгиба, упругая линия балки будет плоской кривой. Такой изгиб называется плоским . На основании зависимостей (1.4) и (1.7) получим

Формула (1.8) показывает, что нормальные напряжения при изгибе балок пропорциональны отстоянию от нейтральной оси балки. Естественно, что это вытекаетиз гипотезы плоских сечений. В практических расчетах для определения наибольших нормальных напряжений часто используют момент сопротивления сечения балки

где |z | max – абсолютное значение отстояния наиболее удаленного волокна от нейтральной оси.

В дальнейшем нижние индексы y для упрощения опущены.

Между изгибающим моментом, перерезывающей силой и интенсивностью поперечной нагрузки существует связь, вытекающая из условия равновесия элемента, мысленно выделенного из балки.

Рассмотрим элемент балки длиной dx (рис. 1.6). Здесь принимается, что деформации элемента пренебрежимо малы.

Если в левом сечении элемента действует момент M и перерезывающая сила N , то в правом его сечении соответствующие усилия будут иметь приращения. Рассмотрим только линейные приращения .

Рис.1.6. Усилия, действующие на элемент балки

Приравняв нулю проекцию на ось OZ всех усилий, действующих на элемент, и момент всех усилий относительно нейтральной оси правого сечения, получим:

Из этих уравнений с точностью до величин высшего порядка малости получим

Из (1.11) и (1.12) следует, что

Зависимости (1.11)–(1.13) известны под названием теоремы Журавского–Шведлера .Из этих зависимостей следует, что перерезывающая сила и изгибающий момент могут быть определены путем интегрирования нагрузки q :


где N 0 и M 0 – перерезывающая сила и изгибающий момент в сечении, соответствующем x = x 0 , которое принимается за начало отсчета; ξ, ξ 1 – переменные интегрирования .

Постоянные N 0 и M 0 для статически определимых балок могут быть определены из условий их статического равновесия.

Если балка статически определимая, изгибающий момент влюбом сечении может быть найден по (1.14), и упругая линия определяется путем двукратного интегрирования дифференциального уравнения (1.7). Однако в конструкциях судового корпуса статически определимые балки встречаются крайне редко. Большинство балок, входящих в состав судовых конструкций, образует многократно статически неопределимые системы. В этих случаях для определения упругой линии уравнение (1.7) является неудобным, и целесообразно перейти к уравнению четвертого порядка.

1.2. Дифференциальное уравнение изгиба балок

Дифференцируя уравнение (1.7) для общего случая, когда момент инерции сечения является функцией от x , с учетом (1.11) и (1.12) получим:


где штрихами обозначено дифференцирование по x .

Для призматических балок, т.е. балок постоянного сечения, получим следующие дифференциальные уравнения изгиба:

Обыкновенное неоднородное линейное дифференциальное уравнение четвертого порядка (1.18) можно представить в виде совокупности четырех дифференциальных уравнений первого порядка:

Используем далееу равнение (1.18) или систему уравнений (1.19) для определения прогиба балки (ее упругой линии) и всех неизвестных элементов изгиба: w (x ), θ (x ), M (x ), N (x ).

Интегрируя (1.18) последовательно 4 раза (считая, чтолевому концу балки соответствует сечение x = x a ), получим:


Нетрудно видеть, что постоянные интегрирования N a , M a , θ a , w a имеют определенный физический смысл, а именно:

N a – перерезывающая сила в начале отсчета, т.е. при x = x a ;

M a – изгибающий момент в начале отсчета;

θ a – угол поворота в начале отсчета;

w a – прогиб в этом же сечении.

Для определения указанных постоянных всегда можно составить четыре граничных условия – по два для каждого конца однопролетной балки. Естественно, что граничные условия зависят от устройства концов балки. Простейшие условия соответствуют шарнирному опиранию на жесткие опоры или жесткой заделке.

При шарнирном опирании конца балки на жесткой опоре (рис. 1.7, а ) прогиб балки и изгибающий момент равны нулю:

При жесткой заделке на жесткой опоре (рис. 1.7, б ) равны нулю прогиб и угол поворота сечения:

Если конец балки (консоль) свободен (рис. 1.7, в ), то в этом сечении равны нулю изгибающий момент и перерезывающая сила:

Возможна ситуация, связанная со скользящей заделкой или заделкой по симметрии (рис. 1.7, г ). Это приводит к таким граничным условиям:

Заметим, что граничные условия (1.26), касающиеся прогибов и углов поворота, принято называть кинематическими , а условия (1.27) – силовыми .


Рис. 1.7. Виды граничных условий

В судовых конструкциях часто приходится иметь дело с более сложными граничными условиями, которые соответствуют опиранию балки на упругие опоры или упругой заделке концов.

Упругой опорой (рис. 1.8, а ) называется опора,имеющая просадку, пропорциональную действующей на опору реакции. Будем считать реакцию упругой опоры R положительной, если она действует на опору в сторону положительного направления оси OZ . Тогда можно записать:

w = AR ,(1.29)

где A – коэффициент пропорциональности, называемый коэффициентом податливости упругой опоры.

Этот коэффициент равен просадке упругой опоры при действии реакции R = 1, т.е. A = w R = 1 .

Упругими опорами в судовых конструкциях могут быть балки, подкрепляющиерассматриваемую балку, или пиллерсы и другие конструкции, работающие на сжатие.

Для определения коэффициента податливости упругой опоры A необходимо загрузить соответствующую конструкцию единичной силой и найти абсолютную величину просадки (прогиб) в месте приложения силы. Жесткая опора – частный случай упругой опоры при A = 0.

