Вихревой теплогенератор – новый источник тепла в доме. Вихревые теплогенераторы

Вихревые теплогенераторы - это устройства, с помощью которых можно довольно просто обогревать жилое помещение. Достигается это только за счет использования электродвигателя, а также насоса. В целом данное устройство можно назвать экономичным, и больших затрат оно за собой не влечет. Стандартная схема подключения вихревого теплогенератора подразумевает использование насоса циркуляционного типа. В верней части должен располагаться обратный клапан. За счет этого способен выдерживать большое давление.

Отопительные приборы для обогрева могут использоваться разнообразные. Наиболее часто применяются радиаторы, а также конвекторы. Также неотъемлемой частью системы любой модели принято считать блок управления с термодатчиком и грязевиком. Чтобы собрать вихревой теплогенератор своими руками, необходимо более подробно ознакомиться с наиболее известными его модификациями.

Модель с радиальной камерой

Изготовить с радиальной камерой вихревой теплогенератор своими руками (чертежи и схемы показаны ниже) довольно сложно. В данном случае ротор необходимо подбирать мощный и максимальное давление он обязан выдерживать не менее 3 бар. Также следует изготовить корпус для устройства. Толщина металла обязана составлять как минимум 2,5 мм. При этом выход в диаметре должен равняться 5,5 см. Все это позволит успешно приварить устройство к патрубку.

Выходной клапан располагается в приборе не сильно далеко от края фланца. Также следует подобрать для модели улитку. Как правило, в данном случае она используется стального типа. Для того чтобы она стерлась, ее концы необходимо заранее обточить. Уплотнитель в этой ситуации можно использовать резиновый. Минимум его толщина должна составлять 2,2 мм. Диаметр выхода, в свою очередь, приветствуется на уровне 4,5 см. Отдельно необходимо уделить внимание диффузору. При помощи данного устройства теплый воздух попадает в камеру. Отличается радиальная модификация тем, что у нее имеется множество канальцев. Самостоятельно их нарезать можно при помощи станка.

Теплогенераторы вихревого типа с С-образной камерой

Изготавливается с С-образной камерой вихревой для дома при помощи сварочного аппарата. В данном случае необходимо в первую очередь собрать корпус под улитку. При этом крышка должна отсоединяться отдельно. Для этого некоторые специалисты советуют нарезать резьбу. Диффузор используется небольшого диаметра. Уплотнитель применяется только у выходного отверстия. Всего клапанов в системе должно быть предусмотрено два. Закрепить улитку на корпусе можно при помощи болта. Однако важно зафиксировать на ней защитное кольцо. Выходное отверстие от ротора обязано располагаться на расстоянии около 3,5 см.

Теплогенераторы вихревого типа Потапова

Собирается вихревой теплогенератор Потапова своими руками при помощи ротора на двух дисках. Минимум его диаметр обязан составлять 3,5 см. При этом статоры чаще всего устанавливаются чугунного типа. Корпус для устройства можно подобрать стальной, однако толщина металла в данном случае минимум обязана составлять около 2,2 мм. Кожух для вихревого теплогенератора подбирается толщиною примерно 3 мм. Все это необходимо для того, чтобы улитка над ротором сидела довольно плотно. При этом зажимное кольцо важно использовать также плотное.

На выходе устанавливается кожух, однако его толщина обязана равняться примерно 2,2 мм. Для того чтобы закрепить кольцо, необходимо использовать втулку. Штуцер в данном случае должен находиться над улиткой. Диффузоры для этого устройства используются самые простые. При этом клапанов механизме имеется только два. Один их них обязан располагаться над ротором. При этом минимальный зазор у камеры должен составлять 2 мм. Крышка чаще всего снимается по резьбе. Электродвигатель для устройства подирают мощностью не менее 3 кВт. За счет этого предельное давление в системе способно возрасти до 5 бар.

