Открытый огонь, раскаленные продукты горения и нагретые ими поверхности. Производственный источник зажигания Выделение тепла при сжатии газов

Искровой разряд

Искрово́й разря́д (искра электрическая) - нестационарная форма электрического разряда , происходящая в газах . Такой разряд возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом - «треском» искры. Температура в главном канале искрового разряда может достигать 10 000 . В природе искровые разряды часто возникают в виде молний . Расстояние, «пробиваемое» искрой в воздухе, зависит от напряжения и считается равным 10 кВ на 1 сантиметр.

Условия

Искровой разряд обычно происходит, если мощность источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда . В этом случае одновременно с резким возрастанием разрядного тока напряжение на разрядном промежутке в течение очень короткого времени (от несколько микросекунд до нескольких сотен микросекунд) падает ниже напряжения погасания искрового разряда, что приводит к прекращению разряда. Затем разность потенциалов между электродами вновь растет, достигает напряжения зажигания и процесс повторяется. В других случаях, когда мощность источника энергии достаточно велика, также наблюдается вся совокупность явлений, характерных для этого разряда, но они являются лишь переходным процессом, ведущим к установлению разряда другого типа - чаще всего дугового . Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то наблюдается форма самостоятельного разряда, называемая искровым разрядом.

Природа

Искровой разряд представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвленных полосок - искровых каналов. Эти каналы заполнены плазмой , в состав которой в мощном искровом разряде входят не только ионы исходного газа, но и ионы вещества электродов , интенсивно испаряющегося под действием разряда. Механизм формирования искровых каналов (и, следовательно, возникновения искрового разряда) объясняется стримерной теорией электрического пробоя газов. Согласно этой теории, из электронных лавин, возникающих в электрическом поле разрядного промежутка, при определенных условиях образуются стримеры - тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Среди них можно выделить т. н. лидер - слабо светящийся разряд, «прокладывающий» путь для основного разряда. Он, двигаясь от одного электрода к другому, перекрывает разрядный промежуток и соединяет электроды непрерывным проводящим каналом. Затем в обратном направлении по проложенному пути проходит главный разряд, сопровождаемый резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры (в случае молнии - гром).

Напряжение зажигания искрового разряда, как правило, достаточно велико. Напряженность электрического поля в искре понижается от нескольких десятков киловольт на сантиметр (кв/см) в момент пробоя до ~100 вольт на сантиметр (в/см) спустя несколько микросекунд. Максимальная сила тока в мощном искровом разряде может достигать значений порядка нескольких сотен тысяч ампер.

Особый вид искрового разряда - скользящий искровой разряд , возникающий вдоль поверхности раздела газа и твёрдого диэлектрика, помещенного между электродами, при условии превышения напряженностью поля пробивной прочности воздуха. Области скользящего искрового разряда, в которых преобладают заряды какого-либо одного знака, индуцируют на поверхности диэлектрика заряды другого знака, вследствие чего искровые каналы стелются по поверхности диэлектрика, образуя при этом так называемые фигуры Лихтенберга . Процессы, близкие к происходящим при искровом разряде, свойственны также кистевому разряду, который является переходной стадией между коронным и искровым.

Поведение искрового разряда очень хорошо можно разглядеть на замедленной съёмке разрядов (Fимп.=500 Гц,U=400 кВ) , полученных с трансформатора Тесла. Средний ток и длительность импульсов недостаточна для зажигания дуги, но для образования яркого искрового канала вполне пригодна.

Примечания

Источники

  • А. А. Воробьев, Техника высоких напряжений. - Москва-Ленинград, ГосЭнергоИздат, 1945.
  • Физическая энциклопедия, т.2 - М.:Большая Российская Энциклопедия стр.218 .
  • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М .: Наука, 1992. - 536 с. - ISBN 5-02014615-3

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Искровой разряд" в других словарях:

    - (искра), неустановившийся электрич. разряд, возникающий в том случае, когда непосредственно после пробоя разрядного промежутка напряжение на нём падает в течение очень короткого времени (от неск. долей мкс до сотен мкс) ниже величины напряжения… … Физическая энциклопедия

    искровой разряд - Электрический импульсный разряд в форме светящейся нити, происходящий при высоком давлении газа и характеризующийся большой интенсивностью спектральных линий ионизированных атомов или молекул. [ГОСТ 13820 77] искровой разряд Полный разряд в… … Справочник технического переводчика

    - (искра электрическая) нестационарный электрический разряд в газе, возникающий в электрическом поле при давлении газа до нескольких атмосфер. Отличается извилистой разветвленной формой и быстрым развитием (ок. 10 7 с). Температура в главном канале … Большой Энциклопедический словарь

