Электроизоляционные масла: виды и свойства. Трансформаторное масло – особенности применения и состава

Трансформаторные масла

Трансформаторные масла применяют для заливки силовых и измерительных трансформаторов, реакторного оборудования, а также масляных выключателей. В последних аппаратах масла выполняют функции дугогасящей среды.

Электроизоляционные свойства масел определяются в основном тангенсом угла диэлектрических потерь. Диэлектрическая прочность трансформаторных масел в основном определяется наличием волокон и воды, поэтому механические примеси и вода в маслах должны полностью отсутствовать. Низкая температура застывания масел (-45 °С и ниже) необходима для сохранения их подвижности в условиях низких температур. Для обеспечения эффективного отвода тепла трансформаторные масла должны обладать наименьшей вязкостью при температуре вспышки не ниже 95, 125, 135 и 150 °С для разных марок.

Наиболее важное свойство трансформаторных масел - стабильность против окисления, т. е. способность масла сохранять параметры при длительной работе. В России все сорта применяемых трансформаторных масел ингибированы антиокислительной присадкой - 2,6-дитретичным бутилпаракрезолом (известным также под названиями ионол, агидол-1 и др.). Эффективность присадки основана на ее способности взаимодействовать с активными пероксидными радикалами, которые образуются при цепной реакции окисления углеводородов и являются основными ее носителями. Трансформаторные масла, ингибированные ионолом, окисляются, как правило, с ярко выраженным индукционным периодом.

В первый период масла, восприимчивые к присадкам, окисляются крайне медленно, так как все зарождающиеся в объеме масла цепи окисления обрываются ингибитором окисления. После истощения присадки масло окисляется со скоростью, близкой к скорости окисления базового масла. Действие присадки тем эффективнее, чем длительнее индукционный период окисления масла, и эта эффективность зависит от углеводородного состава масла и наличия примесей неуглеводородных соединений, промотирующих окисление масла (азотистых оснований, нафтеновых кислот, кислородсодержащих продуктов окисления масла).

На рисунке показана зависимость длительности индукционного периода окисления трансформаторного масла при одной и той же концентрации присадки от содержания в нем ароматических углеводородов. Окисление проводилось в аппарате, регистрирующем количество поглощаемого маслом кислорода при 130 °С в присутствии катализатора (медной проволоки) в количестве 1 см 2 поверхности на 1 г масла с окисляющим газом (кислородом) в статических условиях. Происходящее при очистке нефтяных дистиллятов снижение содержания ароматических углеводородов, как и удаление неуглеводородных включений, повышает стабильность ингибированного ионолом трансформаторного масла.

Международная электротехническая комиссия разработала стандарт (Публикация 296) "Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей". Стандарт предусматривает три класса трансформаторных масел:

I - для южных районов (с температурой застывания не выше -30 °С), II - для северных районов (с температурой застывания не выше -45 °С) и III - для арктических районов (с температурой застывания -60 °С). Буква А в обозначении класса указывает на то, что масло содержит ингибитор окисления, отсутствие буквы означает, что масло не ингибировано.

В таблице приведены заимствованные из стандарта МЭК 296 требования к маслам классов II, II А, III, III А. Масла классов I и IA в России не производят и не применяют.

Требования Международной электротехнической комиссии к трансформаторным маслам классов II, НА, III, IIIA

Показатели Метод испытаний Требования к классам
II и IIA III и IIIA
Кинематическая вязкость, мм2/с, при температуре: 40°С ISO 3104 11,0 3,5
-30 °С 1800 -
-40 °С - 150
Температура, °С: вспышки в открытом тигле, не ниже ISO 2719 130 95
застывания, не выше ISO 3016 -45 -60
Внешний вид Определяется визуально в проходящем свете при комнатной температуре и толщине 10 см Прозрачная жидкость, не содержащая осадка и взвешенных частиц
Плотность, кг/дм3 ISO 3675 <=0,895
Поверхностное натяжение, Н/м, при 25 °С ISO 6295 См.прим.1
Кислотное число, мг КОН/г Поп.7.7 МЭК 296 <=0,03
Коррозионная сера ISO 5662 Не коррозионно
Содержание воды, мг/кг МЭК 733 См. прим. 2
Содержание антиокислительных присадок МЭК 666 Для классов II и III - отсутствие, для классов IIА и IIIA - см. прим. 3
Окислительная стабильность: кислотное число, мг КОН/г МЭК 1125А для классов II и III; <= 4
массовая доля осадка, % МЭК 1125 В для классов IIА и IIIA <= 0,1См.прим.4
Пробивное напряжение, кВ: в состоянии поставки МЭК 156 >= 30
после обработки >= 50 *
Тангес угла диэлектрических потерь при 90 °С и 40-60 Гц МЭК 247 <= 0,005
* Результат показывает, что загрязнения могут быть легко удалены обычными средствами обработки.
Примечания.1. Спецификация не нормирует этот показатель, хотя некоторые национальные стандарты включают требование не менее 40-Ю"3 Н/м. 2. Спецификация не нормирует этот показатель, хотя в некоторых странах существуют нормы 30 мг/кг при отгрузке партией и 40 мг/кг при отгрузке в бочках. 3. Тип и содержание антиокислителя согласовываются между поставщиком и потребителем. 4. Спецификация не нормирует этот показатель. Известно, что хорошие масла имеют индукционный пеоиод более 120 ч.

