Кто из ученых открыл явление дисперсии? Дисперсия света, цвет и человек.

) света (частотная дисперсия), или, то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора . Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Энциклопедичный YouTube

    1 / 3

    Дисперсия и спектр света

    Дисперсия света и Цвет тел

    Дисперсия света. Цвета тел.

    Субтитры

Свойства и проявления

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления - минимальна,
  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления - максимальна.

Однако в некоторых веществах (например в парах иода) наблюдается эффект аномальной дисперсии , при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:

n = a + b / λ 2 + c / λ 4 {\displaystyle n=a+b/\lambda ^{2}+c/\lambda ^{4}} ,

где λ {\displaystyle \lambda } - длина волны в вакууме; a , b , c - постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.

Задачи урока:

  • Образовательные :
    • ввести понятия спектр, дисперсия света;
    • ознакомить учащихся с историей открытия данного явления.
    • наглядно продемонстрировать процесс разложение узкого светового луча на составляющие различных цветовых оттенков.
    • выявить различия этих элементов луча света.
    • продолжить формирование научного мировоззрения учащихся.
  • Развивающие :
    • развитие внимания, образного и логического мышления, памяти при изучении данной темы.
    • стимулирование познавательной мотивации учащихся.
    • развитие критического мышления.
  • Воспитательные :
    • воспитание интереса к предмету;
    • воспитание чувства прекрасного, красоты окружающего мира.

Тип урока: урок изучения и первичного закрепления новых знаний.

Методы обучения: беседа, рассказ, объяснение, эксперимент. (Информационно-развивающий)

Требования к базовому уровню подготовки: уметь описывать и объяснять явление дисперсии.

Оборудование и материалы: компьютер, цветные карточки, плоскопараллельные пластины

План урока:

Этапы урока

Время, мин

Приемы и методы

1. Цветопись 5 мин.(перед уроком, на перемене) Выбор цветной карточки, соответствующий настроению, каждым учащимся перед уроком на перемене.
2. Мотивация 2 мин. Рассказ учителя
3. Оргмомент 3 мин. Чтение стиха учеником
4. Изучение нового материала 19 мин. Рассказ учителя. Демонстрация опытов. Беседа по вопросам. Записи в тетрадях.
5. Закрепление
Синквейн
12 мин. Консультация учителя. Наблюдение. Ответы учащихся.
Составление синквейна
6. Подведение итогов.
Цветопись
3 мин. Обобщение изученного материала.
Выбор цветной карточки, соответствующий настроению, каждым учащимся в конце урока
7. Домашнее задание 1 мин. Запись на доске. Комментарий учителя.

Перед началом урока, на перемене провести диагностику «Цветопись класса». Каждый ученик, заходя в класс, выбирает карточку с определенным цветом, соответствующий его настроению, составляется диаграмма «Цветопись класса» в начале урока.

  • Желтый цвет – хорошее
  • Оранжевый – очень хорошее
  • Красный – радостное
  • Зеленый – спокойное
  • Синий – грустное
  • Коричневый – тревожное
  • Черный – плохое
  • Белый – безразличное

Эпиграф к уроку:

Природу нельзя застигнуть неряшливой и полураздетой, она всегда прекрасна.

Р. Эмерсон (американский философ XIX в.)

ХОД УРОКА

1. Мотивация

Солнечный свет всегда был и остается для человека символом радости, вечной юности, всего хорошего, лучшего, что может быть в жизни:

«Пусть всегда будет Солнце.
Пусть всегда будет небо…», –

Такие слова есть в известной песне автор слов – Лев Ошанин.
Даже физик. Привыкший иметь дело с фактами, с точной регистрацией явлений, подчас испытывает чувство неловкости, говоря, что свет – это электромагнитные волны определенной длины волны и ничего больше.
Длина световой волны очень мала. Представьте себе среднюю морскую волну, которая увеличилась бы настолько, что заняла одна весь Атлантический океан – от Америки до Лиссабона в Европе. Длина световой волны притом же увеличении лишь ненамного превысила бы ширину страницы книги.
Вопрос :
– Откуда берутся эти электромагнитные волны?
Ответ :
– Источник их – Солнце.
Вместе с видимым излучением Солнце посылает нам тепловое излучение, инфракрасное и ультрафиолетовое. Высокая температура солнца – главная причина рождения этих электромагнитных волн.