Упругой заделкой (рис. 1.8, б ) называется такая опорная конструкция, которая препятствует свободному повороту сечения и в которой угол поворота θ в этом сечении пропорционален моменту, т.е. имеетместо зависимость

θ =Â M .(1.30)

Множитель пропорциональности Â называется коэффициентом податливости упругой заделки и может быть определен, как угол поворота упругой заделки при M = 1, т.е. Â = θ M = 1 .

Частным случаем упругой заделки при Â = 0 является жесткая заделка. В судовых конструкциях упругими заделками обычно являются балки, нормальные к рассматриваемой и лежащие в этой же плоскости. Например, упруго заделанными на шпангоутах можно считать бимсы и т.п.


Рис. 1.8. Упругая опора (а ) и упругая заделка (б )

Если концы балки длиной L оперты на упругие опоры (рис. 1.9), то реакции опор в концевых сечениях равны перерезывающим силам, и граничные условия можно записать:

Знак минус в первом условии (1.31) принят потому, что положительная перерезывающая сила в левом опорном сечении соответствует реакции, действующей на балку сверху вниз, а на опору – снизу вверх.

Если концы балки длиной L упругозаделанные (рис. 1.9), то для опорных сечений, учитывая правило знаков для углов поворота и изгибающих моментов, можно записать:

Знак минус во втором условии (1.32) принят потому, что при положительном моменте в правом опорном сечении балки момент, действующий на упругую заделку, направлен против часовой стрелки, а положительный угол поворота в этом сечении направлен по часовой стрелке, т.е. направления момента и угла поворота не совпадают.

Рассмотрение дифференциального уравнения (1.18) и всех граничных условий показывает, что они линейны относительно как входящих в них прогибов и их производных, так и действующих на балку нагрузок. Линейность является следствием допущений о справедливости закона Гука и малости прогибов балки.

Рис. 1.9. Балка, оба конца которой упруго оперты и упруго заделаны (а );

усилия в упругих опорах и упругих заделках, соответствующие положительным
направлениям изгибающего момента и перерезывающей силы (б )

При действии на балку нескольких нагрузок каждый элемент изгиба балки (прогиб, угол поворота, момент и перерезывающая сила) представляет собой сумму элементов изгиба от действия каждой из нагрузок в отдельности. Это очень важное положение, называемое принципом наложения, или принципом суммирования действия нагрузок, широко используется в практических расчетах и, в частности, для раскрытия статической неопределимости балок.

1.3. Метод начальных параметров

Общий интеграл дифференциального уравнения изгиба балки может быть использован для определения упругой линии однопролетной балки в том случае, когда нагрузка балки представляет собой непрерывную функцию координаты на протяжении всего пролета. Если в составе нагрузки встречаются сосредоточенные силы, моменты или распределенная нагрузка действует на части длины балки (рис. 1.10), то непосредственно использовать выражение (1.24) нельзя. В этом случае можно было бы, обозначив упругие линии на участках 1, 2 и 3 через w 1 , w 2 , w 3 , выписать для каждойиз них интеграл в виде (1.24) и найти все произвольные постоянные из граничных условий на концах балки и условий сопряжения на границах участков. Условия сопряжения в рассматриваемом случае выражаются так:

при x=a 1

при x=a 2

при x=a 3

Нетрудно заметить, что такой путь решения задачи приводит к большому числу произвольных постоянных, равному 4n , где n – число участков по длине балки.

Рис. 1.10. Балка, на отдельных участках которой приложены нагрузки разных типов

Значительно удобнее представить упругую линию балки в виде

где члены за двойной чертой учитываются при x ³ a 1, x ³ a 2 и т.д.

Очевидно, что δ 1 w (x )=w 2 (x )−w 1 (x ); δ 2 w (x )=w 3 (x )−w 2 (x ); и т.д.

Дифференциальные уравнения для определения поправок к упругой линии δ i w (x ) на основании (1.18) и (1.32) можно записать в виде

Общий интеграл для любой поправки δ i w (x ) к упругой линии может быть записан в виде (1.24) при x a = a i . При этом параметры N a , M a , θ a , w a имеют смысл изменения (скачка) соответственно: в перерезывающей силе, изгибающем моменте, угле поворота и стрелке прогиба при переходе через сечение x = a i . Такой прием называется методом начальных параметров. Можно показать, чтодля балки, приведенной на рис. 1.10, уравнение упругой линии будет


Таким образом, метод начальных параметров дает возможность и при наличии разрывности в нагрузках записать уравнение упругой линии в виде, содержащем лишь четыре произвольных постоянных N 0 , M 0 , θ 0 , w 0 , которые определяются из граничных условий по концам балки.

Заметим, что для большого числа вариантов встречающихся на практике однопролетных балок составлены подробные таблицы изгиба, которые позволяют легко найти прогибы, углы поворота и другие элементы изгиба.

1.4. Определение касательных напряжений при изгибе балок

Принятая в теории изгиба балок гипотеза плоских сечений приводит к тому, что деформация сдвига в сечении балки оказывается равной нулю, и мы неимеем возможности, используя закон Гука, определить касательные напряжения. Однако поскольку в общем случае в сечениях балки действуют перерезывающие силы, то должны возникать соответствующие им касательные напряжения. Это противоречие (которое является следствием принятой гипотезы плоских сечений) можно обойти, рассматривая условия равновесия. Будем считать, что при изгибе балки, составленной из тонких полос, касательные напряжения в поперечном сечении каждой из этих полос равномерно распределены по толщине и направлены параллельно длинным сторонам ее контура. Это положение практически подтверждается точными решениями теории упругости. Рассмотрим балку открытого тонкостенного двутаврового профиля. На рис. 1.11 показано положительное направление касательных напряжений в поясках и стенке профиля при изгибе в плоскости стенки балки. Выделим продольным сечением I - I и двумя поперечными сечениями элемент длиной dx (рис. 1.12).