6. Ограничение срока действия снято по протоколу N 2-92 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 2-93)

7. ИЗДАНИЕ (июнь 2011 г.) с Изменениями N 1, 2, 3, утвержденными в марте 1982 г., марте 1985 г., марте 1989 г. (ИУС 7-82, 6-85, 6-88), Поправкой (ИУС 6-2005)


Настоящий стандарт распространяется на трансформаторные масла сернокислотной и селективной очисток, вырабатываемые из малосернистых нефтей и применяемые для заливки трансформаторов, масляных выключателей и другой высоковольтной аппаратуры в качестве основного электроизоляционного материала.



1. МАРКИ

1. МАРКИ

Устанавливаются следующие марки трансформаторных масел:

ТК - без присадки (изготовляют по специальным заказам для общетехнических целей), применять для заливки трансформаторов не допускается;

Т-750 - с добавлением (0,4±0,1)% антиокислительной присадки 2,6 дитретичный бутилпаракрезол;

Т-1500 - с добавлением не менее 0,4% антиокислительной присадки 2,6 дитретичный бутилпаракрезол;

ПТ - перспективное масло.

(Измененная редакция, Изм. N 1, 3).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Трансформаторные масла должны изготовляться в соответствии с требованиями настоящего стандарта, из сырья и по технологии, которые применялись при изготовлении образцов масел, прошедших испытания с положительными результатами и допущенных к применению в установленном порядке.


2.2. По физико-химическим показателям трансформаторные масла должны соответствовать требованиям и нормам, указанным в таблице.

Наименование показателя

Норма для марки

Метод испытания

ТК ОКП
02 5376 0101

Т-750 ОКП
02 5376 0104

Т-1500 ОКП
02 5376 0105

1. Вязкость кинематическая, м/с (сСт), не более:

при 50 °С

при минус 30 °С

1200·10(1200)

2. Кислотное число, мг KОН на 1 г масла, не более

3. Температура вспышки, определяемая в закрытом тигле, °С, не ниже

Отсутствие

6. Температура застывания, °C, не выше

7. Натровая проба, оптическая плотность, не более

10. Цвет на колориметре ЦНТ, единицы ЦНТ, не более

11. Стабильность против окисления, не более:

______________
* Вероятно ошибка оригинала. Следует читать ГОСТ 6581. - Примечание изготовителя базы данных.

Примечания:

1. Для трансформаторного масла марки ТК, вырабатываемого из эмбенских нефтей и их смеси с анастасьевской нефтью, при испытании на стабильность против окисления по ГОСТ 981 допускается масса летучих низкомолекулярных кислот 0,012 мг КОН на 1 г масла, кислотное число окисленного масла - не более 0,5 мг КОН на 1 г масла.

2. При выработке трансформаторных масел из бакинских парафинистых нефтей допускается применение карбамидной депарафинизации.

3. (Исключен, Изм. N 2).


(Измененная редакция, Изм. N 2, 3, Поправка).

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. Трансформаторные масла являются малоопасными продуктами и по степени воздействия на организм человека относятся к 4-му классу опасности в соответствии с ГОСТ 12.1.007 .

3.2. Трансформаторные масла представляют собой в соответствии с ГОСТ 12.1.044 горючие жидкости с температурой вспышки 135 °C.

3.3. Помещение, в котором производятся работы с маслом, должно быть оборудовано приточно-вытяжной вентиляцией.

3.4. Предельно допустимая концентрация паров углеводородов масел в воздухе рабочей зоны 300 мг/м в соответствии с ГОСТ 12.1.005 .

3.5. При работе с трансформаторными маслами должны применяться индивидуальные средства защиты согласно типовым правилам, утвержденным в установленном порядке.

3.6. При загорании масел используют следующие средства пожаротушения: распыленную воду, пену; при объемном тушении - углекислый газ, состав СЖБ, состав 3,5, пар.

Разд.3. (Измененная редакция, Изм. N 3).