2. Оргмомент

Формулировка темы и целей урока.

Тема нашего урока – «Дисперсия света». Сегодня нам необходимо:

  • Ввести понятие «спектр», «дисперсия света»;
  • Выявить особенности данного явления – дисперсии света;
  • Познакомиться с историей открытия данного явления.

Активизация мыслительной деятельности :

Ученик читает стихотворение

Аромат Солнца

Запах Солнца? Что за вздор!
Нет, не вздор.
В солнце звуки и мечты,
Ароматы и цветы,
Все слились в согласный хор,
Все сплелись в один узор.
Солнце пахнет травами,
Свежими купавами,
Пробужденною весной
И смолистою сосной,
Нежно-светлотканными
Ландышами пьяными,
Что победно расцвели
В остром запахе земли.
Солнце светит звонами,
Листьями зелеными,
Дышит внешним пеньем птиц,
Дышит смехом юных лиц.
Так и молви всем слепцам:
Будет вам!
Не узреть вам райских врат,
Есть у солнца аромат,
Сладко внятный только нам,
Зримый птицам и цветам!
А. Бальмонт

3. Изучение нового материала

Немного истории

Говоря об этих представлениях, следует начать с теории цветов Аристотеля (IV в. до н. э.). Аристотель утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к солнечному (белому) свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный – при наименьшем. Таким образом, цвета радуги – это сложные цвета, а основным является белый свет. Интересно, что появление стеклянных призм и первые опыты по наблюдению разложения света призмами не породили сомнений в правильности Аристотелевой теории возникновения цветов. И Хариот, и Марци оставались последователями этой теории. Этому не следует удивляться, так как на первый взгляд разложение света призмой на различные цвета, казалось бы, подтверждало представления о возникновении цвета в результате смешения света и темноты. Радужная полоска возникает как раз на переходе от теневой полосы к освещенной, т. е. на границе темноты и белого света. Из того факта, что фиолетовый луч проходит внутри призмы наибольший путь по сравнению с другими цветными лучами, немудрено сделать вывод, что фиолетовый цвет возникает при наибольшей утрате белым светом своей «белизны» при прохождении через призму. Иначе говоря, на наибольшем пути происходит и наибольшее промешивание темноты к белому свету. Ложность подобных выводов нетрудно было доказать, поставив соответствующие опыты с теми же призмами. Однако до Ньютона никто этого не сделал.

Солнечный свет имеет много тайн. Одна из них – явление дисперсии . Первым его обнаружил великий английский физик Исаак Ньютон в 1666 году , занимаясь усовершенствованием телескопа.

Дисперсия света (разложение света) – это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты).

Экспериментально дисперсия света была открыта И. Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.
Один из самых наглядных примеров дисперсии – разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе – оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

  • у красного цвета максимальная скорость в среде и минимальная степень преломления,
  • у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции).

Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой, и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр – равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

Зная, что белый свет имеет сложную структуру, можно объяснить удивительное многообразие красок в природе. Если предмет, например лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым. Покрывая бумагу слоем красной краски, мы не создаем при этом света нового цвета, но задерживаем на листе некоторую часть имеющегося. Отражаться теперь будут только красные лучи, остальные же поглотятся слоем краски. Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные. Если посмотреть на траву через красное стекло, пропускающее лишь красные лучи, то она будет казаться почти черной.

Явление дисперсии, открытое Ньютоном, – первый шаг к пониманию природы цвета. Глубина понимания дисперсии пришла после того, как была выяснена зависимость цвета от частоты (или длины) световой волны.

Томас Юнг (1773-1829 г.г.) в 1802 году первым измерил длины волн разных цветов.

После открытия дисперсии света основной величиной, определяющей цвет света, стала длина волны. Главный цветоприемник – сетчатка глаза.