Сборка модели на два выхода

Сделать вихревой кавитационный теплогенератор своими руками можно с электродвигателем мощностью около 5 кВт. Корпус для устройства необходимо подбирать чугунного типа. В данном случае минимальный диаметр выхода обязан составлять 4,5 см. Роторы для этой модели подходят только на два диска. При этом статор важно использовать ручной модификации. Устанавливается он в вихревом теплогенераторе над улиткой.

Непосредственно диффузор целесообразнее использовать небольшой. Обточить его при желании можно с трубы. Прокладку под улитку лучше использовать толщиною около 2 мм. Однако в данной ситуации многое зависит от сальников. Устанавливать их надо сразу над центральной втулкой. Для того чтобы воздух быстро прогонялся, важно сделать дополнительную стойку. При этом крышка для устройства подбирается на резьбе.

Теплогенераторы вихревого типа на три выхода

Собирается на три выхода вихревой теплогенератор своими руками (чертежи показаны ниже) так же, как предыдущая модификация. Однако разница заключается в том, что ротор для устройства необходимо подбирать на одном диске. При этом клапанов в механизме чаще всего используются три. Сальники для набивки применяются только в крайнем случае.

Некоторые специалисты также советуют использовать пластиковые уплотнители для улитки. По влагозащищенности они подходят идеально. Также следует под крышкой устанавливать защитное кольцо. Все это необходимо для того, чтобы уменьшить износ штуцера. Электродвигатели на вихревые теплогенераторы в основном подбираются с мощностью около 4 кВт. Муфта должна быть предусмотрена довольно упругая. Также напоследок следует отметить, что у основания улитки устанавливается фланец.

Модель с коллектором

Собирать с коллектором вихревой теплогенератор своими руками необходимо с подготовки корпуса. В данном случае выходов должно быть предусмотрено два. Дополнительно следует аккуратно обточить входное отверстие. Крышку в этой ситуации важно подбирать отдельно с резьбой. Электродвигатели с коллектором в основном устанавливают средней мощности. В такой ситуации расход электроэнергии будет незначительный.

Улитка подбирается стального типа и устанавливается сразу на прокладку. Для того чтобы подогнать ее под выходное отверстие, лучше всего воспользоваться напильником. При этом для сооружения корпуса необходимо иметь сварочный инвертор. Коллектор, так же как и улитка, должен стоять на прокладке. При этом втулка закрепляется в модели при помощи зажимного кольца.

Теплогенераторы вихревого типа с тангенциальными каналами

Чтобы собирать с тангенциальными каналами вихревые теплогенераторы своими руками, необходимо подобрать в первую очередь хороший уплотнитель. Благодаря этому устройство максимально долго будет держать температуру. Двигатель чаще всего монтируется мощностью около 3 кВт. Все это дает хорошую производительность, если правильно установить улитку и диффузор.

Подгоняется сальник в данном случае до самого ротора. Для того чтобы его закрепить, многие специалисты рекомендуют пользоваться двухсторонними шайбами. При этом зажимные кольца также устанавливаются. Если втулка для штуцера не подходит, то ее можно обточить. Сделать камеру с каналами есть возможность резаком.

Применение однонаправленных закруток

Собираются с однонаправленными закрутками вихревые теплогенераторы своими руками довольно просто. В данном случае работу необходимо стандартно начинать с подготовки корпуса устройства. Многое в этой ситуации зависит от габаритов электродвигателя. Коллекторы, в свою очередь, применяются довольно редко.

Устанавливается однонаправленная закрутка только после того, как будет зафиксирован фланец. В свою очередь, кожух используется только у входного отверстия. Все это необходимо для того, чтобы уменьшить износ втулки. В целом однонаправленные закрутки позволяют не использовать штуцеры. При этом сборка вихревого теплогенератора обойдется недорого.

Использование кольцевых втулок

Собрать с кольцевыми втулками вихревой теплогенератор своими руками получится только при помощи сварочного инвертора. В данном случае необходимо заранее подготовить выходное отверстие. Фланец в устройство следует устанавливать только на зажимном кольце. Также важно подобрать для прибора качественное масло. Все это необходимо для того, чтобы износ кольца не был значительным. Втулка в данном случае устанавливается непосредственно под улитку. При этом крышка для нее используется довольно редко. В этой ситуации необходимо заранее рассчитать расстояние до стойки. Задевать муфту она не должна.