4. ПРАВИЛА ПРИЕМКИ

4.1. Трансформаторное масло принимают партиями. Партией считают любое количество масла, изготовленного в ходе технологического процесса, однородного по показателям качества, сопровождаемого одним документом о качестве, содержащим данные по ГОСТ 1510 .

(Измененная редакция, Изм. N 3).

4.2. Объем выборок - по ГОСТ 2517 .

4.3. При получении неудовлетворительных результатов испытания хотя бы по одному из показателей проводят повторные испытания вновь отобранной пробы из той же выборки.

Результаты повторных испытаний распространяются на всю партию.

(Измененная редакция, Изм. N 3).

5. МЕТОДЫ ИСПЫТАНИЙ

5.1. Пробы трансформаторных масел отбирают по ГОСТ 2517 .

Для объединенной пробы берут по 3 дм масла каждой марки.

(Измененная редакция, Изм. N 1).

5.2. Натровую пробу для масел марок Т-750 и Т-1500 определяют в кювете 20 мм, для масла марки ТК - в кювете 10 мм.

5.3. Прозрачность трансформаторных масел определяют в стеклянной пробирке диаметром 30-40 мм. Масло при температуре 5 °C должно быть прозрачным в проходящем свете.

5.4. Показатель осадка и кислотное число для масла марки ТК определяют по ГОСТ 981 при следующих условиях:

температура - 120 °С,



расход кислорода - 200 см/мин,

длительность окисления при определении осадка и кислотного числа - 14 ч.

Показатель низкомолекулярных летучих кислот допускается определять при условиях:

температура - 120 °С,

катализатор - шарики диаметром (5±1) мм, один из низкоуглеродистой стали, один из меди марки М0к или М1к по ГОСТ 859 ;

расход воздуха - 50 см/мин;

длительность окисления - 6 ч.

Стабильность против окисления масел марок Т-750 и Т-1500 определяют по ГОСТ 981 при следующих условиях:

температура для масла марки Т-750 - 130 °С, для масла марки Т-1500 - 135 °С,

катализатор - медная пластинка,

расход кислорода - 50 см/мин,



Стабильность против окисления перспективного масла гидрокрекинга определяют по ГОСТ 981 при следующих условиях:

температура - 145 °С,

катализатор - медная пластинка;

расход кислорода - 50 см/мин;

длительность окисления - 30 ч.

(Измененная редакция, Изм. N 1, 2, 3).

5.5. Тангенс угла диэлектрических потерь трансформаторных масел определяют без подготовки или после подготовки одним из следующих способов:

а) 100 см масла выдерживают 30 мин при 50 °С при остаточном давлении 666,6 Па (5 мм рт.ст.) в сосуде со свободной поверхностью, равной 100 см;

б) масло выдерживают в кристаллизаторе, помещенном в эксикатор с прокаленным хлористым кальцием, не менее 12 ч при толщине слоя не более 10 мм.

При разногласиях, возникающих при оценке качества продукции, подготовку масла перед определением тангенса угла диэлектрических потерь проводят по подпункту а.

Для определения тангенса угла диэлектрических потерь применяют электроды, изготовленные из нержавеющей стали марки 12Х18Н9Т или 12Х18Н10Т по ГОСТ 5632 . При изготовлении электродов из меди по ГОСТ 859 и латуни по ГОСТ 17711 рабочие поверхности электродов должны покрываться никелем, хромом или серебром. Определение проводят при напряженности электрического поля 1 кВ/мм.

6. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Упаковка, маркировка, транспортирование и хранение трансформаторных масел - по ГОСТ 1510 .

6.2. На документе, удостоверяющем качество трансформаторного масла марок Т-750 и Т-1500 высшей категории, и на таре должен быть изображен государственный Знак качества.



7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

7.1. Изготовитель гарантирует соответствие качества трансформаторного масла требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.

7.2. Гарантийный срок хранения трансформаторных масел - пять лет со дня изготовления.

(Измененная редакция, Изм. N 2).



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
Нефть и нефтепродукты. Масла.

Технические условия. Сборник ГОСТов. -

М.: Стандартинформ, 2011

Трансформаторное масло представляет собой очищенную фракцию нефти, то есть является минеральным маслом. Его получают посредством перегонки нефти, где данная фракция кипит при 300 - 400°С. В зависимости от сорта исходного сырья свойства трансформаторных масел получаются различными. Масло отличается сложным углеводородным составом, где средний вес молекул варьируется от 220 до 340 а.е.м. В таблице приведены основные компоненты и их процент в составе трансформаторного масла.

Свойства трансформаторного масла, как электрического изолятора, определяются главным образом значением . Поэтому наличие воды и волокон в масле полностью исключается, поскольку любые механические примеси ухудшают данный показатель.

