Духовно нравственный анализ чернобыльской катастрофы. Какие выводы человечество сделало после аварии на чернобыльской аэс

На основе анализа старых и новых данных разработана реалистическая версия причин Чернобыльской аварии. В отличие от более ранних официальных версий новая версия даёт естественное объяснение собственно аварийному процессу и многим обстоятельствам, предшествовавшим моменту аварии, которые до сих пор не нашли естественного объяснения.

1. Причины Чернобыльской аварии. Окончательный выбор между двумя версиями

1.1. Две точки зрения

Различных объяснений причин Чернобыльской аварии много. Уже их набралось свыше 110. А научно разумных всего две. Первая из них появилась в августе 1986 г. /1/ Суть её сводится к тому, что в ночь на 26 апреля 1986 г. персонал 4-го блока ЧАЭС в процессе подготовки и проведения чисто электротехнических испытаний 6 раз грубо нарушил Регламент, т.е. правила безопасной эксплуатации реактора. Причём в шестой раз так грубо, что грубее и не бывает - вывел из его активной зоны не менее 204 управляющих стержней из 211 штатных, т.е. более 96%. В то время, как Регламент требовал от них: "При снижении оперативного запаса реактивности до 15 стержней реактор должен быть немедленно заглушен" /2, стр. 52/. А до этого они преднамеренно отключили почти все средства аварийной защиты. Тогда, как Регламент требовал от них: "11.1.8. Во всех случаях запрещается вмешиваться в работу защит, автоматики и блокировок, кроме случаев их неисправности..." /2, стр. 81/. В результате этих действий реактор попал в неуправляемое состояние, и в какой-то момент в нём началась неуправляемая цепная реакция, которая закончилась тепловым взрывом реактора. В /1/ также отмечались "небрежность в управлении реакторной установкой", недостаточное понимание "персоналом особенностей протекания технологических процессов в ядерном реакторе" и потерю персоналом "чувства опасности".

Кроме этого, были указаны некоторые особенности конструкции реактора РБМК, которые "помогли" персоналу довести крупную аварию до размеров катастрофы. В частности, "Разработчики реакторной установки не предусмотрели создания защитных систем безопасности, способных предотвратить аварию при имевшем место наборе преднамеренных отключений технических средств защиты и нарушений регламента эксплуатации, так как считали такое сочетание событий невозможным". И с разработчиками нельзя не согласиться, ибо преднамеренно "отключать" и "нарушать" означает рыть себе могилу. Кто же на это пойдёт? И в заключение делается вывод, что "первопричиной аварии явилось крайне маловероятное сочетание нарушений порядка и режима эксплуатации, допущенных персоналом энергоблока" /1/.

В 1991 г. вторая государственная комиссия, образованная Госатомнадзором и состоящая в основном из эксплуатационщиков, дала другое объяснение причин Чернобыльской аварии /3/. Его суть сводилась к тому, что у реактора 4-го блока имеются некоторые "конструкционные недостатки", которые "помогли" дежурной смене довести реактор до взрыва. В качестве главных из них обычно приводят положительный коэффициент реактивности по пару и наличие длинных (до 1 м) графитовых вытеснителей воды на концах управляющих стержней. Последние поглощают нейтроны хуже, чем вода, поэтому их одновременный ввод в активную зону после нажатия кнопки АЗ-5, вытеснив воду из каналов СУЗ, внёс такую дополнительную положительную реактивность, что оставшиеся 6-8 управляющих стержня уже не смогли её скомпенсировать. В реакторе началась неуправляемая цепная реакция, которая и привела его к тепловому взрыву.

При этом исходным событием аварии считается нажатие кнопки АЗ-5, которое вызвало движение стержней вниз. Вытеснение воды из нижних участков каналов СУЗ привело к возрастанию потока нейтронов в нижней части активной зоны. Локальные тепловые нагрузки на тепловыделяющие сборки достигли величин, превышающих пределы их механической прочности. Разрыв нескольких циркониевых оболочек тепловыделяющих сборок привёл к частичному отрыву верхней защитной плиты реактора от кожуха. Это повлекло массовый разрыв технологических каналов и заклинивание всех стержней СУЗ, которые к этому моменту прошли примерно половину пути до нижних концевиков.

Следовательно, в аварии виноваты учёные и проектировщики, которые создали и спроектировали такой реактор и графитовые вытеснители, а дежурный персонал здесь не причём.

В 1996 г. третья государственная комиссия, в которой тоже тон задавали эксплуатационщики, проанализировав накопленные материалы, подтвердили выводы второй комиссии.

1.2. Равновесие мнений

Шли годы. Обе стороны оставались при своём мнении. В результате сложилось странное положению, когда три официальные государственные комиссии, в состав которых входили авторитетные каждый в своей области люди, изучали, фактически, одни и те же аварийные материалы, а пришли к диаметрально противоположным выводам. Чувствовалось, что там было что-то не то, или в самих материалах, или в работе комиссий. Тем более, что в материалах самих комиссий ряд важных моментов не доказывалось, а просто декларировалось. Наверно, поэтому бесспорно доказать свою правоту не могла ни одна сторона.

Само соотношение вины между персоналом и проектировщиками оставалось невыясненным, в частности, из-за того, что во время испытаний персоналом "регистрировались только те параметры, которые были важны с точки зрения анализа результатов проводимых испытаний" /4/. Так они потом объяснялись. Странное это было объяснение, ибо не была зарегистрирована даже часть основных параметров реактора, которые измеряются всегда и непрерывно. Например, реактивность. "Поэтому процесс развития аварии восстанавливался расчётным путём на математической модели энергоблока с использованием не только распечаток программы ДРЕГ, но и показаний приборов и результатов опроса персонала" /4/.

Столь долгое существование противоречий между учёными и эксплуатационщиками поставило вопрос об объективном изучении всех накопленных за 16 лет материалов, связанных с Чернобыльской аварией. С самого начала представлялось, это надо сделать на принципах, принятых в Национальной академии наук Украины, - любое утверждение должно быть доказанным, а любое действие должно быть естественно объяснено.

При внимательном анализе материалов вышеуказанных комиссий становится очевидным, что при их подготовке явно сказались узковедомственные пристрастия глав этих комиссий, что, в общем-то, естественно. Поэтому автор убеждён, что в Украине действительно объективно и официально разобраться в истинных причинах Чернобыльской аварии реально способна только Национальная академия наук Украины, которая реактор РБМК не придумывала, не проектировала, не строила и не эксплуатировала. И поэтому ни в отношении реактора 4-го блока, ни в отношении его персонала у неё просто нет и быть не может каких-либо узковедомственных пристрастий. А её узковедомственный интерес и прямая служебная обязанность - поиск объективной истины, независимо от того, нравится она или не нравится отдельным чиновникам от украинской атомной энергетики.

Наиболее важные результаты такого анализа излагаются ниже.

1.3. О нажатии кнопки АЗ-5 или сомнения перерастают в подозрения

Было замечено, что когда знакомишься с объёмными материалами Правительственной Комиссии по расследованию причин Чернобыльской аварии (далее - Комиссия) быстро, то возникает ощущение, что она сумела построить довольно стройную и взаимосвязанную картину аварии. Но когда начинаешь читать их медленно и очень внимательно, то в отдельных местах возникает ощущение какой-то недосказанности. Как будто Комиссия что-то недорасследовала или что-то недосказала. Особенно это относится к эпизоду нажатия кнопки АЗ-5.

"В 1 ч 22 мин. 30 сек. оператор на распечатке программы увидел, что оперативный запас реактивности составлял величину, требующую немедленной остановки реактора. Тем не менее, это персонал не остановило, и испытания начались.

В 1 ч 23 мин 04 сек. были закрыты СРК (стопорно-регулирующие клапаны - авт.) ТГ (турбогенератор - авт.) № 8.....Имеющаяся аварийная защита по закрытию СРК.... была заблокирована, чтобы иметь возможность повторить испытание, если первая попытка окажется неудачной....

Через некоторое время началось медленное повышение мощности.

В 1 час 23 мин 40 сек начальник смены блока дал команду нажать кнопку аварийной защиты АЗ-5, по сигналу от которой в активную зону вводятся все регулирующие стержни аварийной защиты. Стержни пошли вниз, однако через несколько секунд раздались удары...."/4/.

Кнопка АЗ-5 - это кнопка аварийного глушения реактора. Её нажимают в самом крайнем случае, когда в реакторе начинает развиваться какой-либо аварийный процесс, остановить который другими средствами нельзя. Но из цитаты ясно видно, что особых причин нажимать кнопку АЗ-5 не было, так как не было отмечено ни одного аварийного процесса.

Сами испытания должны были длиться 4 часа. Как видно из текста, персонал намеревался повторить свои испытания. А это заняло бы ещё 4 часа. То есть, персонал собирался проводить испытания 4 или 8 часов. Но вдруг уже на 36-й секунде испытаний его планы поменялись, и он стал срочно глушить реактор. Напомним, что 70 секунд назад, отчаянно рискуя, он этого не сделал вопреки требованиям Регламента. Практически все авторы отметили эту явную немотивированность нажатия кнопки АЗ-5 /5,6,9/.

Более того, "Из совместного анализа распечаток ДРЕГ и телетайпов, в частности, следует, что сигнал аварийной защиты 5-й категории...АЗ-5 появлялся дважды, причём, первый - в 01 ч. 23 мин 39 с" /7/. Но есть сведения, что кнопка АЗ-5 нажималась три раза /8/. Спрашивается, зачем нажимать её два или три раза, если уже с первого раза "стержни пошли вниз"? И если всё идёт по порядку, то почему персонал проявляет такую нервозность? И у физиков зародились подозрения, что в 01 час 23 мин 40 сек. или чуть раньше что-то очень опасное всё-таки произошло, о чём умолчала Комиссия и сами "экспериментаторы" и что заставило персонал резко поменять свои планы на прямо противоположные. Даже ценою срыва программы электротехнических испытаний со всеми вытекающими для них неприятностями, административными и материальными.

Эти подозрения усилились, когда учёные, изучавшие причины аварии по первичным документам (распечаткам ДРЕГ и осциллограммам), обнаружили отсутствие в них синхронизации во времени. Подозрения ещё больше усилились, когда обнаружилось, что для изучения им подсунули не подлинники документов, а их копии, "на которых отсутствуют отметки времени" /6/. Это сильно смахивало на попытку ввести учёных в заблуждение в отношении истинной хронологии аварийного процесса. И учёные вынуждены были официально отметить, что "наиболее полная информация по хронологии событий имеется лишь...до начала испытаний в 01 час 23 мин 04 сек 26.04.86 г." /6/. А дальше "фактическая информация имеет существенные пробелы...и в хронологии восстановленных событий имеются существенные противоречия" /6/. В переводе с научно-дипломатического языка это означало выражение недоверия представленным копиям.

1.3. О движении управляющих стержней

И больше всего этих противоречий можно, пожалуй, найти в информации о движении управляющих стержней в активную зону реактора после нажатия кнопки АЗ-5. Напомним, что после нажатия кнопки АЗ-5 в активную зону реактора должны были погрузиться все управляющие стержни. Из них 203 стержня от верхних концевиков. Следовательно, к моменту взрыва они должны были погрузиться на одну и ту же глубину, что и должны были отразить стрелки сельсинов на БЩУ-4. А на самом деле картина совсем другая. Для примера процитируем несколько работ.

"Стержни пошли вниз..." и больше ничего /1/.

"01 ч 23 мин: сильные удары, стержни СУЗ остановились, не дойдя до нижних концевиков. Выведен ключ питания муфт". Так записано в оперативном журнале СИУР /9/.

"...около 20 стержней остались в верхнем крайнем положении, а 14-15 стержней погрузились в активную зону не более, чем на 1....2 м..." /16/.

"...вытеснители аварийных стержней СУЗ прошли расстояние 1,2 м и полностью вытеснили столбы воды, расположенные под ними...." /9/.

Поглощающие нейтроны стержни пошли вниз и почти сразу же остановились, углубившись в АЗ на 2-2,5 м вместо положенных 7 м" /6/.

"Изучение конечных положений стержней СУЗ по датчикам сельсинов показало, что около половины стержней остановились на глубине от 3, 5 до 5,5 м" /12/. Спрашивается, а где же остановилась другая половина, ведь после нажатия кнопки АЗ-5 вниз должны пойти все(!) стержни?

Сохранившееся после аварии положение стрелок указателей положения стержней позволяет предположить, что...некоторые из них достигли нижних концевых выключателей (всего 17 стержней, из которых 12 с верхних концевых выключателей)" /7/.

Из приведенных цитат видно, что разные официальные документы описывают процесс движения стержней по-разному. А из устных рассказов персонала следует, что стержни дошли до отметки примерно 3,5 м, а затем остановились. Таким образом, основными доказательствами движения стержней в активную зону являются устные рассказы персонала и положение стрелок сельсинов на БЩУ-4. Других доказательств найти не удалось.

Если бы положение стрелок было документально зафиксировано в момент аварии, тогда на этой основе можно было бы уверенно восстанавливать процесс её протекания. Но, как было выяснено позже, это положение было "зафиксировано по показаниям сельсинов днём 26.04.86" /5/., т.е. через 12-15 часов после аварии. И это очень важно, ибо физикам, работавшим с сельсинами, хорошо известны два их "коварных" свойства. Первое - если сельсины-датчики подвергаются неконтролируемому механическому воздействию, то стрелки сельсинов-приёмников могут занять любое положение. Второе - если с сельсинов снято электропитание, то стрелки сельсинов-приёмников тоже могут со временем занять любое положение. Это не механические часы, которые, разбившись, фиксируют, к примеру, момент падения самолёта.

Поэтому определение глубины ввода стержней в активную зону в момент аварии по положению стрелок сельсинов-приёмников на БЩУ-4 через 12-15 часов после аварии является очень ненадёжным способом, ибо на 4-м блоке на сельсины воздействовали оба фактора. И на это указывают данные работы /7/, согласно которой 12 стержней после нажатия кнопки АЗ-5 и до взрыва прошли путь длиной 7 м от верхних концевиков до нижних. Естественно спросить, как они ухитрились это сделать за 9 секунд, если штатное время такого движения составляет 18-21 секунду/1/? Тут имеют место явно ошибочные показания. И как могли 20 стержней остаться в крайнем верхнем положении, если после нажатия кнопки АЗ-5 в активную зону реактора вводятся все(!) управляющие стержни? Это тоже явно ошибочные показания.

Таким образом, положение стрелок сельсинов-приёмников на БЩУ-4, зафиксированное после аварии, вообще нельзя считать объективным научным доказательством ввода управляющих стержней в активную зону реактора после нажатия кнопки АЗ-5. Что же тогда остаётся из доказательств? Только субъективные показания сильно заинтересованных лиц. Поэтому вопрос о вводе стержней было бы более правильно оставить пока открытым.

1.5. Сейсмический толчок

В 1995 г. в СМИ появилась новая гипотеза, согласно которой. Чернобыльскую аварию вызвало узконаправленное землетрясение силой 3-4 балла, которое произошло в районе ЧАЭС за 16-22 сек до аварии, что и было подтверждено соответствующим пиком на сейсмограмме /10/. Однако эту гипотезу учёные-атомщики сразу отвергли как ненаучную. К тому же они знали от сейсмологов, что землетрясение силой 3-4 бала с эпицентром на севере Киевской области - нонсенс.

Но в 1997 г. вышла серьёзная научная работа /21/, в которой на основании анализа сейсмограмм, полученных сразу на трёх сейсмостанциях, расположенных на расстоянии 100-180 км от ЧАЭС, были получены наиболее точные данные об этом происшествии. Из них следовало, что в 1 час 23 мин. 39 сек (±1 сек) по местному времени в 10 км к востоку от ЧАЭС произошло "слабое сейсмическое событие". Магнитуда MPVA источника, определённая по поверхностным волнам, хорошо согласовывалась по всем трём станциям и составила 2,5. Тротиловый эквивалент его интенсивности составил 10 т. Оценить глубину источника по имевшимся данным оказалось невозможным. Кроме этого, из-за низкого уровня амплитуд на сейсмограмме и одностороннего расположения сейсмостанций относительно эпицентра этого события погрешность определения его географических координат не могла быть выше ±10 км. Поэтому это "слабое сейсмическое событие" вполне могло произойти и в месте расположения ЧАЭС /21/.

Эти результаты заставили учёных более внимательно отнестись к геотектонической гипотезе, так как сейсмические станции, где они были получены, оказались не обычными, а сверхчувствительными, ибо следили за подземными ядерными взрывами во всём мире. И факт сотрясения земли за 10 - 16 сек до официального момента аварии стал неоспоримым аргументом, игнорировать который уже было нельзя.

Но сразу показалось странным, что на этих сейсмограммах отсутствуют пики от взрыва 4-го блока в его официальный момент. Объективно получалось, что сейсмические колебания, которые никто в мире не заметил, станционные приборы зарегистрировали. А вот взрыв 4-го блока, который потряс землю так, что его почувствовали многие, эти же приборы, способные обнаружить взрыв всего 100 т тротила на расстоянии 12 000 км, почему-то не зарегистрировали. А ведь должны были зарегистрировать взрыв с эквивалентной мощностью 10 тонн тротила на расстояния 100-180 км. И это тоже никак не укладывалось в логику.