Обозначим касательное напряжение в указанном продольном сечении через τ, а нормальные усилия в начальном поперечном сечении через T . Нормальные усилия в конечном сечении будут иметь приращения. Рассмотрим только линейные приращения, тогда .

Рис. 1.12. Продольные усилия и касательные напряжения
в элементе пояска балки

Условие статического равновесия выделенногоиз балки элемента (равенство нулю проекций усилий на ось OX ) будет

где ; f – площадь части профиля, отсеченного линией I – I ; δ– толщина профиля в месте сечения.

Из (1.36) следует:

Поскольку нормальные напряжения σ x определяются формулой (1.8), то

При этом мы полагаем, что балка имеет постоянное по длине сечение. Статический момент части профиля (отсеченной линией I – I ) относительно нейтральной оси сечения балки OY является интегралом

Тогда из (1.37) для абсолютной величины напряжений получим:

Естественно, что полученная формула для определения касательных напряжений справедлива и для любого продольного сечения, например II – II (см. рис. 1.11), и статический момент S отс вычисляется для отсеченной части площади профиля балки относительно нейтральной оси без учета знака.

Формула (1.38) по смыслу проведенного вывода определяет касательные напряжения в продольных сечениях балки. Из теоремы о парности касательных напряжений, известной из курса сопротивления материалов, следует, что такие же касательные напряжения действуют в соответствующих точках поперечного сечения балки. Естественно, что проекция главного вектора касательных напряжений на ось OZ должна быть равна перерезывающей силе N в данном сечении балки. Поскольку в поясках балки такого типа, как показано на рис. 1.11, касательные напряжения направлены по оси OY , т.е. нормально к плоскости действия нагрузки, и являются в целом уравновешенными, перерезывающая сила должна уравновешиваться касательными напряжениями в стенке балки. Распределение касательных напряжений по высоте стенки следует закону изменения статического момента S отс отсеченной части площади относительно нейтральной оси (при постоянной толщине стенки δ ).

Рассмотрим симметричное сечение двутавровой балки с площадью пояска F 1 и площадью стенки ω = (рис. 1.13).

Рис. 1.13. Сечение двутавровой балки

Статический момент отсеченной части площади для точки, отстоящей на z от нейтральной оси, будет

Как видно из зависимости (1.39), статическиймомент изменяется с z по закону квадратичной параболы. Наибольшее значение S отс , а следовательно, и касательных напряжений τ, получится у нейтральной оси, где z = 0:

Наибольшее касательное напряжениев стенке балки у нейтральной оси

Поскольку момент инерции сечения рассматриваемой балки равен

то наибольшее касательное напряжение будет


Отношение N /ω есть не что иное, как среднее касательное напряжение в стенке, вычисленное в предположенииравномерного распределения напряжений. Принимая, например, ω = 2F 1 , по формуле (1.41) получим

Таким образом, у рассматриваемой балки наибольшее касательное напряжение в стенке у нейтральной оси лишь на 12,5% превышает среднее значение этих напряжений. Следует отметить, что у большинства профилей балок, применяемых в судовом корпусе, превышение максимальных касательных напряжений над средними составляет 10–15%.

Если рассмотреть распределение касательных напряжений при изгибе в сечении балки, показанной на рис. 1.14, то можно видеть, что они образуют момент относительно центра тяжести сечения. В общем случае изгиб такой балки в плоскости XOZ будет сопровождаться закручиванием.

Изгиб балки не сопровождается закручиванием, если нагрузка будет действовать в плоскости, параллельной XOZ , проходящей через точку, называемую центром изгиба. Эта точка характеризуетсятем, что момент всех касательных усилий в сечении балки относительно нее равен нулю.

Рис. 1.14. Касательные напряжения при изгибе швеллерной балки (точка А – центр изгиба)

Обозначив отстояние центра изгиба А от оси стенки балки через е , запишем условие равенства нулю моментакасательных усилий относительно точки А :

где Q 2 – касательное усилие в стенке, равное перерезывающей силе, т.е. Q 2 =N ;

Q 1 =Q 3 – усилие в пояске, определяемое на основании (1.38) зависимостью

Деформация сдвига (или угол сдвига) γ изменяется по высоте стенки балки так же, как и касательные напряжения τ, достигая наибольшей величины у нейтральной оси.

Как было показано, у балок с поясками изменение касательных напряжений по высоте стенки весьма незначительно. Это позволяет в дальнейшем рассматривать некоторый средний угол сдвига в стенке балки

Деформация сдвига приводит к тому, что прямой угол между плоскостью поперечного сечения балки и касательной к упругой линии изменяется на величину γ ср . Упрощенная схема деформации сдвига элемента балки показана на рис. 1.15.

Рис. 1.15. Схема деформации сдвига элемента балки

Обозначив стрелку прогиба, вызванную сдвигом через w сдв , можно записать:

С учетом правила знаков для перерезывающей силы N и угла поворота найдем

Поскольку ,

Интегрируя (1.47), получим

Постоянная a , входящая в (1.48), определяет перемещение балки как твердого тела и может быть принята равной любой величине, так как при определении суммарной стрелки прогиба от изгиба w изг и сдвига w сдв

появится сумма постоянных интегрирования w 0 +a , определяемая из граничных условий. Здесь w 0 – прогиб от изгиба в начале координат.