Температура застывания трансформаторного масла - от -45°С и ниже, это важно для обеспечения его подвижности в низкотемпературных условиях эксплуатации. Эффективному отводу тепла способствует наиболее низкая вязкость масла даже при температурах от 90 до 150°С в случае вспышек. Для разных марок масел эта температура может быть 150°С, 135°С, 125°С, 90°С, не ниже.

Крайне важным свойством трансформаторных масел является их стабильность в условиях окисления, трансформаторное масло должно сохранять требуемые параметры на длительный период работы.

Что касается конкретно РФ, то здесь все сорта трансформаторных масел, применяемых на промышленном оборудовании, обязательно ингибированы антиокислительной присадкой - ионолом (2,6-дитретичный бутилпаракрезол, известный еще как агидол-1). Присадка взаимодействует с активными пероксидными радикалами, возникающими в цепи окислительной реакции углеводородов. Так, ингибированные трансформаторные масла имеют при окислении ярко выраженный индукционный период.

Сначала восприимчивые к присадкам масла окисляются медленно, поскольку возникающие цепи окисления прерываются ингибитором. Когда присадка истощена, масло окисляется с обычной скоростью, как без присадки. Чем больше индукционный период окисления масла, тем выше и эффективность присадки.

Немало эффективность присадки связана и с углеводородным составом масла, и с наличием примесей неуглеводородного рода, способствующих окислению, коими могут выступать азотистые основания, нефтеновые кислоты и кислородосодержащие продукты окисления масла.

Когда нефтяной дистиллят очищают, содержание ароматических углеводородов снижается, устраняются неуглеводородные включения, и в итоге стабильность ингибированного ионолом трансформаторного масла повышается. Между тем, существует международный стандарт «Спецификация на свежие нефтяные изоляционные масла для трансформаторов и выключателей».




Трансформаторное масло обладает горючестью, оно биоразлагаемо, почти не обладает токсичностью и не вредит озоновому слою. Плотность трансформаторного масла лежит в пределах от 840 до 890 килограмм на кубометр. Одно из важнейших свойств - вязкость. Чем выше вязкость, тем выше электрическая прочность. Вместе с тем, для нормальной работы в и в выключателях, масло не должно быть очень вязким, иначе охлаждение трансформаторов не будет эффективным, а выключатель не сможет быстро разорвать дугу.




Здесь нужен компромисс относительно вязкости. Обычно кинематическая вязкость при температуре 20°С, у большинства трансформаторных масел лежит в диапазоне от 28 до 30 мм2/с.




Прежде чем заполнить маслом аппарат, масло очищают при помощи глубокой термовакуумной обработки. Согласно действующему руководящему документу "Объем и нормы испытаний электрооборудования" (РД 34.45-51.300-97), концентрация воздуха в трансформаторном масле, заливаемом в трансформаторы с азотной или пленочной защитой, в герметичные измерительные трансформаторы и в герметичные вводы, не должна быть выше 0,5 (определяется методом газовой хроматографии), а максимальное содержание воды - 0,001% массы.

Для силовых трансформаторов без пленочной защиты и для негерметичных вводов допустимо содержание воды не более 0,0025% массы. Что касается содержания механических примесей, определяющего класс чистоты масла, то оно не должно быть для оборудования напряжением до 220кВ хуже 11-го, а для оборудования напряжением выше 220 кВ - не хуже 9-го. Пробивное напряжение, в зависимости от рабочего напряжения, приведено в таблице.


Когда масло залито, то пробивное напряжение на 5 кВ ниже, чем у масла до заливки в оборудование. Допустимо снижение класса чистоты на 1 и увеличение процента воздуха на 0,5%.

Условия окисления (метод определения стабильности - по ГОСТу 981-75)






Температура застывания масла определяется при испытаниях, когда пробирку с загустевшим маслом наклоняют на 45°, и масло остается на том же уровне в течение минуты. Для свежих масел эта температура не должна быть ниже -45°С.

Данный параметр имеет ключевое значение для . Тем не менее, в разных климатических зонах требования к температуре застывания различны. Например, в южных регионах допускается применять трансформаторное масло с температурой застывания -35°С.

В зависимости от условий эксплуатации оборудования, нормативы могут варьироваться, возможны в некоторых пределах отступления. Так, например, арктические сорта трансформаторного масла не должны застывать при температуре выше -60°С, а температура вспышки снижается до -100°С (температура вспышки - температура, при которой нагретое масло производит пары, становящиеся легко воспламеняемыми при перемешивании с воздухом).

Вообще, температура вспышки не должна быть ниже 135°С. Также важны такие характеристики, как температура воспламенения (масло воспламеняется и горит при ней в течение 5 и более секунд) и температура самовоспламенения (при температуре 350-400°С масло воспламеняется даже в закрытом тигле при наличии воздуха).