1.6. Новая версия

Все эти противоречия и многие другие, а также отсутствие ясности в материалах по аварии по ряду вопросов только усилили подозрения учёных, что эксплуатационщики от них что-то скрывают. И со временем в голову стала закрадываться крамольная мысль, а не произошло ли на самом деле всё наоборот? Сначала грохнул двойной взрыв реактора. Над блоком взметнулось светло-фиолетовое пламя высотой 500 м. Всё здание 4-го блока содрогнулось. Бетонные балки заходили ходуном. В помещение пульта управления (БЩУ-4) "ворвалась взрывная волна, насыщенная паром". Потух общий свет. Остались гореть только три лампы, запитанные от аккумуляторов. Персонал на БЩУ-4 не мог этого не заметить. И только после этого, оправившись от первого шока, бросился нажимать свой "стоп-кран" - кнопку АЗ-5. Но уже было поздно. Реактор ушёл в небытие. На всё это могло уйти 10-20-30 секунд после взрыва. Тогда, получается, что аварийный процесс начался не в 1 час 23 мин. 40 сек с нажатия кнопки АЗ-5, а несколько раньше. А это означает, что неуправляемая цепная реакция в реакторе 4-го блока началась до нажатия кнопки АЗ-5.

В таком случае явно противоречащие логике пики сейсмической активности, зарегистрированные сверхчувствительными сейсмостанциями в районе ЧАЭС в 01 час 23 мин 39 с, получают естественное объяснение. Это был сейсмический отклик на взрыв 4-го блока ЧАЭС.

А также получают естественное объяснение и экстренное неоднократное нажатие кнопки АЗ-5 и нервозность персонала в условиях, когда он собирался спокойно работать с реактором, по крайней мере, ещё 4 часа. И наличие пика на сейсмограмме в 1 час 23 мин. 39 сек и его отсутствие в официальный момент аварии. Кроме того такая гипотеза естественно объяснила бы необъяснённые до сих пор события, случившиеся перед самым взрывом, такие, например, как "вибрации", "нарастающий гул", "гидроудары" со стороны ГЦН /10/, "подпрыгивание" двух тысяч 80-килограмовых чушек "сборки 11" в Центральном зале реактора и многое другое /11/.

1.7. Количественные доказательства

Способность новой версии естественно объяснить ряд необъяснённых ранее явлений, безусловно, являются прямыми аргументами в её пользу. Но эти аргументы носят, скорее, качественный характер. А непримиримых оппонентов могут убедить только количественные аргументы. Поэтому воспользуемся методом "доказательство от противного". Предположим, что реактор взорвался "через несколько секунд" после нажатия кнопки АЗ-5 и введения в активную зону реактора графитовых наконечников. Такая схема заведомо предполагает, что до этих действий реактор находился в управляемом состоянии, т.е. его реактивность явно была близка к 0ß. Известно, что ввод сразу всех графитовых наконечников может внести дополнительную положительную реактивность от 0,2ß до 2ß в зависимости от состояния реактора /5/. Тогда при такой последовательности событий суммарная реактивность в какой-то момент могла превысить величину 1ß, когда в реакторе начинается неуправляемая цепная реакция на мгновенных нейтронах, т.е. взрывного типа.

Если всё так и происходило, то проектировщики и учёные должны разделить ответственность за аварию вместе с эксплуатационщиками. Если же реактор взорвался до нажатия кнопки АЗ-5 или в момент её нажатия, когда стержни ещё не дошли до активной зоны, то это означает, что его реактивность уже до этих моментов превышала 1ß. Тогда со всей очевидностью вся вина за аварию ложится только на персонал, который, попросту говоря, упустил контроль над цепной реакцией после 01 ч 22 мин 30 с, когда Регламент требовал от них заглушить реактор. Поэтому вопрос, какой величины была реактивность в момент взрыва, приобрёл принципиальное значение.

Помочь ответить на него определённо позволили бы показания штатного реактиметра ЗРТА-01. Но их не удалось найти в документах. Поэтому этот вопрос решался разными авторами путём математического моделирования, в процессе которого были получены возможные значения полной реактивности, находящиеся в пределах от 4ß до 10ß /12/. Баланс полной реактивности в этих работах складывался, в основном, из эффекта положительного выбега реактивности при движении всех стержней СУЗ в активную зону реактора от верхних концевиков - до +2ß, из парового эффекта реактивности - до +4ß и из эффекта обезвоживания - до +4ß. Эффекты от остальных процессов (кавитация и др.) считались эффектами второго порядка.

Во всех этих работах схема развития аварии начиналась с формирования сигнала аварийной защиты 5-й категории (АЗ-5). Дальше последовал ввод всех управляющих стержней в активную зону реактора, который внёс свой вклад в реактивность до +2ß. Это привело к разгону реактора в нижней части активной зоны, который привёл к разрыву топливных каналов. Дальше сработали паровой и пустотный эффекты, которые, в свою очередь, могли довести полную реактивность до +10ß в последний момент существования реактора. Наши собственные оценки полной реактивности в момент взрыва, проведенные методом аналогий на основании американских экспериментальных данных /13/, дали близкую величину - 6-7ß.

Теперь, если взять наиболее правдоподобную величину реактивности 6ß и вычесть из неё максимально возможные 2ß, вносимые графитовыми наконечниками, то получится, что реактивность перед самым вводом стержней уже составляла 4ß. А такая реактивность сама по себе вполне достаточна для практически мгновенного разрушения реактора. Время жизни реактора при таких величинах реактивности составляет 1-2 сотых долей секунды. Никакой персонал, даже самый отборный, не в состоянии так быстро отреагировать на возникшую угрозу.

Таким образом, и количественные оценки реактивности перед аварией показывают, что неуправляемая цепная реакция началась в реакторе 4-го блока до нажатия кнопки АЗ-5. Поэтому её нажатие не могло быть причиной теплового взрыва реактора. Более того, при вышеописанных обстоятельствах уже вообще не имело значения, когда была нажата эта кнопка - за несколько секунд до взрыва, в момент взрыва или после взрыва.

1.8. А что говорят свидетели?

Во время следствия и суда свидетели, находившиеся в момент аварии на пульте управления, фактически разделились на две группы. Те, кто юридически отвечал за безопасность реактора, говорили, что реактор взорвался после нажатия кнопки АЗ-5. Те, кто юридически не отвечал за безопасность реактора, говорили, что реактор взорвался то ли до, то ли сразу после нажатия кнопки АЗ-5. Естественно, что в своих воспоминаниях и показаниях и те, и другие стремились всячески оправдаться. Поэтому к такого рода материалам следует относиться с некоторой осторожностью, что автор и делает, рассматривая их только как вспомогательные материалы. Тем не менее, сквозь этот словесный поток оправданий довольно хорошо проявляется справедливость наших выводов. Процитируем ниже некоторые из показаний.

"Проводивший эксперимент главный инженер по эксплуатации второй очереди АЭС.....доложил мне, что он, как это обычно делается, для глушения реактора при возникновении любой аварийной ситуации, нажал на кнопку аварийной защитыАЗ-5" /14/.

Эта цитата из воспоминаний Б.В. Рогожкина, работавшего в аварийную ночь начальником смены станции, ясно показывает, что на 4-м блоке сначала возникла "аварийная ситуация", а уж потом персонал стал нажимать на кнопку АЗ-5. А "аварийная ситуация" при тепловом взрыве реактора возникает и проходит очень быстро - в течение секунд. Если она уже возникла, то персонал просто не успевает отреагировать.

"Все события происходили в течение 10-15 секунд. Появилась какая-то вибрация. Гул стремительно нарастал. Мощность реактора сначала упала, а потом стала увеличиваться, не поддаваясь регулированию. Затем - несколько резких хлопков и два "гидроудара". Второй мощнее - со стороны центрального зала реактора. На блочном щите погасло освещение, посыпались плиты подвесного потолка, отключилось всё оборудование" /15/.

Так он же описывает ход самой аварии. Естественно, без привязки к временной шкале. А вот другое описание аварии, данное Н. Поповым.

"...послышался гул совершенно незнакомого характера, очень низкого тона, похожий на стон человека (о подобных эффектах рассказывали обычно очевидцы землетрясений или вулканических извержений). Сильно шатнуло пол и стены, с потолка посыпалась пыль и мелкая крошка, потухло люминесцентное освещение, затем сразу же раздался глухой удар, сопровождавшийся громоподобными раскатами..." /17/.

"И. Киршенбаум, С. Газин, Г. Лысюк, присутствовавшие на пульте управления, показали, что команду глушить реактор они слышали непосредственно перед взрывом или сразу после него" /16/.

"В это время услышал команду Акимова - глушить аппарат. Буквально сразу же раздался сильный грохот со стороны машзала" (Из показаний А.Кухаря) /16/.

Из этих показаний уже следует, что взрыв и нажатие кнопки АЗ-5 практически совпали во времени.

На это важное обстоятельство указывают и объективные данные. Напомним, что первый раз кнопка АЗ-5 нажималась в 01 час 23 мин 39 сек, а второй раз на две секунды позже (данные телетайпов). Анализ сейсмограмм показал, что взрыв на ЧАЭС произошёл в период от 01 час 23 мин 38 сек - 01 час 23 мин 40 сек /21/. Если теперь учесть, что сдвиг временной шкалы телетайпов по отношению временной шкале общесоюзного эталонного времени мог составить ±2 сек /21/, то можно уверенно придти к тому же выводу - взрыв реактора и нажатие кнопки АЗ-5 практически совпали во времени. А это прямо означает, что неуправляемая цепная реакция в реакторе 4-го блока началась на самом деле до первого нажатия кнопки АЗ-5.

Но о каком взрыве идёт речь в показаниях свидетелей, о первом или втором? Ответ на этот вопрос содержится и в сейсмограммах, и в показаниях.

Если из двух слабых взрывов сейсмостанции зарегистрировали только один, то, естественно, считать, что они зарегистрировали более сильный. А таким по показаниям всех свидетелей был именно второй взрыв. Таким образом, можно уверенно принять, что именно второй взрыв произошёл в период от 01 час 23 мин 38 сек - 01 час 23 мин 40 сек.

Этот вывод подтверждается свидетелями следующим эпизодом:

"Оператор реактора Л. Топтунов закричал об аварийном увеличении мощности реактора. Акимов громко крикнул: "Глуши реактор!" и метнулся к пульту управления реактором. Вот эту вторую команду глушить уже слышали все. Было это, видимо, после первого взрыва...." /16/.

Отсюда следует, что к моменту второго нажатия кнопки АЗ-5 первый взрыв уже произошёл. И это очень важно для дальнейшего анализа. Как раз здесь полезно будет провести несложный расчёт времени. Достоверно известно, что первое нажатие кнопки АЗ-5 было сделано в 01 час 23 мин 39 сек, а второе - в 01 час 23 мин 41 сек /12/. Разница во времени между нажатиями составила 2 секунды. А на то, чтобы увидеть аварийные показания прибора, осознать их и закричать "об аварийном увеличении мощности", необходимо затратить не менее 4-5 сек. На то, чтобы выслушать, затем принять решение, отдать команду "Глуши реактор!", метнуться к пульту управления и нажать кнопку АЗ-5, необходимо затратить ещё не менее 4-5 сек. Итак, мы уже имеем запас в 8-10 секунд перед вторым нажатием кнопки АЗ-5. Напомним, что к этому моменту первый взрыв уже произошёл. То есть, он состоялся ещё раньше и явно до первого нажатия кнопки АЗ-5.

А насколько раньше? Учитывая инертность реакции человека на неожиданно возникшую опасность, измеряемую обычно несколькими и более секундами, набросим на неё ещё 8-10 секунд. И получаем отрезок времени, прошедший между первым и вторым взрывами, равный 16-20 с.

Эта наша оценка в 16 - 20 с подтверждается показаниями сотрудников ЧАЭС Романцева О. А., и Рудыка А. М., рыбачивших в аварийную ночь на берегу пруда-охладителя. В своих показаниях они практически повторяют друг друга. Поэтому приведём здесь показания только одного из них - Романцева О. А. Пожалуй, именно он описал картину взрыва в наибольшей подробности, как она виделась с большого расстояния. В этом, как раз и заключается их большая ценность.

"Я увидел очень хорошо пламя над блоком № 4, которое по форме было похоже на пламя свечи или факел. Оно было очень тёмным, тёмно-фиолетовым, со всеми цветами радуги. Пламя было на уровне среза трубы блока № 4. Оно вроде как пошло назад и раздался второй хлопок, похожий на лопнувший пузырь гейзера. Секунд через 15 - 20 появился другой факел, который был более узким, чем первый, но в 5-6 раз выше. Пламя также медленно выросло, а потом исчезло, как в первый раз. Звук был похож на выстрел из пушки. Гулкий и резкий. Мы поехали" /25/. При этом интересно отметить, что оба свидетеля звука после первого появления пламени не слышали. Это означает, что первый взрыв был очень слабый. Естественное объяснение этому будет дано ниже.

Правда, в показаниях Рудыка А. М. указывается несколько другое время, прошедшее между двумя взрывами, а именно 30 с. Но этот разброс легко понять, если учесть, что оба свидетеля наблюдали картину взрыва без секундомера в руках. Поэтому их личные временные ощущения можно объективно охарактеризовать так - временной интервал между двумя взрывами был довольно заметен и составил время, измеряемое десятками секунд. Кстати, сотрудник ИАЭ им. И. В. Курчатова Василевский В. П., ссылаясь на свидетелей, тоже приходит к выводу, что время, прошедшее между двумя взрывами, составляет 20 с /25/. Более точная оценка количества секунд, прошедших между двумя взрывами, проведена в данной работы выше - 16 -20 с.

Поэтому никак нельзя согласиться с оценками величины этого отрезка времени в 1 - 3 сек, как это делается в /22/. Ибо эти оценки делались на основании только показаний свидетелей, которые в момент аварии находились в различных помещениях ЧАЭС, общую картину взрывов не видели и руководствовались в показаниях лишь своими звуковыми ощущениями.

Хорошо известно, что неуправляемая цепная реакция взрывом заканчивается. Значит, началась она ещё на 10-15 секунд раньше. Тогда получается, что момент её начала лежит в интервале времени от 01 час 23 мин 10 с до 01 час 23 мин 05 с. Как это не удивительно, но именно этот момент времени главный свидетель аварии почему-то счёл необходимым выделить, когда обсуждал вопрос о правильности или неправильности нажатия кнопки АЗ-5 именно в 01 час 23 мин 40 сек (по ДРЕГ): "я тогда не придавал этому никакого значения - взрыв бы произошёл на 36 секунд ранее" /16/. Т.е. в 01 час 23 мин 04 с. Как уже обсуждалось выше, на этот же момент времени ещё в 1986 г. указали учёные ВНИИАЭС как на момент, после которого хронология аварии, восстановленная по представленным им официальным копиям аварийных документов, вызвала у них сомнения. Не слишком ли много совпадений? Такого не бывает просто так. По-видимому, первые признаки аварии ("вибрации" и "гул совершенно незнакомого характера") появились примерно за 36 секунд до первого нажатия кнопки АЗ-5.

Такой вывод подтверждается показаниями начальника предаварийной, вечерней смены 4-го блока Ю. Трегуба, который остался на ночную смену, чтобы помочь при проведении электротехнического эксперимента:

"Начинается эксперимент на выбег.

Отключают турбину от пара и в это время смотрят - сколько будет длиться выбег.

И вот была дана команда....

Мы не знали, как работает оборудование от выбега, поэтому в первые секунды я воспринял...появился какой-то нехороший такой звук...как если бы "Волга" на полном ходу начала тормозить и юзом бы пошла. Такой звук: ду-ду-ду...Переходящий в грохот. Появилась вибрация здания...

БЩУ дрожал. Но не как при землетрясении. Если посчитать до десяти секунд - раздавался рокот, частота колебаний падала. А мощность их росла. Затем прозвучал удар...

Удар этот был не очень. По сравнению с тем, что было потом. Хотя сильный удар. Сотрясло БЩУ. И когда СИУТ крикнул, я заметил, что заработала сигнализация главных предохранительных клапанов. Мелькнуло в уме: "Восемь клапанов...открытое состояние!". Я отскочил, и в это время последовал второй удар. Вот это был очень сильный удар. Посыпалась штукатурка, всё здание заходило...свет потух, потом восстановилось аварийное питание... Все были в шоке...".

Большая ценность этих показаний обусловлена тем, что свидетель, с одной стороны, работал начальником вечерней смены 4-го блока и, следовательно, хорошо знал его реальное состояние и трудности работы на нём, а, с другой стороны, в ночную смену он уже работал просто добровольным помощником и, следовательно, юридически ни за что не отвечал. Поэтому он смог запомнить и наиболее подробно из всех свидетелей воссоздать общую картину аварии.