Положим в дальнейшем a =0. Тогда окончательно выражение для упругой линии, вызванной сдвигом, примет вид

Изгибная и сдвиговая составляющие упругой линии показаны на рис. 1.16.


Рис. 1.16. Изгибная (а ) и сдвиговая (б ) составляющие упругой линии балки

В рассмотренном случае угол поворота сечений при сдвиге равен нулю, поэтому и с учетом сдвига углы поворота сечений, изгибающие моменты и перерезывающие силы связаны только с производными упругой линии от изгиба:

Несколько иначе обстоит дело в случае действия на балку сосредоточенных моментов, которые, как будет показано ниже, не вызывают прогибов от сдвига, а приводят лишь к дополнительному повороту сечений балки.

Рассмотрим свободно опертую на жесткие опоры балку, в левом сечении которой действует момент М . Перерезывающая сила в этом случае будет постоянной и равной

Для правого опорного сечения соответственно получим

.(1.52)

Выражения (1.51)и (1.52) можно переписать в виде


Выражения в круглых скобках характеризуют относительную добавку к углу поворота сечения, вызванную сдвигом.

Если рассмотреть, например, свободно опертую балку, загруженную посередине ее пролета силой Р (рис. 1.18), то прогиб балки под силой будет равен

Прогиб от изгиба можно найти по таблицам изгиба балок. Прогиб от сдвига определяется по формуле (1.50) с учетом того, что .

Рис. 1.18. Схема свободно опертой балки, загруженной сосредоточенной силой

Как видно из формулы (1.55), относительная добавка к прогибу балки за счет сдвига имеет такую же структуру, что и относительная добавка к углу поворота, но с другим численным коэффициентом.

Введем обозначение

где β – численный коэффициент, зависящий от рассматриваемой конкретной задачи, устройства опор и нагрузки балки.

Проанализируем зависимость коэффициента k от различных факторов.

Если учесть, что , получим вместо (1.56)

Момент инерции сечения балки всегда может быть представлен в виде

,(1.58)

где α – численный коэффициент, зависящий от формы и характеристик поперечного сечения. Так, для балки двутаврового профиля по формуле (1.40) при ω =2F 1 найдем I = ωh 2 /3, т.е. α =1/3.

Заметим, что с ростом размеров поясков балки коэффициент α будет увеличиваться.

С учетом (1.58) вместо (1.57) можно записать:

Таким образом, значение коэффициента k существенно зависит от отношения длины пролета балки к ее высоте, от формы сечения (через коэффициент α ), устройства опор и нагрузки балки (через коэффициент β ). Чем относительно длиннее балка (h / L мало), тем меньше влияние деформации сдвига. Для балок прокатного профиля, имеющих отношение h / L меньше 1/10÷1/8, поправка на сдвиг практически может не учитываться.

Однако для балок с широкими поясками, таких, например, как киль, стрингеры и флоры в составе днищевых перекрытий влияние сдвига и при указанных h / L может оказаться значительным.

Следует отметить, что деформации сдвига оказывают влияние не только на увеличение прогибов балок, но в некоторых случаях и на результаты раскрытия статической неопределимости балок и балочных систем.

Изгиб - вид деформации, при котором происходит искривление осей прямых брусьев или изменение кривизны осей кривых брусьев. Изгиб связан с возникновением в поперечных сечениях бруса изгибающих моментов. Прямой изгиб возникает в случае, когда изгибающий момент в данном поперечном сечении бруса действует в плоскости, проходящей через одну из главных центральных осей инерции этого сечения. В случае, когда плоскость действия изгибающего момента в данном поперечном сечении бруса не проходит ни через одну из главных осей инерции этого сечения, называется косым .

Если при прямом или косом изгибе в поперечном сечении бруса действует только изгибающий момент, то соответственно имеется чистый прямой или чистый косой изгиб . Если в поперечном сечении действует также и поперечная сила, то имеется поперечный прямой или поперечный косой изгиб .

Часто термин «прямой» в названии прямого чистого и прямого поперечного изгиба не употребляют и их называют соответственно чистым изгибом и поперечным изгибом.

См. также

Ссылки

  • Расчётные данные для типовых балок постоянного сечения

Wikimedia Foundation . 2010 .

Смотреть что такое "Изгиб (механика)" в других словарях:

    У этого термина существуют и другие значения, см. Стержень. Стержень тело удлиненной формы, два размера которого (высота и ширина) малы по сравнению с третьим размером (длиной) В таком же значении иногда используют термин «брус», а… … Википедия

    осесимметричный изгиб круглой пластинки - Деформированное состояние осесимметричной круглой пластинки, при котором срединная плоскость переходит в поверхность вращения. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно технической… …

    цилиндрический изгиб пластинки - Деформированное состояние пластинки, при котором срединная плоскость переходит в цилиндрическую поверхность. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.]… … Справочник технического переводчика

    Плита пластина, нагруженная перпендикулярно её плоскости и работающая преимущественно на изгиб из собственной плоскости. Плоскость, которая делит толщину пластины пополам, называется срединной плоскостью плиты. Поверхность, в которую… … Википедия

    У этого термина существуют и другие значения, см. Брус. Брус (в механике материалов и конструкций) модель тела, у которого один из размеров гораздо больше двух других. При расчётах брус заменяют его продольной осью. В строительной механике… … Википедия