Модификация с приводным механизмом

Для того чтобы сделать с приводным механизмом вихревой теплогенератор своими руками, в первую очередь необходимо подобрать хороший электродвигатель. Мощность его обязана составлять минимум 4 кВт. Все это даст хорошую теплопроизводительность. Корпуса для устройства чаще всего используются чугунные. В данном случае выходные отверстия необходимо обтачивать отдельно. Для этого можно воспользоваться напильником. Ротор для электродвигателя целесообразнее подбирать ручного типа. Крепиться муфта обязана на защитной шайбе. Улитку многие специалисты советуют устанавливать только после диффузора.

Таким образом, появится возможность положить уплотнитель на верхнюю крышку. Непосредственно приводной механизм должен располагаться над электродвигателем. Однако на сегодняшний день встречаются модификации с боковой его установкой. Стойки в данном случае необходимо приварить с обоих концов. Все это значительно повысит прочность устройства. В последнюю очередь важно заняться установкой ротора. На этом этапе особое внимание необходимо уделить фиксации кожуха.

Для отопления частного дома и квартиры, часто используются автономные генераторы. Предлагаем рассмотреть, что такое индукционный вихревой теплогенератор, его принцип работы, как сделать устройство своими руками, а также чертежи приборов.

Описание генератора

Существуют разные виды вихревых тепрогенераторов, в основном различают их по форме. Ранее использовались только трубчатые модели, сейчас активно применяют круглые, ассиметричные или овальные. Нужно отметить, что это небольшое устройство может обеспечить полностью автономное отопление, а при правильном подходе еще и горячее водоснабжение.

Фото – Мини-теплогенератор вихревого типа

Вихревой и гидровихревой теплогенератор, представляет собой механическое устройство, которое отделяет сжатый газ их горячих и холодных потоков. Воздух, выходящий из «горячего» конца, может достигать температуры 200 ° С, а из холодного доходить до -50. Нужно отметить, что главным преимуществом такого генератора является то, что это электрическое устройство не имеет движущихся частей, все стационарно закреплено. Трубы чаще всего изготовлены из нержавеющей легированной стали, которая отлично противостоит высоким температурам и внешним разрушающим факторам (давлению, коррозии, ударным нагрузкам).


Фото – Вихревой теплогенератор

Сжатый газ вдувают по касательной в вихревую камеру, после чего он ускоряется до высокой скорости вращения. В связи с коническим соплом на конце выходной трубы, только «входящая» часть сжатого газа допускается для движения в данном направлении. Остальная часть вынуждено возвращается во внутренний вихрь, который является меньшего диаметра, чем наружный.

Где используются вихревые теплогенераторы энергии:

  1. В холодильных установках;
  2. Для обеспечения отопления жилых зданий;
  3. Для нагрева промышленных помещений;

Нужно учитывать, что вихревой газовый и гидравлический генератор имеет меньшую эффективность, чем традиционное оборудование для кондиционирования воздуха. Они широко используются для недорогого точечного охлаждения, когда доступен сжатый воздух из локальной сети обогрева.

Видео: изучение вихревых теплогенераторов

Принцип действия

Существуют различные объяснения причин возникновения вихревого эффекта вращения при полном отсутствии движения и магнитных полей.

Фото – Схема вихревого теплогенератора

В данном случае, газ выступает телом вращения, за счет быстрого перемещения внутри устройства. Такой принцип работы отличается от общепринятого стандарта, где отдельно идет холодный и горячий воздух, т.к. при совмещении потоков согласно законам физики образуется разное давление, которое в нашем случае вызывает вихревое движение газов.

Благодаря наличию центробежной силы, температура воздуха на выходе намного больше температуры её на входе, это позволяет использовать устройства, как для получения тепла, так и для эффективного охлаждения.