Трансформаторное масло обладает теплопроводностью от 0,09 до 0,14 Вт/(м×К), и она снижается с ростом температуры. Теплоемкость же с ростом температуры возрастает, и может быть от 1.5 кДж/(кГ×К) до 2.5 кДж/(кГ×К).

С коэффициентом теплового расширения связаны нормативы по размерам расширительного бака, и данный коэффициент находится в районе 0,00065 1/К. Удельное сопротивление трансформаторного масла при 90°С и в условиях напряженности электрического поля 0.5 МВ/м в любом случае не должно быть выше 50 Гом*м.

Равно как и вязкость, удельное сопротивление масла с ростом температуры снижается. Диэлектрическая проницаемость - в пределах от 2,1 до 2,4. Тангенс угла диэлектрических потерь, как было сказано выше, связан с наличием примесей, так для чистого масла он не превышает 0,02 при 90°С в условиях частоты поля 50 Гц, а в окисленном масле может превышать 0.2.

Электрическую прочность масла измеряют во время испытаний на пробой 2,5 мм разрядника с диаметром электродов 25,4 мм. Результат не должен быть ниже 70 кВ, и тогда электрическая прочность составит не менее 280 кВ/см.


Несмотря на принятые меры, трансформаторное масло может поглощать газы, и растворять в себе значительное их количество. В обычных условиях в одном кубическом сантиметре масла легко растворится 0,16 миллилитров кислорода, 0,086 миллилитров азота и 1,2 миллилитра углекислоты. Очевидно, кислород начнет окислять мало. Если газы наоборот выделяются, это признак появления дефекта обмотки. Так, по наличию растворенных в трансформаторном масле газов, посредством хроматографического анализа выявляют дефекты трансформаторов.

Сроки службы трансформаторов и масла не связаны напрямую. Если трансформатор способен работать безотказно лет 15, то масло каждый год желательно очищать, а через 5 лет - регенерировать. Однако, для предотвращения быстрого истощения ресурса масла предусмотрены вполне определенные меры, принятие которых значительно продлит срок службы трансформаторного масла:

    Установка расширителей с фильтрами для поглощения воды и кислорода, а также выделяемых из масла газов;

    Избегание рабочего перегрева масла;

    Периодические чистки;

    Непрерывная фильтрация масла;

    Введение антиокислителей.

Высокие температуры, реакции масла с проводниками и диэлектриками, - все это способствует окислению, которое и призвана предотвращать антиокислительная присадка, о которой упоминалось в начале. Но регулярная очистка все равно требуется. Качественная очистка масла возвращает его в пригодное для использования состояние.

Что же может послужить поводом для изъятия из эксплуатации трансформаторного масла? Это могут быть загрязнения масла постоянными веществами, наличие которых не привело к глубоким изменениям в масле, и тогда достаточно провести механическую очистку. Вообще, существует несколько методов очистки: механический, теплофизический (перегонка) и физико-химический (адсорбция, коагуляция).

Если произошла авария, резко снизилось пробивное напряжение, появился нагар, или хроматографический анализ выявил неполадки, трансформаторное масло очищают прямо в трансформаторе или в выключателе, просто отключив аппарат от сети.

При регенерации отработанного трансформаторного масла получают до 3 фракций базовых масел для приготовления других товарных масел, таких как моторные, гидравлические, трансмиссионные масла, смазочно-охлаждающие жидкости и пластичные смазки. В среднем после регенерации получается 70-85% масла, в зависимости от применяемого технологического способа. Химическая регенерация является при этом более дорогостоящей. При регенерации трансформаторного масла возможно получить до 90% базового масла идентичного по качеству свежему.

Казалось бы, где масло, а где электроприборы? Тем более трансформаторы, внутри которых блуждают огромные токи, и формируется высокое напряжение. Тем не менее подобные электрические установки работают с применением технических жидкостей, и это отнюдь не антифриз и не дистиллированная вода.

Наверное, все видели огромные трансформаторы на подстанциях, и энергоблоках промышленных предприятий. Все они снабжены расширительными емкостями в верхней части.

Именно в эти бочонки заливается трансформаторное масло. Выглядит это вполне привычно для обывателя: корпус электрической установки (по аналогии картера двигателя автомобиля), внутри расположены рабочие узлы. И все это богатство залито маслом до самого верха. Как мы понимаем, о смазке деталей речь не идет: в трансформаторе нет движущихся частей.

Область применения трансформаторного масла

Для начала, развеем некоторые стереотипы. Существует устойчивое заблуждение, что все жидкости являются проводниками. На самом деле далеко не все, и не так явно, как металлы.

Важное свойство трансформаторного масла – высокое сопротивление электрическому току. Настолько высокое, что жидкость фактически является диэлектриком (в разумных пределах, разумеется).