    косой изгиб - Деформация бруса, при которой силовая плоскость не совпадает ни с одной из главных центральных осей его поперечного сечения. Тематики строительная механика, сопротивление материалов EN asymmetric bending … Справочник технического переводчика

    плоский изгиб - Деформация бруса, при которой все нагрузки приложены в одной плоскости, называемой силовой. Тематики строительная механика, сопротивление материалов EN flat bending … Справочник технического переводчика

    прямой изгиб - Деформация бруса, при которой линия пересечения силовой плоскости с плоскостью поперечного сечения совпадает с одной из его главных центральных осей. Тематики строительная механика, сопротивление… … Справочник технического переводчика

    РОДЫ - РОДЫ. Содержание: I. Определение понятия. Изменения в организме во время Р. Причины наступления Р..................... 109 II. Клиническое течение физиологических Р. . 132 Ш. Механика Р. ................. 152 IV. Ведение Р.................. 169 V … Большая медицинская энциклопедия

    Механик Императорской Академии Наук, член Императорского Вольного экономического общества. Сын мещанина Нижнего Новгорода, род. в Нижнем Новгороде 10 апреля 1735 г., ум. там же 30 июля 1818 г. Кулибин предназначался отцом торговать мукой, но он с … Большая биографическая энциклопедия

Книги

  • Техническая механика (сопротивление материалов). Учебник для СПО , Ахметзянов М.Х.. Книга охватывает основные вопросы прочности, жесткости и устойчивости стержня при статических и динамических воздействиях. Рассмотрены простые (растяжение-сжатие, сдвиг, плоский изгиб и…

При прямом чистом изгибе бруса в его поперечных сечениях возникают только нормальные напряжения. Когда величина изгибающего момента М в сечении стержня меньше некоторого значения, эпюра, характеризующая распределение нормальных напряжений вдоль оси у поперечного сечения, перпендикулярной нейтральной оси (рис. 11.17, а), имеет вид, показанный на рис. 11.17, б. Наибольшие напряжения при этом равны По мере увеличения изгибающего момента М нормальные напряжения возрастают, пока наибольшие их значения (в волокнах, наиболее удаленных от нейтральной оси) становятся равными пределу текучести (рис. 11.17, в); при этом изгибающий момент равен опасному значению:

При увеличении изгибающего момента сверх опасного значения напряжения, равные пределу текучести возникают не только в волокнах, наиболее удаленных от нейтральной оси, но и в некоторой зоне поперечного сечения (рис. 11.17, г); в этой зоне материал находится в пластическом состоянии. В средней части сечения напряжения меньше предела текучести, т. е. материал в этой части находится еще в упругом состоянии.

При дальнейшем увеличении изгибающего момента пластическая зона распространяется в сторону нейтральной оси, а размеры упругой зоны уменьшаются.

При некотором предельном значении изгибающего момента , соответствующем полному исчерпанию несущей способности сечения стержня на изгиб, упругая зона исчезает, а зона пластического состояния занимает всю площадь поперечного сечения (рис. 11.17, д). При этом в сечении образуется так называемый пластический шарнир (или шарнир текучести).

В отличие от идеального шарнира, который не воспринимает момента, в пластическом шарнире действует постоянный момент Пластический шарнир является односторонним: он исчезает при действии на стержень моментов обратного (по отношению к ) знака или при разгрузке балки.

Для определения величины предельного изгибающего момента выделим в части поперечного сечения балки, расположенной над нейтральной осью, элементарную площадку отстоящую на расстоянии от нейтральной оси, а в части, расположенной под нейтральной осью, - площадку отстоящую на расстоянии от нейтральной оси (рис. 11.17, а).

Элементарная нормальная сила, действующая на площадку в предельном состоянии, равна а ее момент относительно нейтральной оси равен аналогично момент нормальной силы действующей на площадку равен Оба эти момента имеют одинаковые знаки. Величина предельного момента равна моменту всех элементарных сил относительно нейтральной оси:

где - статические моменты соответственно верхней и нижней частей поперечного сечения относительно нейтральной оси .

Сумму называют осевым пластическим моментом сопротивления и обозначают

(10.17)

Следовательно,

(11.17)

Продольная сила в поперечном сечении при изгибе равна нулю, а потому площадь сжатой зоны сечения равняется площади растянутой зоны. Таким образом, нейтральная ось в сечении, совпадающем с пластическим шарниром, делит это поперечное сечение на две равновеликие части. Следовательно, при несимметричном поперечном сечении нейтральная ось не проходит в предельном состоянии через центр тяжести сечения.

Определим по формуле (11.17) величину предельного момента для стержня прямоугольного сечения высотой h и шириной b:

Опасное значение момента при котором эпюра нормальных напряжений имеет вид, изображенный на рис. 11.17, в, для прямоугольного сечения определяется по формуле

Отношение

Для круглого сечения отношение а для двутаврового

Если изгибаемый брус является статически определимым, то после снятия нагрузки, вызвавшей в нем момент изгибающий момент в его поперечном сечении равняется нулю. Несмотря на это, нормальные напряжения в поперечном сечении не исчезают. На эпюру нормальных напряжений в пластической стадии (рис. 11.17, е) накладывается эпюра напряжений в упругой стадии (рис. 11.17, е), аналогичная эпюре, изображенной на рис. 11.17,б, так как при разгрузке (которую можно рассматривать как нагрузку моментом обратного знака) материал ведет себя как упругий.