Существует еще одна теория принципа работы теплогенератора, за счет того, что оба вихря вращаются с одинаковой угловой скоростью и направлением, внутренний вихревой угол теряет свой угловой момент. Уменьшение момента передается кинетической энергии к внешнему вихрю, в результате чего образуются отрывные течения горячего и холодного газа. Такой принцип работы является полным аналогом эффекта Пельтье, в котором устройство использует электрическую энергию давления (напряжения) для перемещения тепла к одной стороне перехода разнородных металлов, в результате чего другая сторона охлаждается и потребляемая энергия возвращается к источнику.


Фото – Принцип работы генератора гидротипа

Достоинства вихревого теплогенератора :

  • Обеспечивает значительную (до 200 º С) разность температур между «холодным» и «горячим» газом, работает даже при низком входном давлении;
  • Работает с эффективностью до 92%, не нуждается в принудительном охлаждении;
  • Преобразует весь поток на входе в один охлаждающий. Благодаря чему практически исключена вероятность перегрева систем отопления
  • Используется энергия, вырабатываемая в вихревой трубки единым потоком, что способствует эффективному нагреву природного газа при минимальных теплопотерях;
  • Обеспечивает эффективное разделение вихревой температуры входного газа при атмосферном давлении и выходного газа при отрицательном давлении.

Такое альтернативное отопление при практически нулевой затрате вольт отлично нагревает помещение от 100 квадратных метров (в зависимости от модификации). Главные минусы : это высокая стоимость и редкое применение на практике.

Как сделать теплогенератор своими руками

Вихревые теплогенераторы – это очень сложные приспособления, на практике можно сделать автоматический ВТГ Потапова, схема которой подходит как для дома, так и для промышленных работ.

Фото – Вихревой теплогенератор Потапова

Так появился механический теплогенератор Потапова (КПД 93%), схема которого приведена на рисунке. Несмотря на то, что первым патент получил Николай Петраков, именно устройство Потапова пользуется особым успехом у домашних мастеров.

На данной схеме изображена конструкция вихрегенератора. Патрубок смешения 1 присоединен к напорному насосу фланцем, который в свою очередь подает жидкость с давлением от 4 до 6 атмосфер. Когда вода попадает в коллектор, на чертеже 2,образовывается вихрь, и она подается в специальную вихревую трубу (3), которая сконструирована так, что длина в 10 раз больше, чем диаметр. Вихрь воды передвигается по спиральной трубе у стенок к горячему патрубку. Этот конец заканчивается донышком 4, в центре которого есть специальное отверстие для выхода горячей воды.

Чтобы контролировать поток, перед донышком расположено специальное тормозящее приспособление, или выпрямитель потока воды 5, он представляет собой несколько рядов пластин, которые приварены к втулке по центру. Втулка соосна тубе 3. В тот момент, когда вода движется по трубе к выпрямителю по стенкам, в осевом участке образовывается противоточное течение. Здесь вода движется по направлению к штуцеру 6, который врезан в стенку улитки и трубе подачи жидкости. Здесь производитель установил еще один дисковый выпрямитель потока 7, чтобы контролировать течение холодной воды. Если из жидкости выходит тепло, то его направляет по специальному байпасу 8 к горячему концу 9, где вода смешивается с нагретой при помощи смесителя 5.

Непосредственно из патрубка горячей воды жидкость поступает в радиаторы, после чего делая «круг», возвращается к теплоносителю для повторного нагрева. Далее источник нагревает жидкость, насос повторяет круг.

По такой теории даже существуют модификации теплогенератора для серийного производства низкого давления. К сожалению, проекты хороши только на бумаге, реально их мало кто использует, особенно, если учитывать, что расчет осуществляется при помощи теоремы Вириала, которая обязана учитывать энергию Солнца (непостоянную величину), и центробежную силу в трубе.

Формула представляет собой следующее:

Епот = – 2 Екин

Где Екин =mV2/2 – это кинетическое движения Солнца;

Масса планеты – m, кг.