Такая характеристика, как смазывающая способность, в электрике интересна в последнюю очередь. А вот теплопроводность напротив, очень важна.

О свойствах поговорим отдельно, они вытекают из двух областей применения:


Эксплуатационные показатели подобных устройств поражают воображение: напряжение несколько сотен тысяч вольт, и сила тока до 50 тысяч ампер.

Масло в этих устройствах имеет две функции. Разумеется, изоляционные свойства, как и в трансформаторах. Но главное назначение – эффективное гашение электрической дуги.

При размыкании (замыкании) контактов на электрических коммутационных устройствах с такими параметрами, возникает электрическая дуга, способная разрушить контактную группу за несколько циклов.

Электрическая дуга при размыкании контактов (происшествие на подстанции) — видео

Однако проблемы возникают лишь в воздушной среде. Если внутренняя полость заполнена трансформаторным маслом – искрения и дуги не возникнет.

К сведению

Объективности ради, заметим: существует и другое решение. Помимо масляных, активно применяются вакуумные выключатели. Правда, они качественно выполняют лишь одну функцию: гашение дуги. Диэлектрические свойства вакуума сопоставимы с обычным воздухом.

Однако, это тема другой статьи.

Технические характеристики трансформаторного масла

Так же, как и минеральное моторное, трансформаторное масло производится путем перегонки подготовленной сырой нефти (очищенной), методом кипячения сырья. После возгонки при температуре 300°C — 400°C, остается так называемый соляровый дистиллят.

Собственно, эта субстанция является основой для получения трансформаторного масла. Во время очистки, снижается насыщенность ароматическими углеродами и не углеродными соединениями. В результате повышается стабильность продукта.

При возгонке и выделении дистиллята, можно управлять физическими и химическими процессами. Манипулируя базовым сырьем и технологией, можно менять свойства трансформаторного масла. Они определяются полученным соотношением компонентов:

Интересно, что этот продукт экологически чист. При его производстве, использовании и утилизации, воздействие на природу не выше, чем у исходного сырья (сырой нефти). В состав не включаются добавки, синтезированные искусственным путем.

Как и нефть, масло для трансформаторов и выключателей не токсично (насколько это можно сказать о нефтепродуктах), не разрушает озоновый слой, и бесследно разлагается в природной среде.

Одна из важных характеристик – плотность трансформаторного масла. Типичная величина лежит в диапазоне 0,82 – 0,89 * 10³ кг/м³. Цифры зависят от температуры: рабочий диапазон в пределах 0°C – 120°C.

При нагреве она уменьшается, этот фактор принимается во внимание при проектировании радиаторной системы охлаждения трансформаторов.

Поскольку масла относительно универсальны, эта характеристика может варьироваться в зависимости от потребностей заказчика. Трансформаторные подстанции располагаются в различных климатических зонах, зачастую в условиях крайнего Севера и Сибири.

Не только плотность меняется в зависимости от температуры

Вязкость трансформаторного масла может радикально изменить общие показатели электроустановки.

Показатели ТКп Масло селективной очистки Т-1500У гк вг АГК МВТ
Кинематическая вязкость, им2/с* при температуре
50°С 9 9 - 9 9 5 -
40°С - - 11 - - - 3,5
20°С - 28 - - - - -
-30°С 1500 1300 1300 1200 1200 - -
-40°С - - - - - 800 150
Кислотное число, мг КОН/г, не более 0,02 0,02 0,01 0,01 0,01 0,01 0,02
Температура, °С
Вспышки в закрытом тигле, не ниже 135 150 135 135 135 125 95
Застывания, не выше -45 -45 -45 -45 -45 -60 -65
Этот параметр – порождение компромисса. Для обеспечения электрической прочности масла, вязкость должна быть высокой. Практически, как твердый диэлектрик. Но изоляция проводников, это не единственное предназначение рассматриваемой жидкости.

Принцип работы масляного трансформатора — видео

  • Теплоотвод – возможен при достаточно жидком теплоносителе. То есть, для нормального охлаждения электроустановки вязкость должна быть как можно более низкой.
  • Гашение электрической дуги. Как это работает? В обычной воздушной среде, при размыкании (замыкании) контактов под высокой нагрузкой, возникает дуга, подобная сварочной.

Густое масло, механически не сможет быстро заполнить пространство при движении контактов. Образовавшиеся воздушные полости станут поводом для дугообразования. И напротив, достаточно жидкий наполнитель постоянно будет поддерживать среду без пузырьков.

Вспышка и воспламенение

Интересный с точки зрения физики процесса, такой параметр, как температура вспышки трансформаторного масла. Для любых нефтепродуктов, это температура воспламенения жидкой среды, при контакте с открытым источником пламени.