Изгибающий момент М, соответствующий эпюре напряжений, показанный на рис. 11.17, е, по абсолютной величине равен так как только при этом условии в поперечном сечении бруса от действия момента и М суммарный момент равен нулю. Наибольшее напряжение на эпюре (рис. 11.17, е) определяется из выражения

Суммируя эпюры напряжений, показанные на рис. 11.17, д,е, получаем эпюру, изображенную на рис. 11.17, ж. Эта эпюра характеризует распределение напряжений после снятия нагрузки, вызывавшей момент При такой эпюре изгибающий момент в сечении (а также и продольная сила) равняется нулю.

Изложенная теория изгиба за пределом упругости используется не только в случае чистого изгиба, но и в случае поперечного изгиба, когда в поперечном сечении балки кроме изгибающего момента действует также поперечная сила.

Определим теперь предельное значение силы Р для статически определимой балки, изображенной на рис. 12.17, а. Эпюра изгибающих моментов для этой балки показана на рис. 12.17,б. Наибольший изгибающий момент возникает под грузом где он равен Предельное состояние, соответствующее полному исчерпанию несущей способности балки, достигается тогда, когда в сечении под грузом возникает пластический шарнир, в результате чего балка превращается в механизм (рис. 12.17, в).

При этом изгибающий момент в сечении под грузом равняется

Из условия находим [см. формулу (11.17)]

Теперь вычислим предельную нагрузку для статически неопределимой балки. Рассмотрим в качестве примера два раза статически неопределимую балку постоянного сечения, изображенную на рис. 13.17, а. Левый конец А балки жестко защемлен, а правый конец В закреплен против поворота и вертикального смещения.

Если напряжения в балке не превышают предела пропорциональности, то эпюра изгибающих моментов имеет вид, показанный на рис. 13.17, б. Она построена по результатам расчета балки обычными методами, например с помощью уравнений трех моментов. Наибольший изгибающий момент равный возникает в левом опорном сечении рассматриваемой балки. При значении нагрузки изгибающий момент в этом сечении достигает опасного значения вызывающего появление напряжений, равных пределу текучести, в волокнах балки, наиболее удаленных от нейтральной оси.

Увеличение нагрузки сверх указанной величины приводит к тому, что в левом опорном сечении А изгибающий момент становится равным предельному значению и в этом сечении появляется пластический шарнир. Однако несущая способность балки полностью еще не исчерпывается.

При дальнейшем возрастании нагрузки до некоторого значения пластические шарниры появляются также в сечениях В и С. В результате появления трех шарниров балка, вначале дважды статически неопределимая, становится геометрически изменяемой (превращается в механизм). Такое состояние рассматриваемой балки (когда в ней возникают три пластических шарнира) является предельным и соответствует полному исчерпанию ее несущей способности; дальнейшее увеличение нагрузки Р становится невозможным.

Величину предельной нагрузки можно установить без исследования работы балки в упругой стадии и выяснения последовательности образования пластических шарниров.

Значения изгибающих моментов в сечениях. А, В и С (в которых возникают пластические шарниры) в предельном состоянии равны соответственно и, следовательно, эпюра изгибающих моментов при предельном состоянии балки имеет вид, изображенный на рис. 13.17, в. Эту эпюру можно представить состоящей из двух эпюр: первая из них (рис. 13.17, г) представляет собой прямоугольник с ординатами и вызвана моментами приложенными по концам простой балки, лежащей на двух опорах (рис. 13.17, д); вторая эпюра (рис. 13.17, е) представляет собой треугольник с наибольшей ординатой и вызвана грузом действующим на простую балку (рис. 13.17, ж.

Известно, что сила Р, действующая на простую балку, вызывает в сечении под грузом изгибающий момент где а и - расстояния от груза до концов балки. В рассматриваемом случае (рис.

И, следовательно, момент под грузом

Но этот момент, как показано (рис. 13.17, е), равняется

Аналогичным образом устанавливаются предельные нагрузки для каждого пролета многопролетной статически неопределимой балки. В качестве примера рассмотрим четырежды статически неопределимую балку постоянного сечения, изображенную на рис. 14.17, а.

В предельном состоянии, соответствующем полному исчерпанию несущей способности балки в каждом ее пролете, эпюра изгибающих моментов имеет вид, показанный на рис. 14.17, б. Эту эпюру можно рассматривать состоящей из двух эпюр, построенных в предположении, что каждый пролет представляет собой простую балку, лежащую на двух опорах: одной эпюры (рис. 14.17, в), вызванной моментами действующими в опорных пластических шарнирах, и второй (рис. 14.17, г), вызванной предельными нагрузками, приложенными в пролетах.

Из рис. 14.17, г устанавливаем:

В этих выражениях

Полученное значение предельной нагрузки для каждого пролета балки не зависит от характера и величин нагрузок в остальных пролетах.

Из разобранного примера видно, что расчет статически неопределимой балки по несущей способности оказывается проще, чем расчет по упругой стадии.

Несколько иначе проводится расчет неразрезной балки по несущей способности в тех случаях, когда кроме характера нагрузки в каждом пролете задаются также соотношения между величинами нагрузок в разных пролетах. В этих случаях предельной нагрузкой считается такая, при которой происходит исчерпание несущей способности балки не во всех пролетах, а в одном из ее пролетов.

Предельно допускаемая нагрузка определяется путем деления величин на нормативный коэффициент запаса прочности.