Бытовой теплогенератор вихревого типа для воды Потапова может иметь следующие технические характеристики:


Фото – Модификации вихревых теплогенераторов

Обзор цен

Несмотря на относительную простоту, чаще проще купить вихревые кавитационные теплогенераторы, чем самостоятельно собрать самодельный прибор. Продажа генераторов нового поколения осуществляется во многих крупных городах России, Украины, Беларуси и Казахстана.

Рассмотрим прайс-лист из открытых источников (мини-приборы будут дешевле), сколько стоит генератор Мустафаева, Болотова и Потапова:

Наиболее низкая цена на теплогенератор вихревой энергии марки Акойл, Вита, Гравитон, Муст, Евроальянс, Юсмар, НТК, в Ижевске, к примеру, около 700 000 рублей. При покупке обязательно проверяйте паспорт прибора и сертификаты качества.

Вихревой теплогенератор состоит из двигателя и кавитатора. В кавитатор подается вода (или другая жидкость). Двигатель раскручивает механизм кавитатора, в котором происходит процесс кавитации (схлопывания пузырьков). За счет этого, происходит нагрев жидкости, подаваемой в кавитатор. Подводимая электроэнергия расходуется на следующие цели: 1- нагрев воды, 2 - преодоление силы трения в двигателе и кавитаторе, 3- излучение звуковых колебаний (шум). Разработчики и производители утверждают, что принцип действия основан "на использовании возобновляемой энергии". При этом, не понятно, откуда эта энергия берется. Тем не менее, не происходит никакого дополнительного излучения. Соответственно, можно предположить, что вся энергия, подводимая к теплогенератору, тратится на нагрев воды. Таким образом, можно говорить о КПД, близком к 100%. Но не более...
Но перейдем от теории к практике.

На заре развития «вихревых теплогенераторов» предпринимались попытки проведения независимой экспертизы. Так, известная модель ЮСМАР изобретателя Ю.С.Потапова из Молдовы тестировалась американской компанией Earth Tech International (г.Остин, штат Техас), специализирующейся на экспериментальной верификации новых направлений в современной физике. В 1995 г. были проведены пять серий экспериментов по измерению соотношения между генерируемой тепловой и потребляемой электрической энергией. Заметим, что все многочисленные модификации испытуемого устройства, предназначенные для разных серий экспериментов, лично согласовывались с Ю.С.Потаповым в ходе визита одного из сотрудников компании в Молдову. Подробнейшее описание конструкции испытуемого теплогенератора с вихревой трубой, режимные параметры, методики проведения измерений и результаты приводятся на сайте компании www.earthtech.org/experiments/.

Для привода водяного насоса использовался электродвигатель с КПД=85%, тепловые потери которого на нагрев окружающего воздуха не принимались при расчете теплопроизводительности «вихревого теплогенератора». Отметим, что не измерялись и тепловые потери на нагрев окружающего воздуха, что, безусловно, несколько снижало получаемый КПД теплогенератора.

Результаты исследований, проведенных при варьировании основных режимных параметров (давление, расход теплоносителя, начальная температура воды и др.) в широком диапазоне продемонстрировали, что эффективность теплогенератора изменяется в диапазоне от 33 до 81%, что сильно не «дотягивает» до 300%, заявленных изобретателем перед проведением экспериментов.

Хотя по "тепловому вихрегенератору" расскажу...
Были некоторые примеры значительной экономии денежных средств на отопление в переходные периоды нашей экономики, когда деньги предприятий начинали считать. Сразу скажу, что с связано это с гримасами экономики, а совсем не с теплотехникой.