В этих показаниях обращает на себя внимание слова: "в первые секунды...появился какой-то нехороший такой звук". Отсюда ясно следует, что аварийная ситуация на 4-м блоке, закончившаяся тепловым взрывом реактора, возникла уже "в первые секунды" после начала проведения электротехнических испытаний. А из хронологии аварии известно, что они начались в 01 час 23 мин 04 сек. Если теперь к этому моменту добавить несколько "первых секунд" то получится, что неуправляемая цепная реакция на запаздывающих нейтронах в реакторе 4-го блока началась примерно в 01 час 23 мин 8-10 сек, что довольно хорошо совпадает с нашими оценками этого момента, приведенными выше.

Таким образом, из сопоставления аварийных документов и процитированных выше показаний свидетелей можно сделать вывод, что первый взрыв произошёл примерно в период от 01 час 23 мин 20 сек до 01 час 23 мин 30 сек. Именно он и послужил причиной первого аварийного нажатия кнопки АЗ-5. Напомним, что ни одна официальная комиссия, ни один автор многочисленных версий не смогли дать естественного объяснения этому факту.

Но почему оперативный персонал 4-го блока, не являвшийся новичком в деле и к тому же работавший под руководством опытного зам главного инженера по эксплуатации, всё-таки упустил контроль над цепной реакцией? Воспоминания дают ответ и на этот вопрос.

"Нарушать ОЗР мы не собирались и не нарушали. Нарушение- когда сознательно игнорируется показание, а 26 апреля никто не видел запаса менее 15 стержней......Но, видимо, мы просмотрели..." /16/.

"Почему Акимов задержался с командой на глушение реактора, теперь не выяснишь. В первые дни после аварии мы ещё общались, пока не разбросали по отдельным палатам..." /16/.

Эти признания были написаны непосредственным, можно сказать, главным участником аварийных событий через много лет после аварии, когда никакие неприятности ему уже не грозили ни от правоохранительных органов, ни от бывшего начальства, и он мог писать откровенно. Из них для любого непредвзятого человека становится очевидным, что во взрыве реактора 4-го блока виноват только персонал. Скорее всего, увлёкшись рискованным процессом поддержания мощности реактора, попавшего в режим самоотравления по его же вине, на уровне 200 МВТ, оперативный персонал сначала "просмотрел" недопустимо опасный вывод управляющих стержней из активной зоны реактора в запрещённом Регламентом количестве, а затем "задержался" с нажатием кнопки АЗ-5. Это и есть непосредственная техническая причина Чернобыльской аварии. А всё остальное - дезинформация от лукавого.

И на этом пора заканчивать все эти надуманные споры о том, кто виноват в Чернобыльской аварии, и сваливать всё на науку, как это очень любят делать эксплуатационщики. Учёные были правы ещё в 1986 г.

1.9. Об адекватности распечаток ДРЕГ

Можно возразить, что предлагаемая автором версия причин Чернобыльской аварии противоречит официальной её хронологии, основанной на распечатках ДРЕГ и приводимой, например, в /12/. И автор с этим согласен - действительно противоречит. Но если внимательно проанализировать эти распечатки, то легко заметить, что сама эта хронология после 01 часа 23 мин 41 сек не подтверждается другими аварийными документами, противоречит показаниям очевидцев и, главное, противоречит физике реакторов. И первыми на эти противоречия обратили внимание специалисты ВНИИАЭС ещё в 1986 г., о чём уже упоминалось выше /5, 6/.

Например, официальная хронология, основанная на распечатках ДРЕГ, описывает процесс аварии в следующей последовательности /12/:

01 час 23 мин 39 сек (по телетайпу) - Зарегистрирован сигнал АЗ-5. Стержни АЗ и РР начали движение в активную зону.

01 час 23 мин 40 сек (по ДРЕГ) - то же самое.

01 час 23 мин 41 сек (по телетайпу) - Зарегистрирован сигнал аварийной защиты.

01 час 23 мин 43 сек (по ДРЕГ) - По всем боковым ионизационным камерам (БИК) появились сигналы по периоду разгона (АЗС) и по превышению мощности (АЗМ).

01 час 23 мин 45 сек (по ДРЕГ) - Снижение с 28000 м3/ч до 18000 м3/ч расходов ГЦН, не участвующих в выбеге, и недостоверные показания расходов ГЦН, участвующих в выбеге...

01 час 23 мин 48 сек (по ДРЕГ) - Восстановление расходов ГЦН, не участвующих в выбеге, до 29000м3/ч. Дальнейший рост давления в БС (левая половина - 75,2 кг/см2, правая - 88,2 кг/см2) и уровня БС. Срабатывание быстродействующих редукционных устройств сброса пара в конденсатор турбины..

01 час 23 мин 49 сек - Сигнал аварийной защиты "повышение давления в реакторном пространстве".

В то время как свидетельские показания, например, Лысюка Г.В. говорят о другой последовательности аварийных событий:

"...меня что-то отвлекло. Наверно, это был крик Топтунова: "Мощность реактора растёт с аварийной скоростью!". Не уверен в точности этой фразы, но смысл запомнился именно такой. Акимов быстрым резким движением подскочил к пульту, сорвал крышку и нажал кнопку "АЗ-5"..." /22/.

Аналогичную последовательность аварийных событий, уже процитированную выше, описывает и главный свидетель аварии /16/.

При сравнении этих документов обращает на себя внимание следующее противоречие. Из официальной хронологии следует, что аварийный рост мощности начался через 3 секунды после первого нажатия кнопки АЗ-5. А свидетельские показания дают обратную картину, что сначала начался аварийный рост мощности реактора и лишь затем, через сколько-то секунд была нажата кнопка АЗ-5. Оценка же количества этих секунд, проведенная выше, показала, что отрезок времени между этими событиями мог составит от 10 до 20 секунд.

Физике же реакторов распечатки ДРЕГ противоречат прямо. Выше уже упоминалось, что время жизни реактора при реактивности свыше 4ß составляет сотые доли секунды. А по распечаткам получается, что с момента аварийного роста мощности прошло целых 6 (!) секунд, прежде чем начали только разрываться технологические каналы.

Тем не менее, подавляющее большинство авторов почему-то полностью пренебрегают этими обстоятельствами и принимают распечатки ДРЕГ за документ, адекватно отражающий процесс аварии. Однако, как показано выше, на самом деле это не так. Причём, это обстоятельство давно и хорошо известно персоналу ЧАЭС, ибо программа ДРЕГ на 4-м блоке ЧАЭС "была: реализована как фоновая задача, прерываемая всеми другими функциями" /22/. Следовательно, "...время события в ДРЕГ не есть истинное время его проявления, а лишь время занесения сигнала о событии в буфер (для последующей записи на магнитную ленту)" /22/. Другими словами, указанные события могли происходить, но в другое, более раннее время.

Это важнейшее обстоятельство 15 лет скрывалось от учёных. В результате десятки специалистов впустую угробили уйму времени и средств на выяснение физических процессов, которые могли привести к такой масштабной аварии, опираясь на противоречивые, неадекватные распечатки ДРЕГ и показания свидетелей, юридически отвечавших за безопасность реактора и уже поэтому сильно лично заинтересованных в распространении версии - "реактор взорвался после нажатия кнопки АЗ-5". При этом, почему-то систематически не обращалось внимания на показания другой группы свидетелей, юридически не нёсших ответственности за безопасность реактора и, следовательно, более склонных к объективности. И это важнейшее, недавно открывшееся обстоятельство дополнительно подтверждает выводы, сделанные в данной работе.

1.10. Выводы "компетентных органов"

Сразу после Чернобыльской аварии для расследования её обстоятельств и причин было организовано пять комиссий и групп. Первая группа специалистов входила в состав Правительственной комиссии, которую возглавлял Б. Щербина. Вторая - комиссия учёных и специалистов при Правительственной комиссии, возглавляемая А. Мешковым и Г. Шашариным. Третья - следственная группа прокуратуры. Четвёртая - группа специалистов Минэнерго, возглавляемая Г Шашариным. Пятая - комиссия эксплуатационщиков ЧАЭС, которая была вскоре ликвидирована распоряжением председателя Правительственной комиссии.

Каждая из них собирала информацию независимо от другой. Поэтому в их архивах образовалась некая разрозненность и неполнота в аварийных документах. По-видимому, это обусловило несколько декларативный характер ряда важных моментов в описании процесса аварии в подготовленных ими документах. Это хорошо просматривается при внимательном чтении, например, официального доклада Советского правительства в МАГАТЭ в августе 1986 г. Позднее в 1991, 1995 и 2000 гг. различными инстанциями были образованы дополнительные комиссии по расследованию причин Чернобыльской аварии (см. выше). Однако этот недостаток остался неизменным и в подготовленных ими материалах.

Мало известно, что сразу после Чернобыльской аварии для выяснения её причин работала шестая следственная группа, образованная "компетентными органами". Не привлекая к своей работе большого общественного внимания, она провела своё самостоятельное расследование обстоятельств и причин Чернобыльской аварии, опираясь на свои уникальные информационные возможности. По свежим следам в течение первых пяти дней были опрошены и проведены допросы 48 человек, а также сделаны фотокопии многих аварийных документов. В те времена, как известно, "компетентные органы" уважали даже бандиты, ну, а нормальные сотрудники ЧАЭС тем более не стали бы им врать. Поэтому выводы "органов" представляли чрезвычайный интерес для учёных.

Однако с этими выводами, шедшими под грифом "совершенно секретно", был ознакомлен очень узкий круг лиц. Лишь недавно СБУ решило рассекретить часть своих чернобыльских материалов, хранившихся в архивах. И хотя эти материалы официально уже не являются секретными, они по-прежнему остаются практически недоступными для широкого круга исследователей. Тем не менее, благодаря своей настойчивости автору удалось с ними подробно познакомиться.

Оказалось, что предварительные выводы были сделаны уже к 4-му мая 1986 г., а окончательные к 11 мая того же года. Для краткости приведём только две цитаты из этих уникальных документов, непосредственно относящихся к теме данной статьи.

"...общей причиной аварии явилась низкая культура работников АЭС. Речь идёт не о квалификации, а о культуре работы, внутренней дисциплине и чувстве ответственности" (документ № 29 от 7 мая 1986 г) /24/.

"Взрыв произошёл вследствие ряда грубых нарушений правил работы, технологии и несоблюдения режима безопасности при работе реактора 4-го блока АЭС" (документ № 31 от 11 мая 1986 г) /24/.

Это был окончательный вывод "компетентных органов". Больше к этому вопросу они не возвращались.

Как видно, их вывод практически полностью совпадает с выводами этой статьи. Но есть "небольшая" разница. В Национальной академии наук Украины к ним пришли только через 15 лет после аварии, образно выражаясь, сквозь густой туман дезинформации со стороны заинтересованных лиц. А "компетентные органы" истинные причины Чернобыльской аварии окончательно установили всего за две недели.

2. Сценарий аварии

2.1. Исходное событие

Новая версия позволила обосновать наиболее естественный сценарий аварии. В настоящий момент он представляется таким. В 00 часов 28 мин 26.04.86 г., переходя в режим электротехнических испытаний, персонал на БЩУ-4 допустил ошибку при переключении управления с системы локального автоматического регулирования (ЛАР) на систему автоматического регулирования мощности основного диапазона (АР). Из-за этого тепловая мощность реактора упала ниже 30 Мвт, а нейтронная мощность упала до ноля и оставалась таковой в течение 5 минут, судя по показаниям самописца нейтронной мощности /5/. В реакторе автоматически начался процесс самоотравления короткоживущими продуктами деления. Сам по себе этот процесс никакой ядерной угрозы не представлял. Даже, наоборот, по мере его развития способность реактора поддерживать цепную реакцию уменьшается вплоть до полной его остановки независимо от воли операторов. Во всём мире в таких случаях реактор просто глушат, затем сутки-двое выжидают, пока реактор не восстановит свою работоспособность. А затем запускают его снова. Процедура эта считается рядовой, и никаких трудностей для опытного персонала 4-го блока не представляла.

Но на реакторах АЭС эта процедура весьма хлопотная и занимает много времени. А в нашем случае она ещё срывала выполнение программы электротехнических испытаний со всеми вытекающими неприятностями. И тогда, стремясь "быстрее закончить испытания", как потом объяснялся персонал, они стали постепенно выводить из активной зоны реактора управляющие стержни. Такой вывод должен был компенсировать снижение мощности реактора из-за процессов самоотравления. Эта процедура на реакторах АЭС тоже обычная и ядерную угрозу представляет только в том случае, если вывести их слишком много для данного состояния реактора. Когда количество оставшихся стержней достигло 15, оперативный персонал должен был реактор заглушить. Это было его прямой служебной обязанностью. Но он этого не сделал.

Кстати, первый раз такое нарушение случилось в 7 часов 10 мин 25 апреля 1986 г., т.е. чуть ли не за сутки до аварии, и продолжалось примерно до 14 часов (см. рис. 1). Интересно отметить, что в течение этого времени поменялись смены оперативного персонала, поменялись начальники смены 4-го блока, поменялись начальники смены станции и другое станционное начальство и, как это не странно, никто из них не поднял тревоги, как будто всё было в порядке, хотя реактор уже находился на грани взрыва.. Невольно напрашивается вывод, что нарушения такого типа, по-видимому, были обычным явлением не только у 5-й смены 4-го блока.

Этот вывод подтверждают и показания И.И. Казачкова, работавшего 25 апреля 1986 г. начальником дневной смены 4-го блока: "Я так скажу: у нас неоднократно было менее допустимого количества стержней - и ничего...", "...никто из нас не представлял, что это чревато ядерной аварией. Мы знали, что делать этого нельзя, но не думали..." /18/. Образно выражаясь, реактор долго "сопротивлялся" столь вольному обращению с ним, но персонал всё-таки сумел его "изнасиловать" и довести до взрыва.

Второй раз это случилось уже 26 апреля 1986 г. вскоре после полуночи. Но по какой-то причине персонал не стал глушить реактор, а продолжал выводить стержни. В результате в 01 час 22 мин 30 сек. в активной зоне оставалось 6-8 управляющих стержней. Но и это персонал не остановило, и он приступил к электротехническим испытаниям. При этом можно уверенно предположить, что персонал продолжал вывод стержней до самого момента взрыва. На это указывает фраза "началось медленное повышение мощности" /1/ и экспериментальная кривая изменения мощности реактора в зависимости от времени /12/ (см. рис. 2).

Во всём мире никто так не работает, ибо нет технических средств безопасного управления реактором, находящимся в процессе самоотравления. Не было их и у персонала 4-го блока. Конечно, никто из них не хотел взрывать реактор. Поэтому вывод стержней свыше разрешённых 15-ти мог осуществляться только на основе интуиции. С профессиональной точки зрения это уже была авантюра в чистом её виде. Почему они на неё пошли? Это отдельный вопрос.

В какой-то момент между 01 час 22 мин 30 сек и 01 час 23 мин 40 сек интуиция персоналу, по-видимому, изменила, и из активной зоны реактора оказалось выведено избыточное количество стержней. Реактор перешёл в режим поддержания цепной реакции на мгновенных нейтронах. Ещё не созданы и вряд ли когда будут созданы технические средства управления реакторами в таком режиме. Поэтому в течение сотых долей секунды тепловыделение в реакторе возросла в 1500 - 2000 раз /5,6/, ядерное топливо нагрелось до температуры 2500-3000 градусов /23/, а далее начался процесс, который называется тепловым взрывом реактора. Его последствия сделали ЧАЭС "знаменитой" на весь мир.

Поэтому событием, инициировавшим неуправляемую цепную реакцию, было бы более правильно считать избыточный вывод стержней из активной зоны реактора. Как это произошло в остальных ядерных авариях, закончившихся тепловым взрывом реактора, в 1961 г. и в 1985 г. А уже после разрыва каналов полная реактивность могла возрасти за счёт парового и пустотного эффектов. Для оценки индивидуального вклада каждого из этих процессов необходимо детальное моделирование самой сложной и наименее разработанной, второй фазы аварии.

Предлагаемая автором схема развития Чернобыльской аварии представляется более убедительной и более естественной, чем ввод всех стержней в активную зону реактора после запоздалого нажатия кнопки АЗ-5. Ибо количественный эффект последнего у разных авторов имеет довольно большой разброс от достаточно больших 2ß до пренебрежимо малых 0,2ß. А какой из них реализовался при аварии и реализовался ли вообще, неизвестно. Кроме того, "в результате исследований различных коллективов специалистов... стало ясно, что одного ввода положительной реактивности только стержнями СУЗ с учётом всех обратных связей, воздействующих на паросодержание, недостаточно для воспроизведения такого всплеска мощности, начало которого зарегистрировано системой централизованного контроля СЦК СКАЛА IV энергоблока ЧАЭС" /7/ (см. рис. 1).

В то же время давно известно, что вывод управляющих стержней из активной зоны реактора сам по себе может дать гораздо больший выбег реактивности - более 4ß /13/. Это, во-первых. А, во-вторых, научно ещё не доказано, что стержни вообще входили в активную зону. Из новой же версии следует, что они и не могли туда войти, ибо в момент нажатия кнопки АЗ-5 уже не существовало ни стержней, ни активной зоны.