Значительно сложнее определение предельных нагрузок при действии на балку сил, направленных не только сверху вниз, но также и снизу вверх, а также при действии сосредоточенных моментов.

Мы начнем с простейшего случая, так называемого чистого изгиба.

Чистый изгиб есть частный случай изгиба, при котором в сечениях балки поперечная сила равна нулю. Чистый изгиб может иметь место только в том случае, когда собственный вес балки настолько мал, что его влиянием можно пренебречь. Для балок на двух опорах примеры нагрузок, вызывающих чистый

изгиб, представлены на рис. 88. На участках этих балок, где Q = 0 и, следовательно, М= const; имеет место чистый изгиб.

Усилия в любом сечении балки при чистом изгибе сводятся к паре сил, плоскость действия которой проходит через ось бал-ки, а момент постоянен.

Напряжения могут быть определены на основании следую-щих соображений.

1. Касательные составляющие усилий по элементарным пло-щадкам в поперечном сечении балки не могут быть приведены к паре сил, плоскость действия которой перпендикулярна к пло-скости сечения. Отсюда следует, что изгибающее усилие в сече-нии является результатом действия по элементарным площадкам

лишь нормальных усилий, а потому при чистом изгибе и напряжения сводятся только к нормальным.

2. Чтобы усилия по элементарным площадкам свелись только к паре сил, среди них должны быть как положительные, так и отрицательные. Поэтому должны существовать как растянутые, так и сжатые волокна балки.

3. Ввиду того, что усилия в различных сечениях одинаковы, то и напряжения в соответственных точках сечений одинаковы.

Рассмотрим какой-либо элемент вблизи поверхности (рис. 89, а). Так как по нижней его грани, совпадающей с по-верхностью балки, силы не приложены, то на ней нет и напря-жений. Поэтому и на верхней грани элемента нет напряжений, так как иначе элемент не находился бы и равновесии, Рассмат-ривая соседний с ним по высоте элемент (рис. 89,б), придем к

Такому же заключению и т. д. Отсюда следует, что по горизон-тальным граням любого элемента напряжения отсутствуют. Рас-сматривая элементы, входящие в состав горизонтального слоя, начиная с элемента у поверхности балки (рис. 90), придем к за-ключению, что и по боковым вертикальным граням любого эле-мента напряжения отсутствуют. Таким образом, напряженное состояние любого элемента (рис. 91,а), а в пределе и волокна, должно быть представлено так, как это показано на рис. 91,б, т. е. оно может быть либо осевым растяжением, либо осевым сжатием.

4. В силу симметрии приложения внешних сил сечение по середине длины балки после деформации должно остаться пло-ским и нормальным к оси балки (рис. 92, а). По этой же причине и сечения в четвертях длины балки тоже остаются плоскими и нормальными к оси балки (рис. 92,б), если только крайние се-чения балки при деформации остаются плоскими и нормальными к оси балки. Аналогичное заключение справедливо и для сечений в восьмых длины балки (рис. 92, в) и т. д. Следовательно, если при изгибе крайние сечения балки остаются плоскими, то и для любого сечения остается

справедли-вым утверждение, что оно после де-формации остается плоским и нор-мальным к оси изогнутой балки. Но в таком случае очевидно, что изменение удлинений волокон балки по ее высоте должно происходить не только непре-рывно, но и монотонно. Если назвать слоем совокупность волокон, имеющих одинаковые удлинения, то из сказан-ного следует, что растянутые и сжатые волокна балки должны располагаться по разные стороны от слоя, в котором удлинения волокон равны нулю. Бу-дем называть волокна, удлинения ко-торых равны нулю, нейтральными; слой, состоящий из нейтральных воло-кон, - нейтральным слоем; линию пе-ресечения нейтрального слоя с плоскостью поперечного сечения балки - нейтральной линией этого сечения. Тогда на основании предыдущих рассуждений можно утверждать, что при чистом изгибе балки в каждом ее сечении имеется нейтральная линия, которая делит это сечение на две части (зоны): зону растяну-тых волокон (растянутую зону) и зону сжатых волокон (сжа-тую зону). Соответственно с этим в точках растянутой зоны се-чения должны действовать нормальные растягивающие напря-жения, в точках сжатой зоны - сжимающие напряжения, а в точках нейтральной линии напряжения равны нулю.

Таким образом, при чистом изгибе балки постоянного се-чения:

1) в сечениях действуют только нормальные напряжения;

2) все сечение может быть разбито на две части (зоны) - растянутую и сжатую; границей зон является нейтральная линия сечения, в точках которой нормальные напряжения равны нулю;

3) любой продольный элемент балки (в пределе любое во-локно) подвергается осевому растяжению или сжатию, так что соседние волокна друг с другом не взаимодействуют;

4) если крайние сечения балки при деформации остаются плоскими и нормальными к оси, то и все ее поперечные сечения остаются плоскими и нормальными к оси изогнутой балки.

Напряженное состояние балки при чистом изгибе

Рас-смотрим элемент балки, подверженной чистому изгибу, заклю-ченный между сечениями m- m и n - n, которые отстоят одно от дру-гого на бесконечно малом расстоя-нии dx (рис. 93). Вследствие по-ложения (4) предыдущего пункта, сечения m- m и n - n, бывшие до деформации параллельными, после изгиба, оставаясь плоскими, будут составлять угол dQ и пересекаться по прямой, проходящей через точ-ку С, которая является центром кривизны нейтрального волокна NN. Тогда заключенная между ними часть АВ волокна, находящегося на расстоянии z от нейтрального во-локна (положительное направление оси z принимаем в сторону выпук-лости балки при изгибе), превра-тится после деформации в дугу А"В".Отрезок нейтрального волокна О1О2, превратившись в дугу О1О2 не изменит своей длины, тогда как волокно АВ получит удлинение:

до деформации

после деформации

где р - радиус кривизны нейтрального волокна.