Однако внутри трансформатора не создаются условия для горения, по причине отсутствия достаточного количества кислорода. А вот открытое пламя теоретически возможно: если при размыкании контактов образуется кратковременная дуга.

Поэтому в свойства масел закладывается увеличение температуры вспышки. Это значение постепенно уменьшается, по причине дефектов трансформаторного оборудования. При нормальной работе, температура вспышки напротив, увеличивается. Допустимое значение – более 155°C.

Электрическая дуга или как горят трансформаторы — видео

Для понимания механизма – температура вспышки связана с испаряемостью масла. То есть, оно должно быть достаточно жидким, но при этом не переходить в газообразное состояние при нормальных условиях эксплуатации.

Кроме традиционного параметра, есть такое понятие, как температура самовоспламенения, характерное именно для трансформаторов. В нашем случае эта величина составляет 350°C – 400°C.

Если обмотки нагреются до такой температуры – возникает неконтролируемое горение и взрыв трансформатора. К счастью, подобные случаи происходят крайне редко. Разумеется, при условии соблюдения условий эксплуатации.

Поэтому, вместе с подбором качественного масла, необходимо постоянно следить за состоянием электроустановок. При проведении тестовых отборов жидкости, можно понять, какие проблемы есть в самом трансформаторе или высоковольтном выключателе.

После проведенных исследований, оцениваются такие показатели, как преломление вязкости, плотность, диэлектрические свойства, и пр. Результаты сравниваются с табличными значениями, установленными стандартом применения масел.

В таблице показаны основные показатели трансформаторного масла:

Температура t,
°С
Плотность р,
кг/м3
Cp, кДж/(кгК) λ, Вт/(м"К) а-10**8, м2/с μ-10**4, Пас v-10**6, м2/с ß-10**4, К"1 Рг
0 892,5 1,549 0,1123 8,14 629,8 70:5 6,80 866
10 886.4 1,620 0,1115 7,83 335,5 37,9 6.85 484
20 880,3 1,666 0,1106 7,56 198,2 22,5 6,90 298
30 874,2 1,729 0,1008 7,28 128,5 14.7 6.95 202
40 868,2 1,788 0,1090 7,03 89.4 10,3 7,00 146
50 862,1 1,846 0,1082 6,80 65.3 7,58 7,05 111
60 856,0 1,905 0,1072 6,58 49,5 5,78 7,10 87,8
70 850,0 1,964 0,1064 6,36 38.6 4,54 7,15 71.3
80 843,9 2,026 0,1056 6,17 30.8 3,66 7,20 59,3
90 837.8 2.085 0,1047 6,00 25,4 3,03 7,25 50,5
100 831,8 2,144 0,1038 5,83 21.3 2,56 7,30 43.9
110 825,7 2,202 0,1030 5,67 18.1 2,20 7,35 38,8
120 819,6 2,261 0,1022 5,50 15.7 1,92 7,40 34,9
  • cp — удельная массовая теплоемкость, без изменения рабочего давления;
  • λ – теплопроводность: общий коэффициент;
  • a – температурная проводимость: общий коэффициент;
  • μ — динамический коэффициент вязкости;
  • ν — кинематический коэффициент вязкости;
  • β — объемное расширение: общий коэффициент;
  • Pr — критерий Прандтля.

Технические жидкости для обеспечения работы трансформаторных подстанций закупаются в огромных объемах, это достаточно затратно. Каждая партия тестируется перед использованием, и в процессе работы.

Испытание трансформаторного масла на пробой — видео

Ежегодно, техническая жидкость требует масштабной очистки. Этим занимаются специальные службы. А каждые 5-6 лет, требуется регенерация (практически полная замена масла в электроустановке). Процедура недешевая, но без ее выполнения эксплуатация трансформатора станет небезопасной.

В качестве компромисса, широко применяется восстановление свойств. Отработка сдается на нефтехимическое предприятие, где масло приобретает первоначальные свойства. Стоимость добавленных присадок многократно ниже, в сравнение с полной заменой материала.

Второстепенные характеристики трансформаторного масла

Устойчивость масла к окислению – это не что иное, как противодействие старению. Есть две негативные стороны этого явления:

  1. Связывание молекулами кислорода активных добавок, которые обеспечивают базовые параметры жидкости.
  2. Отложение продуктов окисления на поверхностях деталей трансформатора: обмотках, проводниках, контактных группах. Это приводит к снижению теплоотвода, с последующим закипанием масла в точках соприкосновения.
  3. Зольность – наличие посторонних примесей и причина их появления. После промывки нового масла, в его составе остаются химические моющие средства (это касается и регенерации старой жидкости).