Таким образом, версия эксплуатационщиков, выдержав проверку аргументами качественного характера, не выдержала количественной проверки и её можно сдавать в архив. А версия учёных после небольшой поправки получила дополнительные количественные подтверждения.

Рис. 1. Мощность (Np) и оперативный запас реактивности (Rоп) реактора 4-го блока на отрезке времени от 25.04.1986 до официального момента аварии 26.04.1986 /12/. Овалом выделен предаварийный и аварийный отрезки времени.

2.2. "Первый взрыв"

Неуправляемая цепная реакция в реакторе 4-го блока началась в некоторой, не очень большой части активной зоны и вызвала местный перегрев охлаждающей воды. Скорее всего, она началась в юго-восточном квадранте активной зоны на высоте от 1,5 до 2,5 м от основания реактора /23/. Когда давление пароводяной смеси превысило пределы прочности циркониевых труб технологических каналов, они разорвались. Изрядно перегретая вода почти мгновенно превратилась в пар довольно высокого давления. Этот пар, расширяясь, подтолкнул массивную 2500-тонную крышку реактора вверх. Для этого, как оказалось вполне достаточно разрыва всего нескольких технологических каналов. На этом закончилась начальная стадия разрушения реактора и началась основная.

Двигаясь вверх, крышка последовательно, как в домино, разорвала остальную часть технологических каналов. Многие тонны перегретой воды почти мгновенно превратились в пар, и сила его давления уже довольно легко подкинула "крышку" на высоту 10-14 метров. В образовавшееся жерло ринулась смесь пара, обломков графитовой кладки, ядерного топлива, технологических каналов и других конструкционных элементов активной зоны реактора. Крышка реактора развернулась в воздухе и упала обратно ребром, раздавив верхнюю часть активной зоны и вызвав дополнительный выброс радиоактивных веществ в атмосферу. Ударом от этого падения можно объяснить двойной характер "первого взрыва".

Таким образом, с точки зрения физики "первый взрыв" собственно не был взрывом, как физическим явлением, а представлял собой процесс разрушения активной зоны реактора перегретым паром. Поэтому сотрудники ЧАЭС, рыбачившие в аварийную ночь на берегу пруда-охладителя, не услышали звука после него. Именно поэтому сейсмические приборы на трёх сверхчувствительных сейсмостанциях с расстояния 100 - 180 км смогли зарегистрировать только второй взрыв.

Рис. 2. Изменение мощности (Np) реактора 4-го блока на отрезке времени от 23 час 00мин 25.04.1986 до официального момента аварии 26.04.1986 (увеличенный участок графика, обведённого овалом на рис. 1). Обращаете на себя внимание постоянный рост мощности реактора вплоть до самого взрыва

2.3. "Второй взрыв"

Параллельно с этими механическими процессами в активной зоне реактора начались различные химические реакции. Из них особый интерес вызывает экзотермическая пароциркониевая реакция. Она начинается при 900 °С и бурно проходит уже при 1100 °С. Её возможная роль более подробно изучалась в работе /19/, в которой было показано, что в условиях аварии в активной зоне реактора 4-го блока только за счёт этой реакции в течение 3 сек могло образоваться до 5 000. куб. метров водорода.

Когда верхняя "крышка" взлетала в воздух, в центральный зал из шахты реактора вырвалась эта масса водорода. Перемешавшись с воздухом центрального зала, водород образовал детонационную воздушно-водородную смесь, которая затем взорвалась, скорее всего, от случайной искры или раскалённого графита. Сам взрыв, судя по характеру разрушений центрального зала, носил бризантный и объёмный характер, аналогичный взрыву известной "вакуумной бомбы" /19/. Именно он и разнёс вдребезги крышу, центральный зал и другие помещения 4-го блока.

После этих взрывов в подреакторных помещениях начался процесс образования лавообразных топливосодержащих материалов. Но это уникальное явление является уже следствием аварии и здесь не рассматривается.

3. Основные выводы

1. Первопричиной Чернобыльской аварии стали непрофессиональные действия персонала 5-й смены 4-го блока ЧАЭС, который, скорее всего, увлёкшись рискованным процессом поддержания мощности реактора, попавшего в режим самоотравления по вине персонала же, на уровне 200 МВт, сначала "просмотрел" недопустимо опасный и запрещённый регламентом вывод управляющих стержней из активной зоны реактора, а затем "задержался" с нажатием кнопки аварийного глушения реактора АЗ-5. В результате в реакторе началась неуправляемая цепная реакция, которая закончилась его тепловым взрывом.

2. Ввод графитовых вытеснителей управляющих стержней в активную зону реактора не мог быть причиной Чернобыльской аварии, так как в момент первого нажатия кнопки АЗ-5 в 01 час 23 мин. 39 сек. уже не существовало ни управляющих стержней, ни активной зоны.

3. Причиной первого нажатия кнопки АЗ-5 послужил "первый взрыв" реактора 4-го блока, который произошёл примерно в период от 01 час 23 мин. 20 сек. до 01 час 23 мин. 30 сек. и разрушил активную зону реактора.

4. Второе нажатие кнопки АЗ-5 произошло в 01 час 23 мин. 41 сек. и практически совпало во времени со вторым, уже настоящим взрывом воздушно-водородной смеси, который полностью разрушил здание реакторного отделения 4-го блока.

5. Официальная хронология Чернобыльской аварии, основанная на распечатках ДРЕГ, неадекватно описывает процесс аварии после 01 час 23 мин. 41 сек. Первыми на эти противоречия обратили внимание специалисты ВНИИАЭС. Возникает необходимость её официального пересмотра с учётом недавно открывшихся новых обстоятельств.

В заключение автор считает своим приятным долгом выразить глубокую благодарность члену-корреспонденту НАНУ А. А. Ключникову, доктору физико-математических наук А. А. Боровому, доктору физико-математических наук Е. В. Бурлакову, доктору технических наук Э. М. Пазухину и кандидату технических наук В. Н. Щербину за критическое, но доброжелательное обсуждение полученных результатов и моральную поддержку.

Автор также считает своим особо приятным долгом выразить глубокую благодарность генералу СБУ Ю. В. Петрову за предоставленную возможность подробно ознакомиться с частью архивных материалов СБУ, связанных с Чернобыльской аварией, и за устные комментарии к ним. Они окончательно убедили автора в том, что "компетентные органы" являются органами действительно компетентными.

Литература

Авария на Чернобыльской АЭС и её последствия: Информация ГК АЭ СССР, подготовленная для совещания в МАГАТЭ (Вена, 25-29 августа 1986 г.).

2. Типовой технологический регламент по эксплуатации блоков АЭС с ректором РБМК-1000. НИКИЭТ. Отчёт № 33/262982 от 28.09.1982 г.

3. О причинах и обстоятельствах аварии на 4 блоке ЧАЭС 26 апреля 1986 г. Доклад ГПАН СССР, Москва, 1991.

4. Информация об аварии на Чернобыльской АЭС и её последствиях, подготовленная для МАГАТЭ. Атомная Энергия, т. 61, вып. 5, ноябрь 1986.

5. Отчёт ИРЭП. Арх. № 1236 от 27.02.97.

6. Отчёт ИРЭП. Арх. № 1235 от 27.02.97.

7. Новосельский О.Ю., Подлазов Л.Н., Черкашов Ю.М Чернобыльская авария. Исходные данные для анализа. РНЦ "КИ", ВАНТ, сер. Физика ядерных реакторов, вып. 1, 1994.

8. Медведев Т. Чернобыльская тетрадь. Новый мир, № 6, 1989.

9. Доклад Правительственной комиссии "Причины и обстоятельства аварии 26 апреля 1986 г. на блоке 4 Чернобыльской АЭС. Действия по управлению аварией и ослаблению её последствий" (Обобщение выводов и результатов работ международных и отечественных учреждений и организаций) под рук. Смышляева А. Е. Держкоматомнагляд України. Рег. № 995Б1.

11. Хронология процесса развития последствий аварии на 4-м блоке ЧАЭС и действия персонала по их ликвидации. Отчёт ИЯИ АН УССР, 1990 и Свидетельства очевидцев. Приложение к отчёту.

12. См., например, A. A. Abagyan, E.O. Adamov, E.V.Burlakov et. al. "Chernobyl accident causes: overview of studies over the decade", IAEA International conferens "One decade after Chernobyl: nuclear safety aspects", Vienna, april 1-3, 1996, IAEA-J4-TC972, p.46-65.

13. Мак-Каллех, Милле, Теллер. Безопасность ядерных реакторов//Мат-лы Междунар. конф. по мирному использованию атомной энергии, состоявшейся 8-20 августа 1955 г. Т.13. М.: Изд-во иностр. лит., 1958

15. О. Гусев. "У заграв_ чорнобильських блискавиць", т. 4, Київ, вид. "Варта", 1998.

16. А.С. Дятлов. Чернобыль. Как это было. ООО Издательство "Научтехлитиздат", Москва. 2000.

17. Н. Попов. "Страницы Чернобыльской трагедии". Статья в газете "Вестник Чернобыля" № 21 (1173), 26.05.01.

18. Ю. Щербак. "Чернобыль", Москва, 1987.

19. Э.М. Пазухин. "Взрыв водородно-воздушной смеси как возможная причина разрушения центрального зала 4-го блока Чернобыльской АЭС во время аварии 26 апреля 1986 г.", Радиохимия, т. 39, вып. 4, 1997.

20. "Анализ текущей безопасности объекта "Укрытие" и прогнозные оценки развития ситуации". Отчёт МНТЦ "Укрытие", рег. № 3836 от 25.12.2001. Под научным руководством доктора физ.-мат. наук А.А.Борового. Чернобыль, 2001.

21. В.Н.Страхов, В.И.Старостенко, О.М.Харитонов и др. "Сейсмические явления в районе Чернобыльской АЭС". Геофизический журнал, т. 19, № 3, 1997.

22. Карпан Н.В. Хронология аварии на 4-м блоке ЧАЭС. Аналитический отчёт, Д. № 17-2001, Киев, 2001.

23. В.А.Кашпаров, Ю.А.Иванов, В.П.Процак и др. "Оценка максимальной эффективной температуры и времени неизотермического отжига чернобыльских топливных частиц во время аварии". Радиохимия, т.39, вып. 1, 1997 г.

24. "З арх_в_в ВУЧК, ГПУ, НКВД, КГБ", Спецвипуск № 1, 2001 г. Видавництво "Сфера".

25. Анал_з авар_ї на четвертому блоц_ ЧАЕС. Зв_т. Част. 1. Обставини авар_ї. Шифр 20/6н-2000. НВП "РОСА". Київ. 2001.

После того как сериал HBO заставил одних вспомнить, а других узнать об аварии на ЧАЭС, у многих возникли вопросы к тем, кто производит атомную энергию здесь и сейчас. В России (в отличие от, например, США, где АЭС может принадлежать частной компании) это госкорпорация «Росатом». Уверены ли мы в том, что катастрофа, подобная аварии на ЧАЭС, не повторится? Безопасны ли современные АЭС - в том числе те, на которых все еще работают реакторы того же типа, что и в Чернобыле? Что сегодня происходит в зоне отчуждения и как быть с ядерными отходами все еще работающих станций? И может ли человечество вообще отказаться от атомной энергетики? T&P задали эти вопросы члену Общественного совета «Росатома» Валерию Меньшикову.

Валерий Меньшиков

Член Общественного совета госкорпорации «Росатом», член Совета Центра экологической политики России

26 июня исполнилось 65 лет с момента создания первой атомной станции в мире - Обнинской АЭС. Немного раньше начали работать военные реакторы на закрытых объектах на Урале и в Сибири, но они были другими по схеме, условиям работы и т. д. На них создавали атомную бомбу. С 1954 года в сфере атомной энергетики случилось несколько серьезных аварий: пожар на английском атомном реакторе (авария в Уиндскейле в 1957 году. - Прим. T&P ), расплавление активной зоны реактора на американской АЭС Три-Майл-Айленд в 1979 году.

Почему взорвался реактор на ЧАЭС?

Многие считают, что на Чернобыльской АЭС произошел ядерный взрыв. Однако это был взрыв тепловой: в большом объеме накопился и взорвался водород.

Во-первых, на ЧАЭС была не очень хорошая схема самого реактора (РБМК) - основанная на схеме тех самых первых военных реакторов.

Во-вторых, Минатом передал Чернобыльскую станцию Минэнерго - людям, задачей которых была общая генерация электричества и которые по этой причине не знали некоторых важных требований к работе атомных станций. Эксперимент, который решили провести на ЧАЭС, был абсолютно понятен для простого энергетика, но для атомной станции очень критичен.

В-третьих, если на станции Три-Майл-Айленд был контейнмент , то есть железобетонный «колпак» на реакторном блоке, благодаря которому основная часть радиоактивных веществ осталась в производственном помещении, то на четвертом энергоблоке Чернобыльской АЭС такой герметичной оболочки не было. Из дневников академика Валерия Легасова, с первых дней участвовавшего в обеспечении безопасности людей после катастрофы, становится ясно, что он настаивал на создании железобетонных контейнментов с толщиной стен около метра. Но серьезные физики сказали, что надо экономить и что наши реакторы абсолютно безопасны. Один выдающийся академик ядерной отрасли (Анатолий Александров. - Прим. T&P ) даже сказал, что атомный реактор можно построить хоть на Красной площади (на самом деле речь шла о реакторе АСТ. - Прим. T&P ).

Что происходит в зоне отчуждения?

В 1957 году на военном предприятии производственного объединения «Маяк» в закрытом городе Озерске произошла первая крупная радиационная авария в СССР (кыштымская катастрофа . - Прим. T&P ). Эти события засекретили даже для специалистов - а ведь если бы мы хорошо их изучили, то, может быть, лучше смогли бы продумать последствия аварии на ЧАЭС.

Чернобыльская зона отчуждения - это 30-километровая территория вокруг станции, где выпало наибольшее количество радионуклидов - цезия-137, стронция-90, плутония-239. Эти элементы загрязнили миллионы километров - Украину, Белоруссию, российские территории, часть Европы. В Шотландии до сих пор есть место, обнесенное проволокой, где нельзя пасти овец.

Что можно делать в зоне отчуждения? Во-первых, прошло уже 33 года после катастрофы. Время полураспада цезия и стронция - 30 лет, то есть их мощность облучения снизилась. Во-вторых, эти элементы попали в почву и в среднем на 10–15 сантиметров ушли вглубь. Мониторинг окружающей среды показал, что больше всего еще опасных радионуклидов в деревьях. Очень плохо, когда горит лес, подвергшийся воздействию чернобыльских осадков. За этим надо следить. Там, где после кыштымской аварии прошел Восточно-Уральский радиоактивный след (ВУРС), первыми погибли хвойные леса. В чернобыльской зоне тоже первой порыжела и умерла хвоя. Лиственные леса выдерживают большие дозы и быстрее восстанавливаются.

Для человека наибольшую опасность представляют растения, которые «вытягивают» радиоактивность из земли. Главные накопители грязи - грибы, на втором месте - ягоды: клюква, брусника и др.

А так как люди ушли с этой территории, то сегодня в зоне отчуждения активно развивается и животный мир: восстановились популяции волков, медведей и других крупных животных.

Зону отчуждения сегодня можно использовать под промышленные и хозяйственные цели - например, Украина хочет построить на ней хранилище отработавшего топлива. Допуск населения туда до сих пор закрыт и, думаю, останется таковым еще много десятилетий.

Сколько человек пострадало в результате аварии?

Когда люди вспоминают о чернобыльской катастрофе, в их головах правда смешивается с мифами. Назову точную цифру: 134 человека во время событий в Чернобыле получили дозу радиации, от которой у них развилась лучевая болезнь, из них 28 сразу скончались от ее проявлений. В основном это были пожарные, сбрасывавшие с крыши четвертого энергоблока куски облученного графита. Активно устраняли последствия катастрофы еще два с небольшим года. В ликвидации принимали участие более 500 тысяч человек по всему СССР, более половины из которых - россияне. За здоровьем ликвидаторов с тех пор постоянно наблюдают, в Обнинске есть банк данных с информацией о каждом из них. Как ни странно, они живут в среднем даже дольше, чем остальные россияне: в ликвидаторы отбирались самые здоровые люди.

Уровень смертности среди ликвидаторов

При этом адекватная оценка влияния аварии на ЧАЭС на смертность затрудняется тем, что после распада Советского Союза ожидаемая продолжительность жизни резко упала на всей его территории . - Прим. T&P

Во время катастрофы в окружающую среду попал радиоактивный изотоп йода - йод-131, который легко укрепляется в щитовидной железе. Из-за этого многие заболели раком щитовидной железы, особенно пагубно йод действовал на организм детей и подростков. Сегодня эти данные уже не скрываются: зафиксировано около таких случаев, в основном в Белоруссии и Брянской области.

Возможно ли повторение Чернобыля?