    Kibirkštinis išlydis statusas T sritis fizika atitikmenys: angl. spark discharge vok. Funkenentladung, f; Funkentladung, f rus. искровой разряд, m pranc. décharge par étincelles, f … Fizikos terminų žodynas

    Искра, одна из форм электрического разряда в газах; возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом «треском» искры. В природных условиях И. р. наиболее часто наблюдается в виде молнии… … Большая советская энциклопедия

    Искра электрическая, нестационарный электрический разряд в газе, возникающий в электрич. поле при давлении газа до неск. сотен кПа. Отличается извилистой разветвлённой формой и быстрым развитием (ок. 10 7 с), сопровождается характерным звуковым… … Большой энциклопедический политехнический словарь

    - (искра электрическая), нестационарный электрич. разряд в газе, возникающий в электрич. поле при давлении газа до неск. атм. Отличается извилистой разветвлённой формой и быстрым развитием (ок. 10 7с). Темп pa в гл. канале И. р. достигает 10 000 К … Естествознание. Энциклопедический словарь

Вопрос 1: Классификация источников зажигания;

ИСТОЧНИК ЗАЖИГАНИЯ - источник энергии, инициирующий загорание. Должен обладать достаточной энергией, температурой и длительностью воздействия.

Как уже было раньше отмечено, горение может возникнуть при влиянии на ГС разнообразных источников зажигания. По природе происхождения источники зажигания можно классифицировать:


  • открытый огонь, раскаленные продукты горения и нагретые ими поверхности;

  • тепловые проявления механической энергии;

  • тепловые проявления электрической энергии;

  • тепловые проявления химических реакций (из этой группы в самостоятельную группу выделены открытый огонь и продукты горения).

Открытый огонь, раскаленные продукты горения и нагретые ими поверхности

Для производственных целей широко используют огонь, огневые печи, реакторы, факелы для сжигания паров и газов. При проведении ремонтных работ часто используют пламя горелок и паяльных ламп, применяют факелы для отогревания замерзших труб, костры для прогрева грунта при сжигании отходов. Температура пламени, а также количество тепла, которое при этом выделяется, достаточны для зажигания почти всех горючих веществ.

Открытое пламя. Пожарная опасность пламени обусловленна температурой факела и временем его влияния на горючие вещества. Например, воспламенение возможно от таких “малокалорийных” ИЗ, как тлеющий окурок сигареты или папиросы, зажженной спички (табл 1).

Источники открытого огня - факелы - нередко используют для разогрева застывшего продукта, для освещения при осмотре аппаратов в темноте, например, при измерении уровня жидкостей, при разведении костра на территории объектов с наличием ЛВЖ и ГЖ.

Высоконагретые продукты горения - газообразные продукты горения, которые получаются при горении твердых, жидких и газообразных веществ и могут достигать температур 800-1200оС. Пожарную опасность представляет выход высоконагретых продуктов через неплотности в кладке топок, дымовых каналов.

Производственными источниками зажигания также являются искры, которые возникают при работе топок и двигателей. Они представляют собой твердые раскаленные частицы топлива или окалины в газовом потоке, которые получаются в результате неполного сгорания или механического выноса горючих веществ и продуктов коррозии. Температура такой твердой частицы достаточно высокая, но запас тепловой энергии (W) небольшой из-за маленькой массы искры. Искра способна зажечь только вещества, достаточно подготовленные к горению (газо-паровоздушные смеси, осевшая пыль, волокнистые материалы).

Топки “искрят” из-за конструктивных недостатков; из-за использования сорта топлива, на который топка не расcчитана; из-за усиленного дутья; из-за неполного сгорания топлива; из-за недостаточного распыления жидкого топлива, а также из-за не соблюдения сроков чистки печей.

Искры и нагар при работе ДВС образуются при неправильном регулировании системы подачи топлива, электрозажигания; при загрязнении топлива смазочными маслами и минеральными примесями; при продолжительной работе двигателя с перегрузками; при нарушении сроков очистки выхлопной системы от нагара.

Пожарная опасность искр котельных, труб паровозов и тепловозов, а также других машин, костра в значительной степени определяются их размером и температурой. Установлено, что искра d = 2 мм пожароопасна, если имеет t » 1000°С; d=3 мм - 800°С; d = 5 мм - 600°С.

Опасные тепловые проявления механической энергии

В производственных условиях пожароопасное повышение температуры тел в результате преобразования механической энергии в тепловую наблюдается:


  • при ударах твердых тел (с образованием или без образования искр);

  • при поверхностном трении тел во время их взаимного перемещения;

  • при механической обработке твердых материалов режущим инструментом;

  • при сжатии газов и прессовании пластмасс.