Цвет – есть ощущение, которое возникает в сетчатой оболочке глаза при её возбуждении световой волной определенной длины. Зная длину волны испущенного света и условия его распространения, можно наперед с высокой степенью точности сказать, какой цвет увидит глаз.

Может быть так, что сетчатка глаза плохо воспринимает один из основных цветов или совсем на него не реагирует, тогда у этого человека нарушается цветоощущение. Такой недостаток зрения назван дальтонизмом.

Хорошее цветоощущение очень важно для ряда профессий: моряков, летчиков, железнодорожников, хирургов, художников. Созданы специальные приборы – аномалоскопы для исследования нарушений цветового зрения.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).
Первая попытка объяснить радугу как естественное явление природы была сделана в 1611 году архиепископом Антонио Доминисом.

1637 год научное объяснение радуги впервые дал Рене Декарт. Он объяснил радугу на основании законов преломления и отражения солнечного света в каплях дождя. Явление дисперсии еще не было открыто, – поэтому радуга Декарта оказалась белой.

Спустя 30 лет Исаак Ньютон дополнил теорию Декарта, объяснил, как преломляются цветные лучи в каплях дождя.

«Декарт повесил радугу в нужном месте на небосводе, а Ньютон расцветил её всеми красками спектра»

Американский ученый А. Фразер

Радуга – это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя. Однако далеко не все знают, как именно преломление света на капельках дождя приводит к возникновению на небосводе гигантской многоцветной дуги. Поэтому полезно подробнее остановиться на физическом объяснении этого эффектного оптического явления.

Радуга глазами внимательного наблюдателя. Прежде всего, радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Радуга возникает, когда Солнце освещает завесу дождя. По мере того как дождь стихает, а затем прекращается, радуга блекнет и постепенно исчезает. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область – в красный. Нередко над основной радугой возникает еще одна (вторичная) радуга – более широкая и размытая. Цвета во вторичной радуге чередуются в обратном порядке: от красного (крайняя внутренняя область дуги) до фиолетового (крайняя внешняя область).

Для наблюдателя, находящегося на относительно ровной земной поверхности, радуга появляется при условии, что угловая высота Солнца над горизонтом не превышает примерно 42°. Чем ниже Солнце, тем больше угловая высота вершины радуги и тем, следовательно, больше наблюдаемый участок радуги. Вторичная радуга может наблюдаться, если высота Солнца над горизонтом не превышает примерно 52.

Радуга может рассматриваться как гигантское колесо, которое как на ось, надето на воображаемую прямую линию, проходящую через Солнце и наблюдателя.

Дисперсия является причиной хроматических аберраций – одних из аберраций оптических систем, в том числе фотографических и видео-объективов.

Дисперсия света в природе и искусстве

  • Из-за дисперсии можно наблюдать разные цвета света.
  • Радуга, чьи цвета обусловлены дисперсией, – один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметов или материалов.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме – довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

Открытие дисперсии стало в истории науки весьма значительным. На надгробии ученого есть надпись с такими словами: «Здесь покоится сэр Исаак Ньютон, дворянин, который… первый с факелом математики объяснил движения планет, пути комет и приливы океанов.

Он исследовал различие световых лучей и проявляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. …Пусть смертные радуются, что существовало такое украшение рода человеческого».

4. Закрепление

  • Ответить на вопросы по изученной теме.
  • Рубрика «Подумайте…»
  • Вопрос: почему радуга круглая?
  • Составление «Синквейна» по теме «Дисперсия»

5. Подведение итогов урока

В конце урока провести опять диагностику «Цветопись класса». Выяснить какое стало настроение в конце урока, на основе чего составляется диаграмма «Цветопись класса» и сравнивается результат, какое настроение было у учеников в начале урока и в конце.