Поэтому абсолютное удлинение отрезка АВ равно

и относительное удлинение

Так как согласно положению (3) волокно АВ подвергается осевому растяжению, то при упругой деформации

Отсюда видно, что нормальные напряжения по высоте балки распределяются по линейному закону (рис. 94). Так как равно-действующая всех усилий по всем элементарным площадкам се-чения должна равняться нулю, то

откуда, подставляя значение из (5.8), найдем

Но последний интеграл есть статический момент относительно оси Оу, перпендикулярной к плоскости действия изгибающих уси-лий.

Вследствие равен-ства его нулю эта ось должна проходить через центр тяжести О сечения. Тамим образом,нейтраль-ная линия сечения балки есть прямая уу, перпен-дикулярная к плоскости действия изгибающих усилий. Ее называют ней-тральной осью сечения балки. Тогда из (5.8) следует, что напряжения в точках, лежа-щих на одинаковом расстоянии от нейтральной оси, одинаковы.

Случай чистого изгиба, при котором изгибающие усилия действуют только в одной плоскости, вызывая изгиб только в этой плоскости, является плоским чистым изгибом. Если названная плоскость проходит через ось Oz, то момент элементарных уси-лий относительно этой оси должен быть равен нулю, т. е.

Подставляя сюда значение σ из (5.8), находим

Стоящий в левой части этого равенства интеграл, как изве-стно, является центробежным моментом инерции сеченияотноси-тельно осей у и z, так что

Оси, относительно которых центробежный момент инерции сечения равен нулю, называют главными осями инерции этого сечения. Если они, кроме того, проходят через центр тяжести сечения, то их можно назвать главными центральными осями инерции сечения. Таким образом, при плоском чистом изгибе направление плоскости действия изгибающих усилий и нейтраль-ная ось сечения являются главными центральными осями инер-ции последнего. Иными словами, для получения плоского чи-стого изгиба балки нагрузка к ней не может прикладываться произвольно: она должна сводиться к силам, действующим в плоскости, которая проходит через одну из главных центральных осей инерции сечений балки; при этом другая главная централь-ная ось инерции будет являться нейтральной осью сечения.

Как известно, в случае сечения, симметричного относительно какой-либо оси, ось симметрии является одной из главных цент-ральных осей инерции его. Следовательно, в этом частном случае мы заведомо получим чистый изгиб, приложив соответствующие анагрузки в плоскости, проходящей через продольную ось балки я ось симметрии ее сечения. Прямая, перпендикулярная к оси симметрии и проходящая через центр тяжести сечения, является при этом нейтральной осью этого сечения.

Установив положение нейтральной оси, нетрудно найти и ве-личину напряжения в любой точке сечения. В самом деле, так как сумма моментов элементарных усилий относительно нейт-ральной оси уу должна равняться изгибающему моменту, то

откуда, подставляя значение σ из (5.8), найдем

Так как интеграл является. моментом инерции сечения относительно оси уу, то

и из выражения (5.8) получим

Произведение ЕI У называют жесткостью балки при изгибе.

Наибольшее растягивающее и наибольшее по абсолютной величине сжимающее напряжения действуют в точках сечения, для которых абсолютная величина z наибольшая, т. е. в точках, наиболее удаленных от нейтральной оси. При обозначениях, рис. 95 имеем

Величину Jy/h1 называют моментом сопротивления сечения рас-тяжению и обозначают Wyр; аналогично, Jy/h2называют моментом сопротивления сечения сжатию

и обозначают Wyc,так что

и поэтому

Если нейтральная ось является, осью симметрии сечения, то h1 = h2 = h/2 и, следовательно, Wyp = Wyc, так что их различать нет надобности, и пользуются одним обозначением:

называя W y просто моментом сопротивления сечения.Следова-тельно, в случае сечения, симметричного относительно нейтраль-ной оси,

Все приведенные выше выводы получены на основании допу-щения, что поперечные сечения балки, при изгибе остаются пло-скими и нормальными к ее оси (гипотеза плоских сечений). Как было показано, это допущение справедливо только в том случае, когда крайние (концевые) сечения балки при изгибе остаются плоскими. С другой стороны, из гипотезы плоских сечений сле-дует, что элементарные усилия в таких сечениях должны распре-деляться по линейному закону. Поэтому для справедливости по-лученной теории плоского чистого изгиба необходимо, чтобы из-гибающие моменты на концах балки были приложены в виде элементарных сил, распределенных по высоте сечения по линей-ному закону (рис. 96), совпадающему с законом распределения напряжений по высоте сечения балки. Однако на основании принципа Сен-Венана можно утверждать, что изменение способа приложения изгибающих моментов на концах балки вызовет лишь местные деформации, влияние которых скажется лишь на некотором расстоянии от этих концов (приблизительно равном высоте сечения). Сечения же, находящиеся во всей остальной части длины балки, останутся плоскими. Следовательно, изложенная теория плоского чистого изгиба при любом способе приложения изгибающих моментов справедлива только в пределах средней части длины балки, находящейся от ее концов на расстояниях, при-близительно равных высоте сечения. Отсюда ясно, что эта тео-рия заведомо неприменима, если высота сечения превосходит половину длины или пролета балки.