Степень разогрева тел и возможность появления при этом источника зажигания зависит от условий перехода механической энергии в тепловую.

Искры, которые получаются при ударах твердых тел.

Размеры искр удара и трения, которые представляют собой раскаленную до свечения частичку металла или камня, обычно не превышают 0,5 мм. Температура искр нелегированных малоугольных сталей может достигать температуры плавления металла (около 1550оС).

В производственных условиях от удара искр воспламеняются ацетилен, этилен, водород, оксид углерода, сероуглерод, метано-воздушная смесь и другие вещества.

Чем больше в смеси кислорода, тем интенсивнее горит искра, тем выше горючесть смеси. Искра, которая летит, непосредственно не воспламеняет пылевоздушной смеси, но, попав на осевшую пыль или на волокнистые материалы, вызовет появление очагов тления. Так на мукомольных, ткацких и хлопкопрядильных предприятиях около 50% всех пожаров возникает от искр, которые высекаются при ударах твердых тел.

Искры, которые получаются при ударах алюминиевых тел о стальную окисленную поверхность, приводят к химическому воздействию с выделением значительного количества тепла.

Искры, образующиеся при попадании в машины металла или камней.

В аппаратах с мешалками, дробилках, аппаратах-смесителях и других, в том случае, если вместе с обрабатываемыми продуктами попадают куски металла или камни, могут образовываются искры. Искры образуются также при ударах подвижных механизмов машин об их неподвижные части. В практике нередко бывает так, что ротор центробежного вентилятора сталкивается со стенками кожуха или игольчатыми и ножевыми барабанами волокноотделительных и трепальных машин, которые быстро вращаются, ударяются о неподвижные стальные решетки. В таких случаях наблюдается искрообразование. Оно возможно и при неправильном регулировании зазоров, при деформации и вибрации валов, изнашивании подшипников, перекосах, недостаточном креплении на валах режущего инструмента. В таких случаях возможно не только искрообразование, но и поломка отдельных частей машин. Поломка узла машины, в свою очередь, может быть причиной образования искр, так как частицы металла попадают при этом в продукт.

Зажигание горючей среды от перегрева при трении.

Всякое перемещение соприкасающихся друг с другом тел требует затраты энергии на преодоление работы сил трения. Эта энергия в основном превращается в теплоту. При нормальном состоянии и правильной эксплуатации частей, которые трутся, тепло, которое выделяется своевременно отводится специальной системой охлаждения, а также рассеивается в окружающая среде. Увеличение тепловыделения или уменьшение теплоотвода и теплопотерь, ведет к повышению температуры трущихся тел. По этой причине происходит воспламенение горючей среды или материалов от перегрева подшипников машин, сильно затянутых сальников, барабанов и транспортерных лент, шкивов и приводных ремней, волокнистых материалов при наматывании их на валы машин и апаратов, которые вращаются.

В этом отношении наиболее пожароопасными являются подшипники скольжения сильно нагруженных и высокооборотистых валов. Плохое качество смазки рабочих поверхностей, их загрязнение, перекос валов, перегрузка машин и черезмерное затягивание подшипников - все это может явиться причиной перегрузки. Очень часто корпус подшипников загрязняется отложениями горючей пыли. Это также создает условия для их перегрева.

На объектах, где применяются или обрабатываются волокнистые материалы происходит их загорание при наматывании на вращающиеся узлы (прядильные фабрики, льнозаводы, эксплуатация комбайнов). Волокнистые материалы и соломистые продукты наматываются на валы возле подшипников. Наматывания сопровождается постепенным уплотнением массы, а потом сильным нагреванием ее при трении, обугливанием и воспламенением.

Выделение тепла при сжатии газов.

Значительное количество тепла выделяется при сжатии газов в результате межмолекулярного движения. Неисправность или отсутствие системы охлаждения компрессоров может привести к их разрушению при взрыве.

Опасные тепловые проявления химических реакций

В условиях производства и хранения химических веществ встречается большое количество таких химических соединений, контакт которых с воздухом или водой, а также взаимный контакт друг с другом может быть причиной возникновения пожара.

1) Химические реакции, которые протекают с выделением значительного количества тепла, имеют потенциальную опасность возникновения пожара или взрыва, так как возможный неконтролируемый процес разогрева реагирующих, вновь образующихся или рядом находящихся горючих веществ.

2) Вещества, которые самовоспламеняются и самовозгораются при контакте с воздухом.