Скажем, некоторое предприятие желает отапливать свои помещения. Ну холодно им видите ли.
По некоторым причинам, ясно каким, не может вложиться в Газовую трубу, строить свою котельную на угле, мазуте - не хватает масштабов, а центральное отопление отсутствует или далеко.
Остается электричество, но при получении разрешения на использование электроэнергии в термальных целях устанавливали предприятию тариф, превышающий в несколько раз обычный.
Такие были раньше правила, и не только в России, но в Украине, Молдове и др. государствах, которые отпочковались от нас.
Вот тут приходил на помощь г-н Потапов и подобные.
Покупали чудо-устройство, тариф на электроэнергию для электродвигателей оставался обычный, тепловой КПД естественно никак больше сотни быть не мог, а вот в денежном отношении КПД был и 200 и 300, смотря во сколько раз сэкономили на тарифе.
Применяя ТН можно было достичь еще большей экономии, но для тех времен и вихретеплогенератора с эффективностью якобы 1,2-1,5 вполне было достаточно.
Ведь еще больший заявляемый КПД мог только повредить и отпугнуть покупателей, ведь квоты на электроснабжение выделялись по потребляемой мощности, а давал генератор тепла столько-же, если не меньше, в связи с потерями по cos Ф.
По теплопотерям помещений в 30-40% погрешности еще как-то можно было уложиться, списать на колебания погоды.
Сейчас это ушло в прошлое, но тема вихрегенераторов по инерции продолжает всплывать, и ведь находятся дураки, которые покупают, клюнув на информацию с фотками и адресами, что ряд уважаемых предприятий в свое время использовали их у себя и экономили большую кучу денег.
Только всей подоплеки им никто не рассказывает.

Редко какой хозяин не пытается сэкономить на отоплении или потреблении еще каких-либо благ, которые с каждым годом становятся все дороже и дороже. Чтобы сделать экономной отопительную систему жилого или производственного помещения, многие люди прибегают к помощи различных схем и методам получения тепловой энергии. Один из аппаратов, подходящий под эти цели – кавитационный теплогенератор.

Что такое вихревой теплогенератор

Кавитационный вихревой генератор тепла – это простое устройство, способное эффективно обогреть помещение, затрачивая при этом минимум средств. Это происходит благодаря нагреву воды при кавитации – образовании небольших паровых пузырьков в местах снижения давления жидкости, которое возникает либо при работе насоса, либо при звуковых колебаниях.

Кавитационный нагреватель способен преобразовать механическую энергию в тепловую, что активно применяется в промышленности, где нагревающие элементы могут выйти из строя, работая с жидкостью, имеющей большую температурную разность. Такой кавитатор является альтернативой для систем, работающих на твердом топливе.

Преимущества вихревых кавитационных нагревателей:

  • Экономичность системы отопления;
  • Высокая эффективность обогрева;
  • Доступность;
  • Возможность собрать своими руками.


Недостатки аппарата:

  • При самостоятельной сборке довольно сложно найти материалы для создания аппарата;
  • Слишком большая мощность для небольшого помещения;
  • Шумная работа;
  • Немалые габариты.

Стандартное устройство теплогенератора и принцип его работы

Процесс кавитации выражается в образовании пузырьков пара в жидкости, впоследствии чего давление медленно понижается при большой скорости потока.

Из-за чего может происходить парообразование:

  • Возникновением акустики, вызванной звуком;
  • Излучением лазерного импульса.

Закрытые воздушные области перемешиваются с водой и уходят в место с большим давлением, где хлопаются с излучением ударной волны.

Принцип работы кавитационного аппарата:

  • Струя воды движется через кавитатор, где насос создает водяное давление, попадающее в рабочую камеру;
  • В камерах жидкость увеличивает скорость и давление с помощью различных трубочек разных размеров;
  • В центре камеры потоки смешиваются, и появляется кавитация;
  • При этом полости пара остаются маленькими и не взаимодействуют с электродами;
  • Жидкость движется к противоположному концу камеры, откуда возвращается назад для следующего использования;
  • Нагрев происходит благодаря движению и расширению воды на выходе из сопла.

Так работает вихревой кавитационный нагреватель. Его устройство простое, но позволяет быстро и эффективно обогреть помещение.

Кавитационный нагреватель и его типы

Нагреватель, работающий с кавитацией, может быть нескольких типов. Чтобы понять, какой генератор вам нужен, следует разобраться в его типажах.