Я считаю, что чернобыльская катастрофа стала одним из факторов, которые привели к развалу СССР. Какое-то время произошедшее скрывали, и это вызвало мощную реакцию со стороны общественности. Был нанесен морально-психологический удар по населению Украины, Белоруссии и России, родилось много мифов об облучении огромного количества людей. Все это сказалось не только на развитии атомной энергетики, но и на положении власти в стране. Возникшее недоверие к правительству и привело к распаду такого мощного образования, как Советский Союз.

Из этой катастрофы выводы надо было делать немедленно. Нужно было пересмотреть всю концепцию безопасности в атомной энергетике - а это новый подход и к конструкциям, и к физике реактора, и к обучению персонала, и к нормативным документам. Все это на протяжении 33 лет непрерывно совершенствуется. Я уверен, что подобной катастрофы с потерей реактора, угрозой загрязнения радиоактивными элементами и облучения населения уже не может быть. Сокрытий аварийных ситуаций быть не может: теперь они быстро засекаются разными способами и приборами.

Несмотря на то что на Смоленской, Курской и Ленинградской АЭС до сих пор работают постчернобыльские уран-графитовые реакторы типа РБМК (реактор большой мощности канальный), за это время их модернизировали и улучшили их систему безопасности. А так как это сложная техника и она может выйти из строя, то в жестком законодательном варианте приняли приемлемый риск работы АЭС. Вероятность тяжелой аварии оценивается величиной 10-6 - это одна авария на миллион реакторов в год. А так как реакторов у нас всего 35, то это минимальный риск.

Кроме того, сегодня нигде не строят энергоблоки без контейнментов. На станциях хорошо продуманы вопросы безопасности. Есть специальные баки с водой, которая немедленно поступает в реактор, если вдруг из него уходит вода и начинает плавиться активная зона. Есть стержни, которые быстро опускаются в активную зону и прерывают реакцию. А на крайний случай, если вдруг вся аварийная зона расплавится, под реактором есть специальная чаша со специальной химической смесью, снижающей температуру кипящего реактора. Тяжелые аварии на оставшихся РБМК исключены - но эти реакторы экономически устарели, и поэтому по истечении сроков эксплуатации их заменят на новые водо-водяные энергетические реакторы (ВВЭР).

Что происходит с отработанным ядерным топливом?

У атомной станции радиоактивные отходы. Радиоактивность не имеет ни вкуса, ни цвета, ни запаха, но тем не менее очень опасна для человека. Впрочем, таких отходов совсем немного - их можно сложить в несколько емкостей и отправить на хранение.

А вот ядерное топливо - дело серьезное. Для его создания сначала добывается уран, в котором в качестве атомного горючего используется только один изотоп (уран-235), а его в руде всего 0,7%. Затем уран обогащают, а дальше в подмосковном городе Электросталь путем сжатия в микронных допусках превращают в компактные таблетки двуокиси урана. Эти таблетки укладывают в циркониевые трубки - тепловыделяющие элементы (ТВЭЛы) длиной более трех метров. Когда эти конструкции вставляются в активную зону реактора, идет процесс выделения энергии. Где-то через три-четыре года это работающее (еще не отработавшее) топливо надо вытаскивать. Оказалось, в нем накапливаются очень вредные для всей конструкции ТВЭЛа и для блока мощные излучатели типа плутония, которые могут мешать правильному физическому процессу. После того как топливо вытащили, оно уже называется отработавшим ядерным топливом (ОЯТ) .

Что с ним делать? В мире более 30 государств работают с атомной энергетикой: США, Франция, Япония, Англия, Германия, Канада и др. И у всех разная политика. Некоторые страны считают, что отработавшее топливо - это очень плохие отходы и их надо хранить или захоранивать. Другие государства, в том числе Россия, думают иначе: нет, это не отходы. Это сырье для будущей атомной энергетики, потому что

в этом топливе накоплены радиоактивные элементы, полезные для будущих реакторов на быстрых нейтронах (БН).

Белоярская АЭС на Урале - единственная в мире атомная станция, где уже много лет работает реактор БН-600 мощностью в 600 МВт. А недавно там запустили и БН-800 (800 МВт) и, если это будет экономически целесообразно, построят реактор БН-1200.

В России два подхода к отработанному топливу. Часть ТВЭЛов перерабатывается на производственном объединении «Маяк» в Озерске (Челябинской области. - Прим. T&P ). Там на большом закрытом военном предприятии, мощном радиоизотопном заводе для ядерной медицины самая опасная часть топлива помещается внутрь матрицы из специального стекла и погружается в несколько контейнеров, хранящихся в бассейне с дистиллированной водой. Таким образом преобразуется отработавшее топливо с реакторов средней мощности (400–500 МВт) и с атомных подводных лодок.

Второй подход - хранить отработавшее топливо на будущее. Его везут под Красноярск в город Железногорск, где прямо в скале в советское время сделали горно-химический комбинат. Там отработавшее топливо хранят либо в специальных ячейках в дистиллированной воде в огромном, с футбольное поле, бассейне, либо на стеллажах со специальной газовой оболочкой, где из-за просто внешнего охлаждения идет сброс тепла в окружающую среду (но его совсем немного - климат от этого не изменится).

Безопасны ли водоемы рядом с АЭС?

Атомную станцию нужно строить рядом с водоемом - морем, рекой и т. д. Водяной пар - основа всей атомной энергетики. Реактор атомной станции нужен, чтобы под давлением в 100–120 атмосфер нагревать воду, идущую в сепаратор, который потом переводит ее в пар. В этой системе все радиоактивное. Другой контур, в котором пар вращает турбину и электрогенератор, вырабатывающий ток, не радиационный и с первым никак не соприкасается.

Воду, как правило, пускают в оборотный цикл: высасывают из водоема, используют на станции, остужают и снова подают на АЭС. Есть несколько способов остужать пар. Первый - это пруд-охладитель. Второй - это градирни, конусообразные башни, в которых вода распрыскивается сверху, течет по стенкам, и таким образом происходит ее естественное охлаждение. Третий способ - брызгальные бассейны, впрыскивающие в воздух горячую воду. Но мощные градирни дорого сооружать, и поэтому пруды-охладители нужны практически каждой атомной станции. Вода в них немного теплее (на один-три градуса) обычной речной или озерной. Она подается в пруд абсолютно нерадиоактивной, за этим следят десятки приборов. В этих прудах можно купаться и даже ловить рыбу - в последние годы их даже специально зарыбляют.

Можно ли отказаться от атомной энергетики?

В России 10 АЭС с 35 работающими реакторами. Один новейший реактор находится в опытно-промышленной эксплуатации на Нововоронежской атомной станции, параллельно мы сооружаем еще 6 атомных блоков, которые заменят устаревшие на других АЭС, и занимаемся зарубежными заказами (сегодня это 36 блоков на разной стадии коммерческой подготовки).

мы можем генерировать электричество без атомной энергетики. Вопрос только, будет ли это экономически выгодно.

Чтобы получать электроэнергию из возобновляемых источников, нужно придумать дешевое устройство, которое эту энергию накапливало бы. Пока что это большие экономические расходы. Так, Германия, богатая страна, платит 43 млрд евро за генерацию энергии из возобновляемых источников - и это сильно давит на ее экономику.

Атомная энергетика работает с расщеплением урана-235, это тяжелый элемент, он стоит внизу таблицы Менделеева под номером 92. Есть надежда, что, работая с легкими элементами (гелий, водород), в будущем мы получим еще один источник электроэнергии - термояд. На Солнце само по себе идет слияние легких элементов, а для их соединения на Земле нужно создавать температуры в миллионы градусов. Реактор, способный на такое, строится сегодня на территории Франции. В проекте ITER 35 стран-участников, включая Россию.

Этот термоядерный реактор представляет собой уходящую под землю махину размером с Эйфелеву башню. В вакуумной камере в форме тора («бублика») плазма будет вращаться и достигать температуры выше, чем на Солнце. «Росатом» поставляет туда сверхмагниты на основе сверхпроводящей проволоки, которые будут удерживать плазму в середине вакуумной камеры. Планируется, что этот опытный экземпляр токамака -реактора заработает в 2050 году. Затем это направление нужно будет еще лет 50 экономически и физически развивать, чтобы сделать реакторы подобного рода более компактными.

Атомные станции на термояде, возможно, заработают к 2100 году.

А пока в России есть наработки использования отработавшего ядерного топлива. В самом большом городе «Росатома», Северске (в 12–15 километрах от Томска), на так называемом Сибирском химкомбинате раньше нарабатывали оружейный плутоний, а сейчас строится опытно-демонстрационный центр, который будет работать над сооружением реактора нового типа - он будет как реактор на быстрых нейтронах (БН), только с другим теплоносителем. Это направление называется «Прорыв» . Если все удастся, то мы создадим новое направление в атомной энергетике. Такие реакторы будут работать на основе того же ядерного топлива, но с вовлечением не урана-235, а урана-238, содержание которого в руде составляет порядка 98%, и с добавлением плутония из отработанного топлива - так можно будет его перерабатывать. Это будет MOX-топливо , но созданное иначе. Так что мы стоим на рубеже новых технологий, и в XXI веке с атомом мы не расстанемся.

Литература

    Валерий Легасов. Об аварии на Чернобыльской АЭС. Расшифровки аудиозаписей

    Р.В. Арутюнян, Л.А. Большов, И.И. Линге, Е.М. Мелихова, С.В. Панченко. Уроки Чернобыля и Фукусимы и актуальные проблемы совершенствования системы защиты населения и территорий при авариях на АЭС // Медицинская радиология и радиационная безопасность. 2016. Том 61. № 3.

    Авария на ЧАЭС и атомная энергетика СССР // Научно-просветительский журнал «Скепсис».

    А.В. Яблоков, Б.В. Нестеренко, А.В. Нестеренко, Н.Е. Преображенская. Чернобыль: последствия катастрофы для человека и природы . Киев: Универсариум, 2011.

Мы публикуем сокращенные записи лекций, вебинаров, подкастов - то есть устных выступлений. Мнение спикера может не совпадать с мнением редакции. Мы запрашиваем ссылки на первоисточники, но их предоставление остается на усмотрение спикера.

Шведские ученые пришли к выводу, что во время аварии на Чернобыльской АЭС произошел слабый ядерный взрыв. Специалисты проанализировали самый вероятный ход ядерных реакций в реакторе и смоделировали метеорологические условия распространения продуктов распада. рассказывает о статье исследователей, опубликованной в журнале Nuclear Technology.

Авария на Чернобыльской АЭС произошла 26 апреля 1986 года. Катастрофа поставила под угрозу развитие ядерной энергетики во всем мире. Вокруг станции была создана 30-километровая зона отчуждения. Радиоактивные осадки выпадали даже в Ленинградской области, а изотопы цезия обнаруживали в повышенных концентрациях в лишайнике и мясе оленей в арктических областях России.

Существуют различные версии причин катастрофы. Чаще всего указывают на неправильные действия персонала ЧАЭС, повлекшие за собой возгорание водорода и разрушение реактора. Однако некоторые ученые полагают, что произошел настоящий ядерный взрыв.

Кипящий ад

В атомном реакторе поддерживается цепная ядерная реакция. Ядро тяжелого атома, например, урана, сталкивается с нейтроном, становится нестабильным и распадается на два более мелких ядра - продукты распада. В процессе деления выделяется энергия и два-три быстрых свободных нейтрона, которые в свою очередь вызывают распад других ядер урана в ядерном топливе. Количество распадов, таким образом, увеличивается в геометрической прогрессии, однако цепная реакция внутри реактора находится под контролем, что предотвращает ядерный взрыв.

В тепловых ядерных реакторах быстрые нейтроны не годятся для возбуждения тяжелых атомов, поэтому их кинетическую энергию уменьшают с помощью замедлителя. Медленные нейтроны, именуемые тепловыми, с большей вероятностью вызывают распад атомов урана-235, используемого в качестве топлива. В таких случаях говорят о высоком сечении взаимодействия ядер урана с нейтронами. Сами тепловые нейтроны называются так, поскольку находятся в термодинамическом равновесии с окружающей средой.

Сердцем Чернобыльской АЭС был реактор РБМК-1000 (реактор большой мощности канальный мощностью 1000 мегаватт). По сути, это графитовый цилиндр с множеством отверстий (каналов). Графит выполняет роль замедлителя, а через технологические каналы загружается ядерное топливо в тепловыделяющих элементах (ТВЭЛах). ТВЭЛы сделаны из циркония, металла с очень маленьким сечением захвата нейтронов. Они пропускают нейтроны и тепло, которое нагревает теплоноситель, препятствуя утечке продуктов распада. ТВЭЛы могут объединяться в тепловыделяющие сборки (ТВС). Тепловыделяющие элементы характерны для гетерогенных ядерных реакторов, в которых замедлитель отделен от горючего.

РБМК - одноконтурный реактор. В качестве теплоносителя используется вода, которая частично превращается в пар. Пароводяная смесь поступает в сепараторы, где пар отделяется от воды и направляется на турбогенераторы. Отработанный пар конденсируется и вновь поступает в реактор.

В конструкции РБМК имелся недостаток, сыгравший роковую роль в катастрофе на Чернобыльской АЭС. Дело в том, что расстояние между каналами было слишком большим и слишком много быстрых нейтронов тормозилось графитом, превращаясь в тепловые нейтроны. Они хорошо поглощаются водой, но там постоянно образуются пузырьки пара, что снижает абсорбционные характеристики теплоносителя. В результате повышается реактивность, вода еще сильнее нагревается. То есть РБМК отличается достаточно высоким паровым коэффициентом реактивности, что осложняет контроль за протеканием ядерной реакции. Реактор должен оснащаться дополнительными системами безопасности, работать на нем должен только высококвалифицированный персонал.

Наломали дров

25 апреля 1986 года на Чернобыльской АЭС была запланирована остановка четвертого энергоблока для планового ремонта и проведения эксперимента. Специалисты научно-исследовательского института «Гидропроект» предложили способ аварийного электроснабжения насосов станции за счет кинетической энергии вращающегося по инерции турбогенератора. Это позволило бы даже при отключении электричества поддерживать циркуляцию теплоносителя в контуре до тех пор, пока не включится резервное питание.

Согласно плану, эксперимент должен был начаться, когда тепловая мощность реактора снизится до 700 мегаватт. Мощность успели понизить на 50 процентов (1600 мегаватт), и процесс остановки реактора был отложен примерно на девять часов по запросу из Киева. Как только снижение мощности возобновилось, она неожиданно упала почти до нуля из-за ошибочных действий персонала АЭС и ксенонового отравления реактора - накопления изотопа ксенона-135, снижающего реактивность. Чтобы справиться с внезапной проблемой, из РБМК были извлечены аварийные стержни, поглощающие нейтроны, однако мощность не поднялась выше 200 мегаватт. Несмотря на нестабильную работу реактора, в 01:23:04 начался эксперимент.

Ввод дополнительных насосов усилил нагрузку на выбегающий турбогенератор, что снизило объемы воды, поступающей в активную зону реактора. Вместе с высоким паровым коэффициентом реактивности это быстро увеличило мощность реактора. Попытка внедрения поглощающих стержней из-за их неудачной конструкции лишь усугубила ситуацию. Всего лишь через 43 секунды после начала эксперимента реактор разрушился в результате одного-двух мощных взрывов.

Концы в воду

Очевидцы утверждают, что четвертый энергоблок АЭС был разрушен двумя взрывами: второй, самый мощный, случился через несколько секунд после первого. Считается, что аварийная ситуация возникла из-за разрыва труб в системе охлаждения, вызванного быстрым испарением воды. Вода или пар вступили в реакцию с цирконием в тепловыделяющих элементах, что привело к образованию большого количества водорода и его взрыву.

Шведские ученые полагают, что к взрывам, один из которых был ядерным, привели два различных механизма. Во-первых, высокий паровой коэффициент реактивности способствовал увеличению объема перегретого пара внутри реактора. В результате реактор лопнул, и его 2000-тонная верхняя крышка взлетела на несколько десятков метров. Поскольку к ней были прикреплены тепловыделяющие элементы, возникла первичная утечка ядерного топлива.

Во-вторых, аварийное опускание поглощающих стержней привело к так называемому «концевому эффекту». На чернобыльском РБМК-1000 стержни состояли из двух частей - поглотителя нейтронов и графитового вытеснителя воды. При введении стержня в активную зону реактора графит замещает поглощающую нейтроны воду в нижней части каналов, что только усиливает паровой коэффициент реактивности. Число тепловых нейтронов увеличивается, и цепная реакция становится неконтролируемой. Происходит небольшой ядерный взрыв. Потоки продуктов ядерного деления еще до разрушения реактора проникли в зал, а затем - через тонкую крышу энергоблока - попали в атмосферу.

Впервые о ядерной природе взрыва специалисты заговорили еще в 1986 году. Тогда ученые из Радиевого института Хлопина провели анализ фракций благородных газов, полученных на череповецкой фабрике, где производились жидкий азот и кислород. Череповец находится в тысяче километров к северу от Чернобыля, и радиоактивное облако прошло над городом 29 апреля. Советские исследователи выявили, что соотношение активностей изотопов 133 Xe и 133m Xe равнялось 44,5 ± 5,5. Эти изотопы - короткоживущие продукты ядерного распада, что указывает на слабый ядерный взрыв.