6. Домашнее задание: §66

Литература:

  1. Мякишев Г.Я., Буховцев Б.Б. Физика: Учебник для 11 класса средней школы. – М.: Просвещение, 2006.
  2. Рымкевич А.П. Сборник задач по физике для 9-11 классов средней школы. – М.: Просвещение, 2006.
  3. Хрестоматия по физике: Учебное пособие для учащихся 8-10 классов средней школы / Под ред. Б.И. Спасского. – М.: Просвещение, 1987.
  4. Журнал «Физика в школе» № 1/1998 г.

После грозы и дождя, когда из-за туч выглядывает солнышко, мы часто наблюдаем на небе очень красивое явление - радугу.

Она состоит из разноцветных дуг. Причём цвета в ней всегда чередуются в определённой последовательности: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый. Оказывается, на такие цвета разлагается обыкновенный солнечный свет.

Что такое дисперсия света

Разложение белого света на цвета называют дисперсией света .

Для знакомства с этим явлением проведём простой опыт. Направим узкий луч белого света на прозрачную трёхгранную призму из стекла, расположенную в тёмной комнате. Пройдя сквозь грани призмы, луч преломится дважды и отклонится. Кроме того за призмой вместо одного белого луча мы увидим семь разноцветных, окрашенных в те же цвета, что и радуга, лучей, расположенных в той же последовательности. Причём окажется, что сильнее всего преломился фиолетовый луч, а меньше всего красный. То есть, угол преломления зависит от цвета луча.

Если на пути цветового спектра поместить другую призму, повёрнутую на 180° относительно первой, то пройдя через неё, все цветовые лучи снова соберутся в луч белого света.

Опыт с прохождение белого света через призму первые провёл Исаак Ньютон. Он же объяснил, что цвет - это собственное свойство света.

Из своего опыта Нютон сделал 2 вывода:

  1. Белый свет имеет сложную структуру. Он состоит из потока частиц разного цвета.
  2. Все эти частицы движутся с разной скоростью, поэтому лучи разного цвета и преломляются на разный угол. Самая высокая скорость у частиц красного цвета. Он преломляется через призму меньше всех других цветов. Чем меньше скорость, тем больше показатель преломления.

Именно Ньютон разделил цветовой спектр на 7 цветов, потому что считал, что существует связь между цветами и музыкальными нотами, которых тоже 7, семью днями недели и семью объектами Солнечной системы (во времена Ньютона были известны только 7 планет: Меркурий, Венера, Земля, Луна, Марс, Сатурн, Юпитер), семью чудесами света. Правда, в спектре Ньютона синий цвет назывался индиго.

Чтобы легче было представить последовательность цветов в спектре, достаточно запомнить фразу, в которой заглавные буквы совпадают с первыми буквами наименований цветов: «Каждый Охотник Желает Знать , Где Сидит Фазан ».

В общем смысле спектром в физике называют распределение значений физической величины (энергии, массы или частоты).

Спектр видимого излучения

Свет, представляющий собой волны одинаковой длины и соответствующий одному цвету, называется монохроматичным . Белый свет представляет собой набор электромагнитных волн различной длины. Поэтому он является полихроматичным .

Почему же белый свет разлагается на другие цвета, проходя через призму? Причина в том, что каждый цвет, входящий в состав белого света, имеет свою длину световой волны и распространяется в прозрачной оптической среде со своей фазовой скоростью, отличной от скоростей волн других цветов. У красного цвета эта скорость в среде максимальна, а у фиолетового минимальна. Кстати, скорости эти различны только в оптической среде. В вакууме скорость лучей разного цвета остаётся постоянной и равной скорости света.

Лучи разного цвета (разной длины волны) имеют разные показатели преломления, поэтому по-разному отклоняются при переходе из одной среды в другую. В зависимости показателя преломления света от длины волны заключается суть явления дисперсии света. По этой причине и возникает спектр .

Отношение скорости света в вакууме к его скорости в данной среде называют абсолютным показателем преломления среды.

n = c/v ,

где с - скорость света; v - скорость света в оптической среде.

Зная длину волны, можно вычислить показатель преломления среды для каждого цвета видимого спектра.

Итак, белый свет разлагается на разные цвета, потому что каждый цвет имеет свой показатель преломления.