Если их не удалить – образуются зольные фракции, которые оседают на рабочих частях трансформаторов и выключателей. Для борьбы с этим явлением, в масло добавляются присадки, нейтрализующие солевые и мыльные отложения.

Температура текучести (застывания) характеризует превращение жидкости в консистентную смазку. Этот показатель (от — 35°C до — 50°C) применим лишь при холодном пуске электроустановки. Работающий трансформатор сам является источником тепла, и поддерживает жидкость в рабочем состоянии.

Пересчитать, узнать объемный вес: физические свойства. Величины. Количество кг в 1 литре, кг/литр. Для расчетов использовались справочные данные из: Теперь вы можете узнать сколько весит при помощи такого инструмента, как: Погрешность измерений. -
Сколько кг вес 1 литра трансформаторного масла - литровая банка. Используем справочные данные по плотности и удельному весу, рассчитывая по формуле получаем объемный вес. 0.89 - 0.90 Справочник физических свойств, ГОСТ, ТУ. Литровая банка. до 5% -
Замечания, интересные пояснения к вопросу "сколько кг весит литровый объем" и некоторая дополнительная информация к справочным данным по физическим свойствам.

Достаточно часто на практике мы сталкиваемся с ситуациями, когда нам нужно узнать какой вес 1 литра трансформаторного масла. Обычно, такая информация используется для пересчетов массы на другие объемы, для тех емкостей, литраж которых известен заранее: банки (0.5, 1, 2, 3 л), бутылки (250 мм, 0.5 мл, 0.75, 1, 1.5, 2, 5 л), стаканы (200 мл, 250 мл), канистры (5, 10, 15, 20, 25 л), фляжки (0.25, 0.5, 0.75, 0.8, 1л) ведра (3, 5, 7, 8, 10, 12, 15, 18, 20, 25, 30 л), фляги и бидоны (3, 5, 10, 22, 25, 30, 40, 45, 50, 51, 200 л), бочки (30, 50, 60, 65, 75, 127, 160, 200, 205, 227, 900 л), баки, баллоны, цистерны (0.8 м3, 25.2, 26, 28.9, 30.24, 32.68, 32.7, 38.5, 38.7, 40, 44.54, 44.8, 46, 46.11, 46.86, 50, 54, 54.4, 54.07, 55.2, 61, 61.17, 62.39, 63.7, 65.2, 73, 73.1, 73.17, 75.5, 62.36, 88.6 м3, 99.2, 101.57, 140, 159, 161.5 м3). В принципе, даже кастрюли и котелки можно оценить по массе, если известно, сколько весит один литр трансформаторного масла. Для бытового применения и каких-то самостоятельных работ, вопрос может задаваться иначе, когда спрашивают не вес 1 литра трансформаторного масла, а сколько весит литровая банка (баночка). Обычно интересует, сколько грамм или килограмм в литровой банке. Найти такие данные: сколько весит, в интернете не так просто, как кажется. Дело в том, что общепринятый формат подачи материала в любых справочниках, таблицах, ТУ и ГОСТе, сводится к приведению только плотности и удельного веса трансформаторного масла. При этом указанными единицами измерения являются один м3, куб, кубометр или кубический метр. Реже 1 см3. А нас интересует, сколько весит литровый объем. Что приводит к необходимости дополнительного пересчета кубических метров (м3) в литры. Это неудобно, хотя и возможно сделать правильный пересчет кубов в количество литров самостоятельно. Пользуясь соотношением: 1 м3 = 1000 л. Для удобства посетителей сайта, мы самостоятельно сделали перерасчеты и указали, сколько весит один литр трансформаторного масла в таблице 1. Зная вес 1 литра трансформаторного масла, вы не только определяете массу литровой банки, но и легко можете рассчитать, сколько весит любая другая емкость, для которой известен литраж. При этом, нужно понимать нежелательность и невозможность точных оценок сделанных на основании подобных пересчетов для больших емкостей со значительным объемом литража. Дело в том, что при таких методиках расчета возникает большая погрешность, приемлемая только в смысле приблизительной оценки массы. Поэтому, профессионалы пользуются специальными таблицами, в которых указано, сколько весит, например автомобильная или железнодорожная цистерна, бочка. С другой стороны, для прикладных и бытовых целей, для домашних условий, метод расчета исходя из литрового объема, вполне пригоден и может применяться на практике. В тех случаях, когда нам нужны более точные данные, например: при лабораторных исследованиях, для проведения экспертизы, для отладки производственного процесса, наладки оборудования и так далее. Вес 1 литра трансформаторного масла лучше определять экспериментальным путем, через взвешивание на точных весах, по специальной методике, а не пользоваться справочными, теоретическими, табличными средними данными о плотности и его удельном весе.