Шведские ученые рассчитали, сколько ксенона образовалось в реакторе до взрыва, во время взрыва, и как менялись соотношения радиоактивных изотопов вплоть до их выпадения в Череповце. Оказалось, что наблюдавшееся на заводе соотношение реактивностей могло возникнуть в случае ядерного взрыва мощностью 75 тонн в тротиловом эквиваленте. Согласно анализу метеорологических условий на период 25 апреля - 5 мая 1986 года, изотопы ксенона поднялись на высоту до трех километров, что предотвратило его смешение с тем ксеноном, который образовался в реакторе еще до аварии.

Авария на Чернобыльской АЭС явилась крупнейшей в истории атомной энергетики. Объективное понимание ее экологических, социальных, медицинских и психологических последствий - предмет многолетнего изучения специалистов многих стран.

В ней сфокусировались самые негативные черты современного и политического, и экономического, и социального, и экологического состояния страны. Авария выявила все то негативное, что может нести современная техника и технология при неумелом руководстве и использовании достижений научно-технического прогресса. В результате аварии на ЧАЭС во внешнюю среду поступила 50 000 000 Ки., различных радионуклидов. В связи со сложной метеорологической обстановкой после аварии существенно загрязненными оказались обширные территории Украины (41,75 тыс. кв. км), Белоруссии (46,6 тыс. кв. км), Европейской части России (57,1 тыс. кв. км). Траектории загрязненных воздушных масс пересекли территории Латвии, Эстонии, Литвы, Польши и стран Скандинавии, на юге-Молдавии, Румынии, Болгарии, Греции, Турции. Загрязнению подверглись территории Австрии, Германии, Италии, Великобритании и ряда других стран Западной Европы.

Согласно официальным оценкам трех стран (Республики Беларусь, России, Украины), от чернобыльской катастрофы так или иначе пострадали по меньшей мере более 9 000 000 человек.


В РСФСР радиоактивному загрязнению подверглись 16 областей и одна республика с населением около 3 000 000 человек, проживающих более чем в 12 000 населенных пунктах. Мировое общественное мнение справедливо оценило катастрофу на Чернобыльской АЭС как результат многолетней практики антигуманного к человеку и природе. В чернобыльском бедствии отразилась вся порочность прошлой тоталитарной системы: укоренившееся невнимание к людям, повсеместная халатность, пренебрежение нормативами труда и его безопасности. В сфере использования ядерной энергии царила атмосфера секретности. Тревожные сигналы об авариях на Ленинградской АЭС в 1975 году, на 2-м блоке Чернобыльской АЭС в 1982 году., замалчивались.

Нельзя не сказать и о том что государство систематически экономило на безопасности атомной энергетики. Система дозиметрического контроля находилась в запущенном состоянии. Защитные средства были далеки от совершенства и изготовлялись минимальными партиями. Часто возникали чрезвычайные ситуации при полном отсутствии информированности населения о существующей и возможной опасности для здоровья и жизни.

В период с 1986 по 1990 г., к работам в зоне ЧАЭС (сооружение объекта “УКРЫТИЕ”, пуск 1,2,и 3 энергоблоков, дезактивация промплощадки ЧАЭС, захоронение радиоактивных материалов и оборудования объектов) было привлечено свыше 800 000 тысяч граждан СССР, в том числе 300 000 человек из России. Масштабы катастрофы могли стать неизмеримо большими, если бы не мужество и самоотверженные действия ликвидаторов.

Хронология событий при возникновении аварии на Чернобыльской АЭС

01:06 Началось запланированное гашение реактора. Постепенное снижение тепловой мощности реактора. (При нормальной работе тепловая мощность реактора составляет 3200 МВт).

03:47 Снижение мощности реактора прервано на 1600 МВт.

14:00 Аварийная система охлаждения была отключена. Это входило в программу эксперимента. Это было сделано, чтобы препятствовать прерыванию эксперимента. Это действие непосредственно не привело к аварии, но если бы аварийная система охлаждения не была отключена, возможно, последствия не были бы такими тяжелыми.

14:00 Намечалось дальнейшее снижение мощности. Однако диспетчер электросети Киева попросил оператора реактора продолжить выработку электроэнергии, чтобы удовлетворить потребности города в электроэнергии. Поэтому мощность реактора была оставлена на 1600 МВт. Эксперимент был задержан, а сначала его намеревались провести в течение одной смены.

24:00 Конец смены.

00:05 Мощность реактора была уменьшена до 720 МВт. Продолжалось снижение мощности. Теперь доказано, что безопасное управление реактором в той ситуации было возможно на 700 МВт, т.к. иначе “пустотный” коэффициент реактора становится положительным.

00:28 Мощность реактора снижена до 500 МВт. Управление было переключено на авторегулирующуюся систему. Но тут либо оператор не дал сигнал удержания реактора на заданной мощности, либо система не отреагировала на этот сигнал, но внезапно мощность реактора упала до 30 МВт.

00:32(примерно) В ответ оператор стал поднимать управляющие стержни, пытаясь восстановить мощность реактора. В соответствии с Требованиями по технике безопасности оператор должен был согласовать свои действия с главным инженером, если эффективное число поднимаемых стержней больше 26. Как показывают сегодняшние расчеты, в тот момент требовалось поднять меньшее число управляющих стержней.

01:00 Мощность реактора возросла до 200 МВт.

01:03 Был подключен дополнительный насос к левому циклу охлаждающей системы, чтобы увеличить циркуляцию воды через реактор. Это входило в планы эксперимента.

01:07 Был подключен дополнительный насос к правому циклу охлаждающей системы (тоже по плану эксперимента). Подключение дополнительных насосов вызвало ускорение охлаждения реактора. Это также привело к уменьшению уровня воды в пароразделителе.

01:15 Автоматическая система управления пароразделителем была отключена оператором. чтобы продолжить действия с реактором.

01:18 Чтобы продолжить действия с реактором оператор увеличил ток воды, пытаясь решить проблемы в системе охлаждения.

01:19 Еще несколько управляющих стержней выдвинуто, чтобы увеличить мощность реактора и поднять температуру и давление в пароразделителе. Правила эксплуатации требовали, чтобы как минимум 15 управляющих стержней все время оставались в активной зоне реактора. Предполагается, что в тот момент в активной зоне уже оставалось всего 8 управляющих стержней. Однако в активной зоне оставались автоматически управляемые стержни, это позволяло увеличить эффективное число управляющих стержней в активной зоне реактора.

01:21:40 Оператор уменьшил ток воды через реактор до нормального, чтобы восстановить уровень воды в пароразделителе, при этом уменьшилось охлаждение активной зоны реактора.

01:22:10 В активной зоне начал образовываться пар (закипела охлаждающая реактор вода).

01:22:45 Данные, полученные оператором, сигнализировали об опасности, но создавали впечатление, что реактор все еще оставался в устойчивом состоянии.

01:23:04 Закрыли клапаны турбин. Турбины все еще вращались по инерции. Это, собственно, и было началом эксперимента.

01:23:10 Автоматически управляемые стержни были удалены из активной зоны. Стержни поднимались примерно 10 сек. Это была нормальная реакция, чтобы скомпенсировать уменьшение реактивности, последовавшее за закрытием клапанов турбины. Обычно уменьшение реактивности вызывается увеличением давления в охлаждающей системе. Это должно было привести к уменьшению пара в активной зоне. Однако ожидаемого уменьшения пара не последовало, т.к. ток воды через активную зону был мал.

01:23:21 Парообразование достигло такой точки, когда из-за собственного положительного «пустотного» коэффициента дальнейшее парообразование приводит к быстрому увеличению тепловой мощности реактора.

01:23:35 Началось неконтролируемое образование пара в активной зоне.

01:23:40 Оператор нажал кнопку «Авария» (AZ-5). Управляющие стержни начали входить сверху активной зоны. При этом центр реактивности переместился вниз активной зоны.

01:23:44 Мощность реактора резко увеличилась и примерно в 100 раз превысила проектную.

01:23:45 ТВЭЛы (тепловыделяющие элементы) начали разрушаться. В топливных каналах создалось высокое давление.

01:23:49 Топливные каналы стали разрушаться.

01:24 Последовало два взрыва. Первый - из-за гремучей смеси, образовавшейся в результате разложения водяного пара. Второй был вызван расширением паров топлива. Взрывы выбросили сваи крыши четвертого блока. В реактор проник воздух. Воздух реагировал с графитовыми стержнями, образуя оксид углерода II (угарный газ). Этот газ вспыхнул, начался пожар. Кровля машинного зала сделана из материалов, которые легко воспламеняются. (Из тех самых, которые использовались на ткацкой фабрике в Бухаре, которая полностью сгорела в начале 70-х годов. И хотя некоторые работники после случая в Бухаре были отданы под суд, эти же материалы использовались при строительстве АЭС.)

8 из 140 тонн ядерного топлива, содержащих плутоний и другие чрезвычайно радиоактивные материалы (продукты деления), а также осколки графитового замедлителя, тоже радиоактивные, были выброшены взрывом в атмосферу. Кроме того, пары радиоактивных изотопов йода и цезия были выброшены не только во время взрыва, но и распространялись во время пожара. В результате аварии была полностью разрушена активная зона реактора, повреждено реакторное отделение, деаэраторная этажерка, машинный зал и ряд других сооружений.

Были уничтожены барьеры и системы безопасности, защищающие окружающую среду от радионуклидов, содержащихся в облученном топливе, и произошел выброс активности из реактора. Этот выброс на уровне миллионов кюри в сутки, продолжался в течение 10 дней с 26.04.86. по 06.05.86., после чего упал в тысячи раз и в дальнейшем постепенно уменьшался.

По характеру протекания процессов разрушения 4-го блока и по масштабам последствий указанная авария имела категорию запроектной и относилась к 7-му уровню (тяжелые аварии) по международной шкале ядерных событий INES.

Какие радионуклиды были выброшены в окружающую среду?

Из разрушенного реактора в течение первых 10 дней после аварии было выброшено более 40 различных видов радионуклидов. Для анализа последствий аварии имеют значение в первую очередь йод (J-131), цезий (Cs-137) и стронций (в основном Sr-90). На сегодняшний день считается, что в атмосферу попало около 50% содержавшегося в реакторе йода и 30% цезия.


Выделявшиеся при горении графитовой оболочки горячие газы подняли радиоактивные вещества на высоту более 1500 метров. Различные погодные условия в первые дни после аварии привели к тому, что радиоактивность широко распространилась вплоть до территорий Скандинавии, Польши, Прибалтики, а также южной Германии, северной Франции и Англии.

В Беларуси, России и на Украине местами прошли ливневые дожди, что привело к очень неравномерному распределению радионуклидов. Так, например, в Гомельской области Беларуси, на северо-востоке от Чернобыля, часть территорий была загрязнена в той же степени, что и зона в непосредственной близости от реактора. Украинский город Народичи был разделен выпадением радиоактивных осадков на две половины: чистую западную и сильно загрязненную восточную. “Пятна” сильного радиационного загрязнения часто соседствуют со слабозагрязненными территориями. Поэтому особо важную роль играют карты местного радиоактивного загрязнения. Они могут быть полезны при хозяйственном использовании территорий.

С точки зрения радиационного загрязнения йод, с периодом полураспада 8 дней, был наиболее опасным радиоактивным элементом в первые недели после аварии. В Беларуси в течение первой недели после аварии измерения почти повсеместно указывали на повышенное содержание радиоактивного йода. Человеческий организм не делает различия между радиоактивным и естественным стабильным йодом и накапливает радиоактивный йод в основном в щитовидной железе.

Радиоактивный цезий с периодом полураспада 30 лет является на сегодняшний день наиболее распространенным изотопом. От 125 000 до 146 000 кв.км считаются сегодня загрязненными радиоактивным цезием. Кроме того, опасность долговременного радиоактивного загрязнения несут в себе стронций (Sr-90) с периодом полураспада 29 лет и плутоний (Pu-241), включая его продукты распада. Некоторые из них распадутся на половину только через 24 000 лет.

Последствия Чернобыльской аварии для окружающей среды нельзя сводить только к пространственному распределению зон радиоактивного загрязнения. Радиоактивные цезий, стронций и плутоний все больше распространяются по цепочке: Почва - Растение - Животное/Человек. Другими путями территориального распространения радионуклидов являются эрозия почвы под воздействием ветра, лесные пожары, а также сельскохозяйственное использование земель и миграция радионуклидов в речных водах.

Какие существуют альтернативные версии причин и хронологии развития событий?

Технические неполадки

Технические неполадки (возможно, и повлиявшие на последующие события) ЧАЭС возникли ещё при строительстве. На отдельных участках строительства были допущены отступления от проекта и нарушения технологии ведения работ.

«Колонны каркаса машинного зала смонтированы с отклонениями от разбивочных осей до 100 мм, между колоннами в отдельных местах отсутствуют горизонтальные связи. Стеновые панели уложены с отклонением от осей до 150 мм». КГБ СССР 346-А от 21.02.79.

В качестве подтверждения версии о технических неполадках можно привести слова бывшего зам. министра Г. А. Шашарина: «Основными причинами катастрофы на ЧАЭС явились конструктивные недостатки стержней СУЗ <…>. Доказательством этого может служить тот факт, что после аварии на всех реакторах РБМК очень быстро произвели значительные реконструкционные работы».

Специалистами, анализировавшими предаварийную хронологию управления ядерной установкой, были выделены основные, грубейшие нарушения регламента, послужившие причиной аварии:


  • снижение оперативного запаса реактивности, то есть уменьшение количества стержней поглотителей в активной зоне реактора ниже допустимой величины.

  • неожиданный провал мощности реактора, а затем работа аппарата при меньшем, чем было предусмотрено программой испытаний, уровне тепловой мощности.

  • подключение к реактору всех восьми главных циркуляционных насосов с превышением расходов по отдельным ГЦН, установленных регламентом. (Ошибка была заложена в самой программе испытаний).

  • блокировка защиты реактора по сигналу отключения пара от двух турбогенераторов.

  • блокировка защиты аппарата по уровню воды и давлению пара в барабане-сепараторе.

  • отключение системы защиты, предусмотренной на случай возникновения максимальной проектной аварии, — системы аварийного охлаждения реактора (САОР).

В 1990 г. создается очередная комиссия для выяснения причин и обстоятельств чернобыльской аварии. В отчете комиссии намеренно умалчивается о проблеме контрольных регулирующих стержней реактора, перечисляется лишь ряд «нарушений» несуществующих правил со стороны операторов. Официальная версия причин Чернобыльской катастрофы есть ни что иное, как попытка возложить бремя вины на операторов ЧАЭС и при этом умолчать об ответственности проектировщиков, допустивших конструктивные просчеты.

Эксперимент

Формальной причиной аварии явился эксперимент по определению характеристик генератора во время выбега ротора турбины. Разработчиком и фактическим руководителем электроэксперимента стал представитель Донтехэнерго Г. П. Метленко — электрик, не имеющий никакого отношения к реакторным делам. Программа была утверждена главным инженером ЧАЭС Н. Фоминым, впоследствии признавшим свою некомпетентность в области ядерной физики. Ни министерство атомной энергетики, ни Атомнадзор — органы, с ведома которых выполняются новые процедуры на реакторе, — не были даже проинформированы о задуманном.

Эксперимент был назначен на 25 апреля. Для начала нужно было вывести блок № 4 из действий плавно, «ступеньками» снимая его мощность. Но в 14 часов вышестоящая организация «Киевэнерго» попросила задержать эту операцию, поскольку на текущие дела во второй половине дня нужна была дополнительная энергия. Эксперимент был перенесен на ночную смену…

Следуя указаниям, персонал смены отключил (по предписанию разработанной программы) все защитные системы реактора — «для чистоты эксперимента». Однако после этих действий реактор перестал быть продуманным до тонкостей механизмом. Резко возросло выделение пара. Вычислительная машина «Скала» («черный ящик» АЭС) подала сигнал: срочно прекратить эксперимент. Подача пара от реактора на турбогенератор была прекращена. Главные циркуляционные насосы прекратили работу, прервав естественное охлаждение ректора, но парообразование, температура и давление в реакторе нарастали, в результате чего агрегат, снабженный многочисленными системами защиты, неотвратимо выходил из-под контроля. В 1 час 23 минуты начальник смены наконец понял, что происходит. Он приказал ввести максимальную аварийную защиту — опустить графитовые стержни-поглотители в глубь громадной «банки» реактора. Но было уже поздно. Из шести метров своего хода стержни успели пройти только половину пути и заклинились в перегретых деформированных каналах. Давление их разорвало, кипящая вода попала на графитовые блоки. Началась непредусмотренная реакция выделения водорода. Через четыре секунды после этого парогазовая смесь взрывным выбросом сдвинула трехтысячетонную плиту реактора, обнажив его раскаленное нутро. А далее пошел отсчет времени беды, героизма пожарных, вертолетчиков и других ликвидаторов…

Землетрясение

Помимо официальной версии халатности персонала и технических неисправностей ЧАЭС существует еще не опровергнутая версия геофизической активности Земли, вокруг которой до сих пор идут споры. Возможно, «локальное землетрясение» было лишь следствием проводимого эксперимента, или оно возникло как отголосок взрыва реактора?