Дисперсией объясняется появление радуги. Капельки воды сферической формы, парящие в атмосфере, преломляют, а затем и отражают солнечный свет от своей внутренней поверхности. В результате он разлагается в спектр, и мы видим разноцветное свечение. Грани бриллианта «играют» цветами также благодаря дисперсии.

Цвета, входящие в спектр, называются спектральными цветами . Но спектр содержит не все цвета, которые воспринимает мозг человека. Например, в нём нет розового цвета. Он получается при смешении других цветов.

В спектре не существует резкой границы между цветами. Все цвета плавно переходят друг в друга.

Длины волн, соответствующих каждому цвету, были определены одним из создателей волновой теории света английским физиком, механиком, врачом, астрономом и востоковедом Томасом Юнгом.

Свет и цвет

Сложной структурой белого света объясняется многообразие красок в окружающем нас мире. Из-за того что световые лучи разного цвета по-разному отражаются от предметов или поглощаются ими, мы и видим мир цветным.

Помните выражение: «Все кошки ночью серые»? А ведь это действительно так. В темноте цвет различить невозможно. Там, где нет света, все предметы кажутся нам чёрными. Но стоит только направить на кошку луч света, как она сразу же приобретёт цвет.

Цвет предмета - это цвет отражённой волны спектра. Белые предметы отражают все цвета, поэтому мы и видим их белыми. Чёрные, наоборот, все цвета поглощают и не отражают ничего. Траву мы видим зелёной, потому при солнечном свете она отражает зелёный цвет, а все остальные поглощает. Банан жёлтый, потому что отражает жёлтый цвет и т.д.

(или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года , хотя теоретически достаточно хорошо объяснена значительно позднее.

  • Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора . Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

  • у красного цвета максимальная скорость в среде и минимальная степень преломления,
  • у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии , при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

  • Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр - равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии , применяемый как название количественного соотношения, связывающего частоту и волновое число , применяется не только к электромагнитной волне , но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций - одних из аберраций оптических систем , в том числе фотографических и видео-объективов .

Коши пришел к формуле, выражающей зависимость показателя преломления среды от длины волны:

…,

Дисперсия света в природе и искусстве

Из-за дисперсии можно наблюдать разные цвета.

  • Радуга , чьи цвета обусловлены дисперсией, - один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме - довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома Dark Side Of The Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

См. также

Литература

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты. - Изд. 4-е, сокр. - М .: Искусство, 1977.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Дисперсия света" в других словарях:

    Зависимость преломления показателя n в ва от частоты n (длины волны l) света или зависимость фазовой скорости световых волн от их частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении его сквозь призму (см. СПЕКТРЫ… … Физическая энциклопедия

    дисперсия света - Явления, обусловленные зависимостью скорости распространения света от частоты световых колебаний. [Сборник рекомендуемых терминов. Выпуск 79. Физическая оптика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики… … Справочник технического переводчика

    дисперсия света - šviesos skaida statusas T sritis radioelektronika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerteilung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Radioelektronikos terminų žodynas

    дисперсия света - šviesos dispersija statusas T sritis fizika atitikmenys: angl. dispersion of light vok. Lichtdispersion, f; Zerlegung des Lichtes, f rus. дисперсия света, f pranc. dispersion de la lumière, f … Fizikos terminų žodynas

    Зависимость показателя преломления n вещества от частоты ν (длины волны λ) света или зависимость фазовой скорости (См. Фазовая скорость) световых волн от частоты. Следствие Д. с. разложение в спектр пучка белого света при прохождении… … Большая советская энциклопедия

    Зависимость показателя преломления п в ва от частоты света v. В обл. частот света, для к рых в во прозрачно, п возрастает с увеличением v нормальная Д. с. В обл. частот, соответствующих полосам интенсивного поглощения света в вом, п убывает с… … Большой энциклопедический политехнический словарь

    Зависимость абсолютного показателя преломления вещества от длины волны света … Астрономический словарь

    Для улучшения этой статьи желательно?: Добавить иллюстрации. Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Проставить шаблон карточку, который существ … Википедия