Виды кавитационного нагревателя:

  1. Роторный – самый популярный из них это аппарат Григгса, работающий с помощью центробежного насоса ротационного действия. Внешне он выглядит как диск с отверстиями без выхода. Одно такое отверстие носит название: ячейка Григгса. Параметры этих ячеек и их число зависят от типа генератора и частоты вращения привода. Нагрев воды происходит между статором и ротором посредством быстрого ее движения по поверхности диска.
  2. Статический – он не имеет никаких вращающихся элементов, а кавитацию создают специальные сопла (элементы Лаваля). Насос нагнетает давление воды, что проводит к ее быстрому движению и нагреву. Выходные отверстия сопел более узкие, чем предыдущие и жидкость начинает двигаться еще быстрее. Из-за быстрого расширения воды и получается кавитация, дающая в итоге тепло.

Если выбирать между этими двумя видами, то следует учитывать, что производительность роторного кавитатора более высокая и он не такой габаритный, как статический.

Правда, статический нагреватель меньше изнашивается из-за отсутствия вращающихся элементов. Использовать аппарат можно до 5 лет, а если выйдет из строя сопло – его с легкостью можно заменить, затрачивая на это куда меньше средств, чем на теплогенератор в роторном кавитаторе.

Экономный кавитационный теплогенератор своими руками

Создать самодельный вихревой генератор с кавитацией вполне реально, если внимательно изучить чертежи и схемы устройства, а также понимать его принцип работы. Самым простым для самостоятельного создания считается ВТГ Потапова с КПД 93%, схема которого подойдет как для домашнего, так и для промышленного использования.

Перед тем, как приступить к сборке прибора, следует правильно выбрать насос, ориентируясь по его типу, мощности, нужной тепловой энергии и величине напора.

В основном все кавитационные генераторы имеют формы сопла, которая считается самой простой и удобной для таких устройств.

Что нужно для создания кавитатора:

  • Манометры для измерения давления;
  • Термометр для замера температуры;
  • Выходные и входные патрубки с краниками;
  • Вентили для удаления воздушных пробок из отопительной системы;
  • Гильзы для термометров.

Также нужно проследить за размером сечения отверстия между диффузором и конфузором. Оно должно быть примерно 8 – 15 см, не уже и не шире.

Схема создания кавитационного генератора:

  1. Выбор насоса – здесь следует определиться с нужными параметрами. Насос обязательно должен иметь возможность работать с жидкостями высоких температур, иначе он быстро сломается. Также он должен уметь создавать рабочее давление в минимум 4 атмосферы.
  2. Создание камеры кавитации – тут главное правильно выбрать размер сечения проходного канала. Оптимальным вариантом считается 8-15 мм.
  3. Выбор конфигурации сопла – оно может быть в виде конуса, цилиндра или просто быть закругленным. Впрочем, не так важна форма, как то, чтобы вихревой процесс начинался уже при входе воды в сопло.
  4. Изготовление водного контура – внешне это такая изогнутая трубка, ведущая от камеры кавитации. К ней присоединяются две гильзы с термометром, два манометра, воздушный вентиль, который ставится между входом и выходом.


После создания корпуса следует провести испытание теплогенератора. Для этого насос следует подключить к электроэнергии, а радиаторы к отопительной системе. Далее происходит включение в сеть.

Особенно стоит смотреть на показания манометров и выставить нужную разницу между входом и выходом жидкости в пределах 8-12 атмосфер.

Теплогенератор своими руками (видео)

Кавитационный нагреватель достаточно интересный и экономный способ обогреть помещение. Он легко доступен и при желании может создаваться самостоятельно. Для этого нужно докупить необходимые материалы и сделать все в соответствии со схемами. И эффективность аппарата не заставит себя долго ждать.

Вихревой теплогенератор (ВТГ), работающий на воде и предназначенный для преобразования электрической энергии в тепловую, был разработан в начале 90-х годов. Вихревой теплогенератор используются для обогрева жилых, производственных и иных помещений горячего водоснабжения. Вихревой теплогенератор возможно использовать для получения электрической или механической энергии.

Вихревой теплогенератор представляет собой цилиндрический корпус, оснащенный циклоном (улиткой с тангенциальным входом) и гидравлическим тормозным устройством. Рабочая жидкость под давлением подается на вход циклона, после чего по сложной траектории проходит через него и тормозится в тормозном устройстве. Дополнительного давления в трубах тепловой сети не создается. Система работает в импульсном режиме, обеспечивая заданный режим температур.