«Начало и детали развития Чернобыльской катастрофы отслежены по методике сопоставления градиентов Азимутной Радиолокации на базе региональной сети метеостанций. Из фактических материалов следует, что универсальный геодинамический процесс начался 12 апреля в центре Припятской впадины (это примерно 200 км северо-западнее ЧАЭС). До 16 апреля следовала раскачка. В этом периоде циклон углублялся; центр его смещался в сторону Чернобыля на юго-восток. К 19 апреля циклон получил максимальное развитие, после чего произошло резкое изменение процесса, и циклон начал заполняться. В результате, к 24 апреля с центром примерно над Чернобылем возник антициклон, который начал смещаться на восток. В этот момент сотрудники Харьковского НИИ зарегистрировали в ионосфере над этим районом прогиб протонного слоя, что свидетельствует о большой интенсивности процесса. Наконец, на кривой последовавшего падения атмосферного давления, регистрировавшегося метеостанцией г. Чернигова (это примерно 60 км к востоку от Чернобыля), в ночь на 26 апреля получил отображение резкий выброс в сторону плюса, что может интерпретироваться как землетрясение (сейсмо-гравитационный удар). Можно утверждать, что и в Чернобыле атмосферный взрыв сопровождал происходившие там мощные процессы движения земной коры», — так писал в «Литературной газете» от 24 апреля 1996 года (статья «Когда земля вскрикнула») Игорь ЯНИЦКИЙ, руководитель Центра инструментальных наблюдений за окружающей средой и геофизических процессов.

Однако не все согласились с его точкой зрения. Сейсмический толчок в районе Чернобыльской АЭС за 20 секунд до взрыва на станции действительно был. Об этом стало известно после ознакомления с сейсмограммами трех близлежащих станций Украинской комплексной сейсмологической экспедиции. Аналогичные результаты подтверждались записями сейсмографов в АН УССР и областных центрах. Но толчок был настолько слаб (менее чем в 3 балла по шкале Рихтера), что сейсмологи, строители здания и изготовители реактора тогда и сейчас не склонны упоминать о нем. Подобные толчки чаще или реже испытывают все участки земной коры — естественно, что и под АЭС всего мира. Люди чаще всего толчки подобной силы не ощущают. Для оборудования и строительных конструкций 3-балльные землетрясения совершенно безвредны. Более того, для стальных конструкций здания, фундаментов АЭС и стальных каркасов реакторов, даже 7-балльные толчки абсолютно безвредны, хотя они превосходят по силе 3-балльные в 16 раз (повышение силы сейсмического толчка вдвое соответствует в шкале Рихтера одному баллу).

Диверсия

Есть мнение, что, несмотря на заключения многочисленных комиссий и экспертов, реальной причиной катастрофы стала диверсия. Но это слово разными людьми интерпретируется по-разному. Был ли подослан иностранный агент или имело место преступное предательство и глупость государства, которая обернулась катастрофой?

Диверсия — разрушение, выведение из строя объектов военного, государственного, народнохозяйственного значения агентами иностранного государства, преступными элементами. К такой неожиданной, на первый взгляд, аварии не были готовы ни Минатомэнерго, ни Академия наук со своими научно-исследовательскими и проектными институтами, ни само государство — с развитой системой гражданской обороны. Катастрофа на ЧАЭС — не случайность, а закономерность. Атомные реакторы имеют высокую степень надежности. Эта надежность подтверждалась экспериментальными методами. Одновременно НЕ МОГЛИ выйти из строя основные и запасные насосы водяного охлаждения работающего реактора. СЛИШКОМ СВОЕВРЕМЕННО был сфотографирован взорванный 4-й блок ЧАЭС с космического спутника США, оказавшегося на расчетной орбите над ЧАЭС. Логический анализ фактов и событий «холодной войны» бывшего СССР с вероятным противником с 50-х годов и по настоящее время показывает, что это была НЕ АВАРИЯ, а крупномасштабная ДИВЕРСИЯ века, подорвавшая экономическую основу СССР и с «внешней помощью» — всю социалистическую систему в целом. Противники в своих целях умело использовали халатность и бездарность высшего политического руководства страны во главе с Горбачевым и отсутствие надлежащего контроля работы режимных объектов со стороны государственных органов.

Бывший зам. министра энергетики Шашарин Г. А., не подписавший первичный акт Правительственной комиссии и впоследствии из-за этого снятый с работы и исключенный из партии (ныне председатель Интератомэнерго), одним из первых на всех уровнях неутомимо доказывал с документами в руках, что первопричиной были неудовлетворительно обоснованные наукой физические процессы в реакторе при переходных режимах, отвратительная конструкция органов аварийной защиты, несущей, образно говоря, вместо спасительной брони роковой запал, наличие опасных всплесков парового и мощностного коэффициентов реактивности (мощности), отсутствие в проекте четких обоснований какие режимы являются аварийными и почему. И как следствие — несовершенный технологический регламент, способствовавший операторам проявить недостатки в проектировании установки в определенных условиях.

Николай Рыжков, спустя два месяца после аварии, сказал, что авария на ЧАЭС не была случайной, что атомная энергетика с неизбежностью шла к такому тяжелому событию. Чернобыльская авария — это апофеоз, вершина того неправильного ведения хозяйства, которое осуществлялось в нашей стране в течение многих десятков лет.

ПРОБЛЕМЫ РАЗВИТИЯ ГРАЖДАНСКОЙ ОБОРОНЫ И ЗАЩИТЫ НАСЕЛЕНИЯ

УДК 612.039.76

Воронов С.И., Седнев В.А.

АВАРИЯ НА ЧЕРНОБЫЛЬСКОЙ АЭС. ПОСЛЕДСТВИЯ И ВЫВОДЫ

В статье проанализированы причины возникновения и развития аварии, правильные и ошибочные действия при аварийном, реагировании, их последствия; приводятся данные, которые необходимо учитывать при совершенствовании мер обеспечения радиационной безопасности населения, предупреждения радиофобии и неадекватных действий в чрезвычайных ситуациях с радиационным, фактором.

Ключевые слова: ЧАЭС, конструкция, недостатки, авария, последствия, ликвидация, радиационная защита населения.

Voronov S.I., Sednev V.A.

THE ACCIDENT AT THE CHERNOBYL NPP. IMPLICATIONS AND

The article analyzes the reasons of occurrence and development of failure, correct and in-correct actions during emergency actions, their consequences, are the data that must be consid-ered in the improvement of measures to ensure radiation safety of the population, the prevention of radio-phobia and inappropriate actions in emergency situations of radiation.

Keywords: Chernobyl, construction, deficiencies, crash, impact, eradication, radiation protection of the population.

Чернобыльская АЭС расположена в восточной части белорусско-украинского Полесья на берегу реки Припяти в 130 км от Киева. Электрическая и тепловая мощности каждого энергоблока станции были равны 1000 и 3200 МВт соответственно. Реактор РБМК - реактор большой мощности канальный - представляет собой цилиндрическую кладку, состоящую из вертикальных графитовых колонн общей массой 1700т.

Колонны набираются из блоков 25x25x60 см. По оси блоков размещены технологические каналы с топливом и теплоносителем и каналы системы управления и защиты (СУЗ) .

В каждом из 1661 ТК размещено по одной кассете с 2 топливными сборками по 18 твэлов в каждой. Общая масса урана в реакторе - 190 т, начальное обогащение по 23511 составляет 2%.

Перед остановкой четвертого блока Чернобыльской АЭС на плановый ремонт 25 апреля 1986 г. предусматривалось испытание турбогенератора в режиме выбега турбины. При этом, как было установлено позже, «Рабочая программа испытания турбогенератора № 8» не была должным образом подготовлена и согла-

сована с главным конструктором и научным руководителем. Раздел по безопасности был составлен формально, испытания сочли электротехнической процедурой и не увязали программу испытаний должным образом с обеспечением ядерной безопасности.

В соответствии с «Рабочей программой...» предполагалось провести испытание на пониженной мощности 700-1000 МВт (тепловых), так как продолжительная работа на меньшей мощности по регламенту была запрещена из-за возникающей неустойчивой работы реактора.

25 апреля в 1:00 было начато снижение мощности с номинального уровня 3200 МВт (тепловых), которая к 13:05 достигла 1600 МВт. После этого был отключен турбогенератор № 7. В 14 часов согласно программе была отключена система аварийного охлаждения реактора. После этого поступил запрет диспетчера «Кие-вэнерго» на дальнейшее снижение мощности из-за потребности в электроэнергии, который был снят девять часов спустя.

По мере дальнейшего снижения мощности 26 апреля в 0:28 требовалось переключить режим регулирования реактора. В результате

ошибки оператора произошло быстрое снижение мощности до 30 МВт. При этом возникло отравление реактора изотопами ксенона и йода _ сильными поглотителями нейтронов. По регламенту в этой ситуации реактор должен был быть остановлен. Но персонал принял решение поднимать мощность.

В 1 час мощность удалось стабилизировать на уровне 200 МВт. При этом в результате подъема стержней регулирования для компенсации отравления оперативный запас реактивности, обеспечивающий возможность безопасной остановки реактора, оказался существенно меньше допустимого значения. Таким образом, способность реактора к возможному неконтролируемому повышению мощности превысила способность органов СУЗ заглушить реактор. Тем не менее испытание было продолжено.

Согласно «Рабочей программе...» в 1:03 и в 1:07 к шести работавшим главным циркуляционным насосам (ГЦН) были подключены два резервных. Реактор стал работать неустойчиво, и персонал отключил ряд защит, чтобы не произошла остановка ректора по сигналам автоматики. После ряда переключений персоналу удалось относительно стабилизировать процессы в реакторе, и было принято решение начать испытания. В 1:23:04 были закрыты стопорные клапаны турбогенератора № 8, прекратившие подачу пара на турбину. При этом, в нарушение программы испытаний, было заблокировано срабатывание аварийной защиты при отключении обеих турбин.

Так как четыре ГЦН, подключенные к шине питания выбегающего турбогенератора № 8, стали снижать обороты, расход воды через реактор уменьшился. Кипение в активной зоне усилилось. Поскольку реактор РБМК имеет положительный паровой эффект реактивности, мощность реактора начала возрастать, начиная с 1:23:30. В 1:23:40 начальник смены подал команду на экстренную остановку реактора.

Однако к этому моменту сложились такие условия, что ввод стержней СУЗ привел к неконтролирумому разгону и мощность реактора возросла в сотни раз. Последовало разрушение активной зоны реактора, и возник пожар.

Согласно докладу «О причинах и обстоятельствах аварии на 4 блоке Чернобыльской АЭС 26 апреля 1986 г.», подготовленному ко-

миссией Госпроматомнадзора СССР, одной из основных технических причин аварии явился неуправляемый рост мощности, который на начальной стадии развития аварии возник из-за увеличения положительной реактивности внесенной вытеснителями стержней СУЗ. Далее сработал положительный паровой эффект реактивности в сочетании с чрезмерно большой неравномерностью поля энерговыделения в активной зоне реактора и недостаточным запасом реактивности для компенсации этих эффектов.

В целом, по результатам рассмотрения проектных материалов, комиссия сочла необходимым сделать следующие выводы:

проект 4-го блока ЧАЭС имел существенные отступления от норм и правил по безопасности в ядерной энергетике, действовавших на момент согласования и утверждения технического проекта 2-й очереди ЧАЭС в составе блоков № 3 и № 4;

разработчиками проекта отступления не были выявлены, проанализированы, обоснованы и согласованы в установленном порядке;

не было разработано технических и организационных мер, компенсирующих отступления от требований норм и правил по безопасности в ядерной энергетике.

От срока ввода в действие ОПБ-73 и ПБЯ-04-74 до аварии прошло более 10 лет, в течение которых осуществлялось проектирование, строительство, а затем и эксплуатация блока № 4 ЧАЭС. Однако на протяжении этого периода главным конструктором, генпроектиров-щиком, научным руководителем не было предпринято эффективных мер для приведения конструкции РБМК-1000 в соответствие с требованиями норм и правил по безопасности в ядерной энергетике. Столь же бездеятельными в вопросах приведения АЭС с реакторами РБМК-1000 в соответствии с требованиями действующих правил по безопасности в ядерной энергетике оказались Минсредмаш СССР, Минэнерго СССР и органы государственного надзора и контроля.

Комиссия отметила, что проект не был приведен также и в соответствие с «Общими положениями обеспечения безопасности» (ОПБ-82), вступившими в силу в 1982 г., и пришла к следующим выводам относительно концепции конструкции реактора РБМК и роли персонала

станции в развитии аварии:

Недостатки конструкции реактора РБМК-1000, эксплуатировавшегося на 4-м блоке ЧА-ЭС, предопределили тяжелые последствия аварии. Причиной аварии явился выбор разработчиками реактора РБМК-1000 концепции, в которой, как оказалось, не были достаточно учтены вопросы безопасности, в результате чего получены физические и теплогидравлические характеристики активной зоны реактора, противоречащие принципам создания динамически устойчивых безопасных систем. В соответствии с избранной концепцией была спроектирована не отвечающая целям безопасности система управления и защиты реактора;

Неудовлетворительные с точки зрения безопасности физические и теплогидравлические характеристики активной зоны реактора были усугублены ошибками, допущенными при конструировании СУЗ;

В Пр0ектн0й; конструкторской и эксплуатационной документации не было указано на возможные последствия эксплуатации реактора с имевшимися опасными характеристиками. Разработчиками проекта постоянно утверждалось, что РБМК - самый безопасный реактор, чем притуплялось требуемое концепцией культуры безопасности чувство опасности у персонала по отношению к объекту управления, т.е. к реакторной установке;

Разработчики РБМК-1000 знали о таком опасном свойстве созданного ими реактора, как возможность ядерной неустойчивости, но количественно не смогли оценить возможные последствия ее проявления и оградили себя регламентными ограничениями, которые, как показала практика, оказались слабой защитой. Такой подход не имеет ничего общего с культурой безопасности;

РБМК-1000 с его проектными и конструктивными особенностями по состоянию на 26.04.86 обладал столь серьезными несоответствиями требованиям норм и правил по безопасности, что эксплуатация его стала возможной лишь в условиях недостаточного уровня культуры безопасности;

Практика переложения на человека-оператора функций аварийной защиты из-за отсутствия сответствующих технических средств опровергнута самой аварией. Совокупность

проектных недостатков техники и не гарантированной надежности человека-оператора привела к аварии.

Персоналом действительно были допущены нарушения. Часть этих нарушений не оказала влияния на возникновение и развитие аварии, а часть позволила создать условия для реализации негативных проектных характеристик РБМК-1000. Допущенные персоналом нарушения во многом определялись недостаточным качеством эксплуатационной документации и ее противоречивостью, обусловленной неудовлетворительной проработкой проекта РБМК-1000;

Персонал станции не знал о некоторых опасных свойствах реактора и не осознавал последствий допускаемых им нарушений. Но это как раз и свидетельствует о недостатке культуры безопасности не столько у эксплуатационного персонала, сколько у разработчика реактора и эксплуатирующей организации.

Комиссия отметила, что после тяжелой аварии на «Три Майл Айленд» разработчики менее всего старались обвинить оперативный персонал станции потому, что «они (инженеры) могут анализировать первую минуту инцидента несколько часов или даже недель для того, чтобы понять случившееся или спрогнозировать развитие процесса при изменении параметров», тогда как оператор должен «описать сотни мыслей, решений и действий, предпринимаемых в течение переходного процесса». Наиболее важным уроком аварии является не только необходимость улучшения отдельных характеристик РБМК и условий их эксплуатации, хотя это и важно само по себе, но и необходимость внедрения во все аспекты использования ядерной энергии требований концепции культуры безопасности.

К настоящему времени выполнен большой объем научно-исследовательских, опытно-конструкторских и практических работ по повышению безопасности энергоблоков с реакторами РБМК и подготовлены многочисленные документы по анализу безопасности модернизированных блоков.

В соответствии с международным соглашением от 9 июня 1995 г. между Правительством РФ и Европейским банком реконструкции и развития группа международных экспер-

тов провела международную экспертизу отчета по углубленной оценке безопасности (ОУОБ) 1-го энергоблока Курской АЭС с реактором РБМК, подготовленного концерном «Росэнергоатом» и Курской АЭС в октябре 2000 г. и представленного на рассмотрение в Федеральный надзор по ядерной и радиационной безопасности России.

Экспертами проекта была разработана процедура проведения работ для целенаправленного подробного изучения наиболее важных вопросов обоснования безопасности энергоблока. В результате проведения экспертизы был сделан вывод, что отчет выполнен в соответствии с Руководством Госатомнадзора России и требованиями, принятыми на международном уровне. Российские и зарубежные эксперты пришли к выводу, что на энергоблоке выполнены существенные усовершенствования в сфере обеспечения безопасности и все мероприятия по модернизации блока осуществлены на практике.