    Зависимость фазовой скорости гармонических волн в среде от частоты их колебаний. дисперсия волн наблюдается для волн любой природы. Наличие дисперсии волн приводит к искажению формы сигнала (напр., звукового импульса) при распространении в среде … Большой Энциклопедический словарь

  • 3.Свободные колебания в lc-контуре. Свободные затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решение.
  • 4. Вынужденные электрические колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
  • 5. Резонанс напряжений и резонанс токов.
  • Основы теории максвелла для электромагнитного поля.
  • 6.Общая характеристика теории Максвелла. Вихревое магнитное поле. Ток смещения.
  • 7.Уравнения Максвелла в интегральном виде.
  • Электромагнитные волны
  • 8.Экспериментальное получение электромагнитных волн. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля. Энергия электромагнитных волн. Давление электромагнитных волн.
  • Геометрическая оптика
  • 9. Основные законы геометрической оптики. Фотометрические величины и их единицы.
  • 10. Преломление света на сферических поверхностях. Тонкие линзы. Формула тонкой линзы и построение изображений предметов с помощью тонкой линзы.
  • 11.Световые волны
  • 12.Интерференция света при отражении от тонких пластинок. Полосы равной толщины и равного наклона.
  • 13. Кольца Ньютона. Применение явления интерференции. Интерферометры. Просветление оптики.
  • 14.Дифракция света
  • 15. Дифракция света на круглом экране и круглом отверстии.
  • 16.Дифракция света на одной щели. Дифракционная решетка.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.
  • 19.Поляризация света. Естественный и поляризованный свет. Степень поляризации. Закон малюса.
  • 20.Поляризация света при отражении и преломлении. Закон брюстера. Двойное лучепреломление. Анизотропия кристаллов.
  • 21. Эффект доплера для световых волн.
  • 22.Тепловое излучение. Свойства равновесного теплового излучения. Абсолютно черное тело. Распределение энергии в спектре абсолютно черного тела. Законы Кирхгофа, Стефана- Больцмана, Вина.
  • 23. Элементы специальной теории относительности Постулаты специальной теории относительности. Преобразования Лоренца.
  • 2. Длительность событий в разных системах отсчета.
  • 24. Основные законы релятивистской динамики. Закон взаимосвязи массы и энергии.
  • 17. 18. Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.

    Дисперсией света называют явление зависимости абсолютного показателя преломления вещества n от частоты света ω (или длины волны λ):

    Следствием дисперсии света является разложение в спектр пучка белого света при прохождении его через призму. Первое экспериментальное исследование дисперсии света в стеклянной призме было выполнено И. Ньютоном в 1672 г.

    Дисперсия света называется нормальной в случае, если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны); в противном случае дисперсия называется аномальной , рис.1.

    Величина

    называется дисперсией вещества и характеризует скорость изменения показателя преломления при изменении длины волны.

    Нормальная дисперсия света наблюдается вдали от полос или линий поглощения света веществом, аномальная – в пределах полос или линий поглощения.

    Рассмотрим дисперсию света в призме, рис.2.

    Пусть монохроматический пучок света падает на прозрачную призму с преломляющим углом θ и показателем преломления n под углом α 1 . После двукратного отклонения (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол φ. Из геометрических преобразований следует, что

    т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол и показатель преломления вещества призмы. Поскольку n = f(λ), то лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т.е. пучок белого света, падающий на призму, за призмой разлагается в спектр, что и наблюдалось впервые Ньютоном. Значит, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

    Следует помнить, что составные цвета в дифракционном и призматическом спектрах располагаются различно. В дифракционном спектре синус угла отклонения пропорционален длине волны, следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. В призме же для всех прозрачных веществ с нормальной дисперсией показатель преломления n с увеличением длины волны уменьшается, поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

    На явлении нормальной дисперсии основано действие призменных спектрометров , широко используемых в спектральном анализе. Это объясняется тем, что изготовить призму значительно проще, чем дифракционную решетку. Призменные спектрометры имеют также большую светосилу.