ПРИНЦИП РАБОТЫ:

В качестве теплоносителя в Вихревом теплогенераторе используется вода или иные неагрессивные жидкости (антифриз, тосол) в зависимости от климатической зоны. При этом специальной подготовки воды (химической очистки) не требуется, так как процесс нагревания жидкости происходит за счет ее вращения по определенным физическим законам, а не под воздействием нагревательного элемента.

Коэффициент преобразования электрической энергии в тепловую у Вихревого теплогенератора первого поколения был не менее 1,2 (то есть КПЕ не менее 120%), что на 40-80% превышало КПЕ существовавших в то время систем отопления. Так, парогазовые турбины фирмы "Сименс" имеют эффективность около 58%. Теплоэлектроцентрали в Московском регионе - 55%, и учитывая потери в теплотрассах их эффективность снижается еще на 10-15%. Принципиальное отличие Вихревого теплогенератора состоит в том, что электроэнергия расходуется только на электронасос, прокачивающий воду, а вода выделяет дополнительную тепловую энергию.

Работает установка в автоматическом режиме с учётом температуры окружающего воздуха. Режим работы контролируется надежной автоматикой. Возможен прямоточный нагрев жидкости (без замкнутого контура), например для получения горячей воды. Производство тепловой энергии экологически чистое и пожаро-взрыво-безопасное. Нагрев происходит за 1-2 часа в зависимости от наружной температуры и объёма обогреваемого помещения. Коэффициент преобразования электрической энергии (КПЭ) в тепловую намного выше 100%. При работе установки, накипь не образуется. При использовании установки для получения горячей воды.

Вихревые теплогенераторы испытывались в различных НИИ, в том числе в РКК «Энергия» им. С.П. Королёва в 1994 г, в Центральном Аэродинамическом институте (ЦАГИ) им. Жуковского в 1999 г. Испытания подтвердили высокую эффективность Вихревые теплогенераторы по сравнению с другими типами нагревателей (электрическими, газовыми, а также работающими на жидком и твёрдом топливах). При той же тепловой мощности, что и у традиционных тепловых установок, кавитационные вихревые теплогенераторные установки потребляют меньше электроэнергии. Установка отличается самой высокой эффективностью работы, проста в обслуживании и имеет срок эксплуатации более 10 лет. ВТГ отличается своими небольшими габаритами: занимаемая площадь в зависимости от вида теплогенераторной установки составляет 0,5-4 кв.м. По желанию заказчика возможно изготовление генератора для работы в агрессивных средах. Гарантийный срок работы теплогенераторной установки – 12 месяцев. Вихревые теплогенераторы изготовлены по ТУ 3614-001-16899172-2004, и сертифицированы: сертификат соответствия РОСС RU.АЯ09.В03495.

Способ производства тепловой энергии и устройство запатентовано в России. Установки ВТГ производятся по лицензионному договору от автора (Потапова Ю.С.). Копирование способа получения тепловой энергии и производство установок без лицензионного договора с автором (Потаповым Ю.С), преследуется по закону об авторском праве.

Характеристики вихревых теплогенераторов

Наименование установки

Мощность двигателя, напряжение, кВт / В

Масса, кг

Обогреваемый
объём, м 3

Габариты: длина, ширина, высота, мм

Кол-во тепла, производимого установкой, ккал / час

ВТГ-2

2,2 / 220

ВТГ-3

7,5 / 380

ВТГ-4

11 / 380

ВТГ-5

15 / 380

ВТГ-6

22 / 380

ВТГ-7

37 / 380

ВТПГ-8

55 / 380

ВТПГ-9

75 / 380

ВТПГ-10

110 / 380 - 10000

ВТПГ-11

160 / 380 - 10000

ВТПГ-12

315 / 380 - 10000

2200x 1000x 1000

ВТПГ-13

500 / 380 - 10000

3000x 1000 x 1000