Действия по ликвидации аварии на Чернобыльской АЭС и радиационной защите населения

В момент аварии произошел выброс радиоактивных продуктов из разрушенного реакторного блока в западном направлении. В последующие дни 26 и 27 апреля перенос радиоактивных веществ происходил в виде струи в северозападном направлении по территории Белоруссии, 28 и 29 апреля ветер переменился на северовосточный и восточный, а 29 и 30 апреля на юго-восточный и южный.

На основании анализа динамики изменения (ухудшения) радиационной обстановки в Припяти утром 27 апреля принято решение об экстренной эвакуации населения почти 50-тысячного города, в том числе 14,5 тыс. детей. Эвакуация началась в 14:30 27 апреля и была завершена в 17:45 того же дня.

По мнению академика РАН Л.А. Ильина, в случае непринятия решения об эвакуации жителей г. Припяти днем 27 апреля и прогнозируемого ухудшения радиационной обстановки, в течение одной недели после аварии следовало ожидать появление массовых детерминированных эффектов среди населения этого города. Экстренная эвакуация позволила исклю-

чить возникновение лучевых поражений среди населения. Этот важнейший итог подтверждается медицинскими наблюдениями за эвакуированными жителями г. Припяти. В подтверждение этого свидетельствуют также тщательно выполненные исследования по ретроспективному восстановлению доз облучения населения г. Припяти. Оказалось, что средняя эффективная доза облучения населения г. Припяти от момента аварии до эвакуации составила 13,4 мЗв, дозы менее 50 мЗв получили 98,6 % жителей, а более 100 мЗв - 0,14 %.

Через 5 суток после эвакуации жителей г. Припяти, 2 мая, на основании рекомендаций экспертов, было принято решение об эвакуации жителей из населенных пунктов, расположенных в 30-км зоне вокруг ЧАЭС. По предварительным оценкам в этом районе дозовые нагрузки на людей могли превысить 100 мЗв, что превышало ранее рекомендованный аварийный регламент.

Важнейшим аргументом в пользу незамедлительного решения этой проблемы стал тот факт, что 30 апреля начался интенсивный разогрев дезинтегрированной взрывом активной зоны разрушенного реактора. В этой связи экспертами-технологами рассматривалась возможность разрушения днища корпуса реактора и попадания расплавленной массы радиоактивных материалов в подреакторные помещения, которые, как предполагалось, были заполнены водой. В этом случае возникала угроза парового взрыва с выбросом огромной массы диспергированных радиоактивных материалов в атмосферу.

Правительственная комиссия приняла решение о тотальной эвакуации населения из 30км зоны и близлежащих за ее пределами населенных пунктов. Эвакуация была завершена только к 7 мая. В общей сложности было эвакуировано 99195 человек из 113 населенных пунктов, в том числе 11358 человек из 51 сельского населенного пункта Белоруссии. Как показали последующие медицинские наблюдения, среди эвакуированных случаев лучевых поражений (детерминированных эффектов) не было. Эвакуация обеспечила предотвращение коллективной дозы для всех эвакуированных за весь 1986 г. равной 10000 чел.Зв, т.е. было достигнуто снижение доз облучения на 70 % (реали-

зованная коллективная доза оказалась не более 4000 чел.Зв).

Медицинские последствия аварии на Чернобыльской АЭС

23 июня 1986 г. был создан Всесоюзный распределительный регистр лиц, подвергшихся радиационному воздействию в результате аварии. Решением Правительства РФ организован Российский государственный медико-дозиметрический регистр (РГМДР), в котором проводится обязательная регистрация и постоянное наблюдение за состоянием здоровья четырех групп первоочередного учета:

Участников ликвидации последствий аварии;

ЛИц^ эвакуированных из наиболее загрязненных районов;

ЛИц^ проживающих на наблюдаемых территориях (зона отселения и зона с правом на отселение);

Детей, родившихся после аварии у лиц, включенных в группы 1-3.

В РГМДР зарегистрировано 615 тыс. граждан РФ, в том числе 186 тыс. ликвидаторов. По результатам наблюдений, острая лучевая болезнь (ОЛБ) была подтверждена у 134 человек, из которых 28 человек, несмотря на активное лечение, умерли в первые 4 месяца после аварии, двое погибли от вторичных инфекций, один от почечной недостаточности. В последующие 19 лет с 1987 по 2005 гг. среди ликвидаторов, выживших после ОЛБ, умерло еще 22 человека. При этом показатель смертности среди ликвидаторов, переживших ОЛБ, ниже, чем среди населения, что объясняется наличием тщательного медицинского контроля, своевременным выявлением опасных заболеваний и квалифицированной медицинской помощью.

Что касается наследственных нарушений, то таковые при дозах до 0,2 Гр не зарегистрированы ни в Японии, ни у лиц, пострадавших при радиационной аварии на Урале. На сегодняшний день среди пострадавших от аварии на ЧА-ЭС радиационно-генетические нарушения также не выявлены .

Исследование соматических последствий было проведено в рамках Международного чернобыльского проекта в 1990-1991 гг. Вывод состоял в том, что существенные нарушения здоровья населения загрязненных и контрольных

районов нельзя отнести к влиянию облучения, этот вывод остается справедливым и в настоящее время. Экспертный анализ, проведенный по многочисленным, в том числе международным программам, с привлечением известных специалистов показал, что с учетом влияния существенных негативных факторов (снижение уровня жизни, ухудшение медицинского обслуживания и т.д.), выявить вклад радиационного воздействия на соматические расстройства не представляется возможным. К настоящему времени, по прошествии 30 лет, нет свидетельств серьезного влияния радиационного фактора на здоровье абсолютного большинства затронутых аварией людей. Исключение составляет возрастание частоты рака щитовидной железы у лиц, облученных в детском возрасте.

Некоторые выводы, по организации, аварийного реагирования на Чернобыльской АЭС

Крупномасштабная авария, приведшая к выпадению радионуклидов на территориях Европейской части СССР (около 150 тыс. км2 по

изолинии 137Cs с плотностью загрязнения бо-2

онными поражениями среди свидетелей аварии (более 100 человек), находившихся на промпло-щадке станции, высветила серьезные изъяны , прежде всего, в сфере организационных проблем обеспечения готовности государства к подобного рода событиям. Именно готовности во всех без исключения звеньях управления крупномасштабными кризисными ситуациями. Действительно, одной из важнейших причин стало практически полное отсутствие единой, четкой и заранее отработанной государственной системы действий и осуществления противоаварий-ных мер и мероприятий (с учетом взаимодействия различных служб) в ранней и промежуточной стадиях (фазах) аварии.

Одним из серьезных недостатков оказалось отсутствие специализированной системы центров экспертной поддержки и единого аналитического центра, тесного взаимодействия с аварийным объектом, с руководством отрасли и другими государственными структурами; центра, ответственного, прежде всего, за сбор, анализ, интерпретацию данных, информирование руководства и прогнозирование радиационной

обстановки, ее ожидаемой динамики и масштабов территорий, подвергшихся различным уровням радиоактивного загрязнения .

Гражданская оборона (ГО), которая должна была нести ответственность за состояние готовности и организацию защитных мероприятий и, прежде всего, среди населения, оказавшегося в зоне радиационного воздействия, и выступать в качестве консолидирующего центра управления возникшей кризисной ситуацией, оказалась неготовой. Аналогичная обстановка, очевидно, была и на местах в службах ГО, включая здравоохранение.

«Временные методические указания по защите населения в случае аварии на ядерном реакторе» были основным официально утвержденным МЗ СССР инструктивно-методическим документом, на базе которого, как предполагалось, различными службами, в том числе ГО, органами здравоохранения должны были заблаговременно отрабатываться мероприятия по защите населения. Вскоре после аварии на ЧАЭС выяснилось, что руководители и ответственные лица в министерствах здравоохранения Украины, Белоруссии и РСФСР, равно как и в следующем звене управления - областных и городских отделах здравоохранения пострадавших регионов, вообще не знали о существовании этого документа. Соответственно ни о какой превентивной подготовке сотрудников упомянутых органов и, тем более, нижестоящих организаций, говорить не приходится.

Проводимые эпизодические занятия по гражданской обороне в этих организациях, как известно, носили, подчас, формальный характер и целенаправленного обучения ответственных лиц не осуществлялось.

Заключение

Если в начальный период применения рентгенологических, радиационных и ядерных технологий принципиальным являлось достижение нового результата, то в настоящее время принципиальным является их безопасность. Характеризуя состояние современной системы обеспечения ядерной и радиационной безопасности (ЯРБ), следует выделить несколько ее важных особенностей .

Во-первых, чрезвычайно высокий уровень ее практической реализации. Ни в одной другой области обеспечения безопасности установленные нормы не соблюдаются так строго. Случаи превышения пределов доз и в России, и за рубежом единичны. Удельная коллективная доза облучения персонала на единицу выработанной электроэнергии на АЭС уменьшилась за последние три десятилетия более, чем в 15 раз.

Во-вторых, ее внутреннюю противоречивость в вопросах, касающихся линейной беспороговой концепции и воздействия малых доз на человека и биоту. Тем не менее установлен дозо-вый предел - 1 мЗв, и превышение его нередко воспринимается населением как угроза жизни.

В-третьих, неадекватное восприятие обществом позиции наиболее авторитетных научных организаций по вопросам надежности системы защиты нынешнего и последующего поколений, оценке последствий крупных радиационных аварий.

Начав с элементарного регламентирования продолжительности и уровня радиационного воздействия на организм человека, система обеспечения радиационной безопасности трансформировалась в многоуровневую систему, подкрепляемую комплексом фундаментальных и прикладных научных дисциплин, среди которых радиобиология, радиационная эпидемиология, радиоэкология и сельскохозяйственная радиология, радиационная гигиена, радиационная медицина, дозиметрия. Объективный научный анализ данных по воздействию предприятий атомной энергетики и атомной промышленности показывает:

Д0СТИГНуТЬ1й уровень современных ядерных технологий России обеспечивает предельно высокие уровни радиационной безопасности в нормальном режиме функционирования для населения и персонала;

Медицинские последствия для населения и профессионалов аварий и инцидентов на объектах атомной энергетики и промышленности, включая аварии на Чернобыльской АЭС, Кы-штымской аварии 1957 г., санкционированных сбросов в р. Теча 1949-1950 гг. неизмеримо меньше последствий, связанных с другими видами промышленной деятельности такого же масштаба;

В самой атомной отрасли вклад радиаци-

онного фактора в потери трудового потенциала пренебрежительно мал в сравнении с нерадиационными факторами профессиональной вредности и травматизмом на производствах отрасли;

Современные фактические дозы облучения населения и персонала от функционирования АЭС и предприятий ЯТЦ находятся значительно ниже научно подтвержденных порогов обнаружения вредных эффектов;

Среди различных видов экологического риска для населения радиационный риск от использования атомной энергии в мирных целях в сотни раз ниже риска от техногенных загрязнений химически вредными веществами;

Нормативно-правовая база в области охраны окружающей среды и защиты здоровья населения при чрезмерной и научно не обоснованной жесткости в области радиационной области устанавливает неоправданно высокие допустимые уровни загрязнения по химически вредным веществам. Такой дисбаланс в законодательстве и нормах является препятствием для реализации эффективной экологической политики и развитию высокоэкологичных технологий;

Запас экологической безопасности перспективных технологий атомной энергетики достаточен для обеспечения в рамках стратегии устойчивого развития мировых потребностей в электроэнергии в рамках концепции, сформулированной в инициативе Президента Российской Федерации на Генеральной Ассамблее ООН (саммите тысячелетия).

Основой широкомасштабной атомной энергетики третьего тысячелетия с практически неограниченным топливным ресурсом являются технологии быстрых реакторов, удовлетворяющие современным критериям безопасности, нераспространения, экологичности.

Поскольку после аварии на Чернобыльской АЭС общество чрезвычайно остро реагирует на возможные угрозы, связанные с деятельностью радиационно опасных объектов, была разработана и утверждена федеральная целевая программа «Обеспечение ядерной и радиационной безопасности на 2008 г. и на период до 2015 г.».

В России созданы Единая государственная автоматизированная система контроля радиационной обстановки, Единая система кон-

троля и учета индивидуальных доз облучения граждан, Российский государственный медико-дозиметрический регистр, Система государственного учета и контроля радиоактивных веществ и радиоактивных отходов. Защиту в чрезвычайных ситуациях обеспечивает Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций, в состав которой входят функциональные подсистемы контроля за ядерно и радиационно опасными объектами; предупреждения и ликвидации чрезвычайных ситуаций в организациях (на объектах), находящихся в ведении и входящих в сферу деятельности Госкорпорации «Росатом»; надзора за санитарно-эпидемиологической обстановкой; государственного экологического контроля и др.

Основными направлениями деятельности государства в сфере ЯРБ являются: управление практическими мероприятиями, нормативно-правовое обеспечение, планирование деятельности, контроль и надзор, методическое обеспечение, обеспечение функционирования организационно-технических систем, сотрудничество с физическими и юридическими лицами, гражданским обществом, научными организациями, информирование общественности, международное сотрудничество.

Одно из ключевых звеньев в проблеме обеспечения ядерной и радиационной безопасности - организация аварийного реагирования и защиты населения при угрозе возникновения или возникновении аварии с выходом радиоактивных веществ в окружающую среду.

Аварийное реагирование - сложная и многогранная проблема, требующая дальнейшего исследования и практической реализации. Так, в области нормативно-правового регулирования наличие «сверхжестких» нормативов по дозо-вым нагрузкам и загрязнению радионуклидами приводит к избыточному реагированию и возникновению неоправданной нагрузки на бюджет. При этом необходимо совершенствовать систему информирования населения об угрозах возникновения и возникновении радиационных аварий и больше внимания уделять повышению культуры безопасности.

Инновационное развитие страны на базе высоких технологий, к которым относится и атом-

ная энергетика, требует подготовки квалифицированных кадров, обладающих соответствующим уровнем теоретических и практических знаний в области радиационной безопасности не только в атомной отрасли, но и в территориальных органах власти и РСЧС. Для решения этой задачи представляется необходимым из-

дание соответствующей учебной, методической и научно-популярной литературы, организация специализированных учебно-методических центров и повышения квалификации должностных лиц и специалистов в области аварийного реагирования, предупреждения и ликвидации чрезвычайных ситуаций с радиационным фактором.

Литература

1. Обеспечение радиационной безопасности населения и территорий. Часть I. Основы организации и обеспечения радиационной безопасности населения и территорий: учебник / С.И. Воронов, Р.В. Арутюнян, Седнев В.А. и др. - М. : Институт проблем без-опасного развития атомной энергетики РАН, Академия ГПС МЧС России, 2012. - 401 с.

2. Научно-методическое и информационное обеспечение работ по созданию ком-плексной системы мониторинга за состоянием защиты населения на территориях радиоактивного загрязнения // Воронов С.И., Гаври-лов С.Л., Симонов A.B., Красноперов С.Н. -Под руководством Воронова С.Н. // Отчет о научно-исследовательской работе. - М.: Институт проблем безопасного развития атомной энергетики РАН. - 2012. - 283 с.

3. Седнев В.А., Овсяник А.И. Преодоление последствий аварии на Чернобыльской атомной станции, проблемы и перспективы развития радиационно-загрязненных территорий // Пожары и чрезвычайные ситуации. 2010. №4. С.4-22.

4. Седнев В.А., Овсяник А.И. Преодоление последствий аварии на Чернобыльской атомной станции, проблемы и перспективы развития радиационно-загрязненных территорий // Пожары и чрезвычайные ситуации. 2011. №1 (продолжение). С.4-12.

5. Разработка организационных основ обеспечения эффективного взаимодействия МЧС России и МЧС Республики Беларусь при ликвидации чрезвычайных ситуаций на радиоактивно загрязненных территориях / / Воронов С.П., Симонов A.B., Попов Е.В. и др. -Под руководством Воронова С.И. // Отчет о научно-исследовательской работе. - М.: Институт проблем безопасного развития атомной энергетики РАН, ОАО НПЦ «Средства спасения». - 2014. - 955 с.

6. Воронов С.П., Седнев В.А., Арутюнян Р.В., Герасимова П.В. и др. Разработка и внедрение методов и технологий обеспечения радиационной безопасности населения и территорий Российской Федерации // Конкурсная работа на соискание премии Правительства Российской Федерации в области науки и техники 2013 года. - М.: Министерство образования и науки Российской Федерации, Академия ГПС МЧС России, Институт проблем безопасного развития атомной энергетики РАН, Академия гражданской защиты МЧС России. 2013. - 100с.

7. Воронов С.П., Седнев В.А., Миронов В.Г. и др. Основные направления развития радиационно-загрязненных территорий, пострадавших в результате аварии на Чернобыльской атомной станции // Пожары и чрезвычайные ситуации. 2010. №3. С.4-13.