    Электронная теория дисперсии света. Из макроскопической электромагнитной теории Максвелла следует, что

    но в оптической области спектра для всех веществ μ ≈ 1, поэтому

    n = ε. (1)

    Формула (1) противоречит опыту, т.к. величина n, являясь переменной n = f(λ), равняется в то же время определенной постоянной ε (постоянной в теории Максвелла). Кроме того, полученные из этого выражения значения n не согласуются с экспериментальными данными.

    Для объяснения дисперсии света была предложена электронная теория Лоренца, в которой дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

    Ознакомимся с этой теорией на примере однородного изотропного диэлектрика, предположив формально, что дисперсия света является следствием зависимости ε от частоты ω световых волн. Диэлектрическая проницаемость вещества равна

    ε = 1 + χ = 1 + Р/(ε 0 Е),

    где χ – диэлектрическая восприимчивость среды, ε 0 – электрическая постоянная, Р – мгновенное значение поляризованности (наведенный дипольный момент единицы объема диэлектрика в поле волны напряженностью Е). Тогда

    n 2 = 1 + Р/(ε 0 Е), (2)

    т.е. зависит от Р. Для видимого света частота ω~10 15 Гц столь велика, что существенны лишь вынужденные колебания внешних (наиболее слабо связанных) электронов атомов, молекул или ионов под действием электрической составляющей поля волны, а ориентационной поляризации молекул при такой частоте не будет. Эти электроны наз. оптическими электронами.

    Для простоты рассмотрим колебания одного оптического электрона в молекуле. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е – заряд электрона, х – смещение электрона из положения равновесия под действием электрического поля световой волны. Пусть n 0 – концентрация атомов в диэлектрике, тогда

    Р = р n 0 = n 0 е х. (3)

    Подставив (3) в (2) получим

    n 2 = 1 + n 0 е х /(ε 0 Е), (4)

    т.е. задача сводится к определению смещения х электрона под действием внешнего электрического поля Е = Е 0 cos ωt.

    Уравнение вынужденных колебаний электрона для простейшего случая

    d 2 x/dt 2 +ω 0 2 x = (F 0 /m)cos ωt = (e/ m) E 0 cos ωt, (5)

    где F 0 = еE 0 –амплитудное значение силы, действующей на электрон со стороны поля волны, ω 0 = √k/m – собственная частота колебаний электрона, m – масса электрона. Решив уравнение (5), найдем ε = n 2 в зависимости от констант атома (е, m, ω 0) и частоты внешнего поля ω, т.е. решим задачу дисперсии.

    Решением (5) является

    Х = А cos ωt, (6)

    А = еЕ 0 /m(ω 0 2 – ω 2). (7)

    Подставим (6) и (7) в (4) и получим

    n 2 = 1 + n 0 e 2 /ε 0 m(ω 0 2 – ω 2). (8)

    Из (8) видно, что показатель преломления вещества зависит от частоты ω внешнего поля, и что в области частот от ω = 0 до ω = ω 0 значение n 2 больше 1 и возрастает с увеличением частоты ω (нормальная дисперсия ). При ω = ω 0 значение n 2 = ± ∞; в области частот от ω = ω 0 до ω = ∞ значение n 2 меньше 1 и возрастает от - ∞ до 1 (нормальная дисперсия). Перейдя от n 2 к n, получим график зависимости n = n(ω), рис.1. Область АВ – область аномальная дисперсии . Изучение аномальной дисперсии – Д.С. Рождественский.

    Поглощением света – называется уменьшение энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии.

    С точки зрения электронной теории, взаимодействие света и вещества сводится к взаимодействию электромагнитного поля световой волны с атомами и молекулами вещества. Электроны, входящие в состав атомов, могут колебаться под действием переменного электрического поля световой волны. Часть энергии световой волны затрачивается на возбуждение колебаний электронов. Частично энергия колебаний электронов вновь переходит в энергию светового излучения, а также переходит в другие формы энергии, например, в энергию теплового излучения.

    Поглощение светового излучения можно в общих чертах описать с энергетической точки зрения, не входя в детали механизма взаимодействия световых волн с атомами и молекулами поглощающего вещества.

    Формальное описание поглощения света веществом было дано Бугером, который установил связь между интенсивностью света, прошедшего через конечный слой поглощающего вещества, и интенсивностью падающего на него света

    I = I e -K l (1)

    где I 0 λ – интенсивность светового излучения с длиной волны λ, падающего на поглощающий слой; I - интенсивность светового излучения, прошедшего поглощающий слой вещества толщиной l ; К λ – коэффициент поглощения, зависящий от λ, т.е. К λ = f(λ).

    Если поглотителем является вещество в растворе, то поглощение света тем больше, чем больше молекул растворенного вещества свет встречает на своем пути. Поэтому коэффициент поглощения зависит от концентрации С. В случае слабых растворов, когда взаимодействием молекул растворенного вещества можно пренебречь, коэффициент поглощения пропорционален С:

    К λ = c λ С (2)

    где c λ – коэффициент пропорциональности, который также зависит от λ. Учитывая (2), можно закон Бугера (1) переписать в виде:

    I λ = I 0λ e - c C l (3)

    c λ – показатель поглощения света на единицу концентрации вещества. Если концентрация растворенного вещества выражается в [моль/литр], то c λ называют молярным коэффициентом поглощения .

    Соотношение (3) носит название закона Бугера-Ламберта-Бера. Отношение величины светового потока, вышедшего из слоя I , к во­шедшему I 0λ носит название коэффициента оптического (или свето-) пропускания слоя Т :

    Т = I /I 0 λ = e - c C l (4)

    или в процентах

    Т = I /I 0λ 100%. (5)

    Поглощение слоя равно отношению

    Л
    огарифм величины 1/Т называетсяоптической плотностью слоя D

    D = lg 1/T = lg I 0 λ /I l λ = 0,43c λ Сl (6)

    т.е. оптическая плотность характеризует поглоще­ние света средой. Соотношение (6) может быть использовано как для определения концен- трации растворов, так и для характеристики спек­тров поглощения веществ.

    Зависимость оптической плотности от длины волны D = f(λ) является спектральной характеристикой поглощения данного вещества, а кривая, выражающая эту зависимость, называется спектром поглощения. Спектры поглощения, как и спектры испускания, бывают линейчатые, полосатые и сплошные, рис. 3. Cогласно модели атома Бора кванты света испускаются и поглощаются при переходе системы (атома) из одного энергетического состояния в другое. Если при этом в оптических переходах меняется только электронная энергия системы, как это имеет место в атомах, то в спектре линия поглощения будет резкой.

    Рис.3.а)линейчатый спектр поглощения, б)полосатый спектр поглощения, в) сплошной спектр поглощения.

    Однако для сложных молекул, энергия которых слагается из электронной Е эл, колебательной Е кол и вращательной Е вр энергии (Е =Е эл + Е кол + Е вр) при поглощении света изменяется не только электронная энергия, но обязательно колебательная и вращательная. Причем поскольку ∆Е эл >>∆E кол >>∆Е вр, то в результате этого набор линий, соответствующих электронному переходу, в спектре поглощения растворов выглядит как полоса поглощения.

    Коэффициент поглощения для диэлектриков невелик (примерно 10 -3 – 10 -5 см -1), для них наблюдаются широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения . Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

    Коэффициент поглощения для металлов имеет большие значения (примерно 10 3 - 10 5 см -1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощается свет. На рис. 1 показана типичная зависимость коэффициента поглощения света от частоты в области полосы поглощения. Видно, что внутри полосы поглощения наблюдается аномальная дисперсия. Однако поглощение света веществом должно быть значительным, чтобы повлиять на ход показателя преломления.

    Зависимостью коэффициента поглощения от длины волны (частоты) объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения этих длин волн стекло будет казаться черным. Это явление используется при изготовлении светофильтров , которые в зависимости от хим. состава стекол пропускают свет только определенных длин волн, поглощая остальные.