3) Нередко, по условиям технологического процеса, вещества, находящиеся в апаратах, могут быть нагретые до температуры, превышающей температуру их самовозгорания. Так, продукты пиролиза газа при получении этилена из нефтепродуктов имеют температуру самовоспламенения в границах 530 – 550оС, а выходят из печей пиролиза при температуре 850оС. Мазут с температурой самовоспламенения 380 – 420оС на установках термического крекинга нагревается до 500оС; бутан и бутилен, который имеют температуру самовоспламенения соответственно 420оС и 439оС, при получении бутадиена нагревается до 550 – 650оС и т. д. При выходе наружу этих веществ происходит их самовоспламенение.

4) Иногда вещества в технологических процесах имеют очень низкую температуру самовоспламенения:

Триэтилалюминий - Al (C2H5)3 (-68°С);

Диэтилалюминийхлорид - Al (C2H5)2Сl (-60°С);

Триизобутилалюминий (-40°С);

Фтористый водород, жидкий и белый фосфор - ниже комнатной.

5) Многие вещества при контакте с воздухом способны к самовозгоранию. Самовозгорание начинается при температуре окружающей среды или после некоторого преварительного их подогрева. К таким веществам следует отнести растительные масла и жиры, сернистые соединения железа, некоторые сорта сажи, порошковидные вещества (алюминий, цинк, титан, магний и т.п.), сено, зерно в силосах и т.п.

Контакт самовоспламеняющихся химических веществ с воздухом происходит обычно при повреждении тары, разливе жидкости, расфасовке веществ, при сушении, открытом хранении твердых измельченных, а также волокнистых материалов, при откачке жидкостей из резервуаров, когда внутри резервуаров есть самовоспламеняющиеся отложения.

Вещества, которые воспламеняются при взаимодействии с водой.

На промышленных объектах имеется значительное количество веществ, воспламеняющихся при взаимодействии с водой. Выделяющееся при этом тепло может вызвать воспламенение образующихся или примыкающих к зоне реакции горючих веществ. К веществам, воспламеняющимся или вызывающим горение при соприкосновении с водой, следует отнести щелочные металлы, карбид кальция, карбиды щелочных металлов, сернистый натрий и др. Многие из этих веществ при взаимодействии с водой образуют горючие газы, воспламеняющиеся от теплоты реакции:

2К +2Н2О=КОН+Н2+Q.

При взаимодействии небольшого количества (3...5 г) калия и натрия с водой температура поднимается выше 600...650оС. Если взаимодействуют в большом количестве, происходят взрывы с разбрызгиванием расплавленного металла. В дисперсном состоянии щелочные металлы загораются во влажном воздухе.

Некоторые вещества, например негашеная известь, являются негорючими, но теплота реакции их с водой может нагреть горючие материалы, которые находятся рядом, до температуры самовоспламенения. Так, при контакте воды с негашеной известью температура в зоне реакции может достичь 600оС:

Са + Н2О = Са(ВОН)2 + Q.

Известны случаи пожаров в птичниках, где в качестве подстилки применялось сено. Пожары возникали после обработки птицеводческих помещений негашеной известью.

Опасен контакт с водой алюминийорганических соединений, так как их взаимодействие с водой происходит со взрывом. Усиление пожара или взрыва, что начались, может произойти при попытках тушить подобные вещества водой или пеной.

Воспламенение химических веществ при взаимоконтакте происходят при действии окислителей на органические вещества. В качестве окислителей выступают хлор, бром, фтор, окислы азота, азотная кислота, кислород и много других веществ.

Окислители при взаимодействии с органическими веществами вызовут их загорание. Некоторые смеси окислителей и горючих веществ способны загоратся при действии на них серной или азотной кислотой или небольшим количеством влаги.

Реакции взаимодействия окислителя с горючим веществом содействует измельченность веществ, его повышенная начальная температура, а также наличие инициаторов химического процеса. В некоторых случаях реакции носят характер взрыва.

Вещества, которые воспламеняются или взрываются при нагревании или механическом воздействии.

Некоторые химические вещества нестойки по природе, способны разлагаться с течением времени под действием температуры, трения, удара и других факторов. Это, как правило, эндотермические соединения, и процесс их разложения связан с выделением большого или меньшего количества тепла. К ним относятся селитры, перекиси, гидроперекиси, карбиды некоторых металлов, ацетилениды, ацетилен и др.

Нарушения технологического регламента, использования или хранения таких веществ, влияние на них источника тепла может привести к взрывному их разложению.

Склонность к взрывному разложению под действием повышенной температуры и давления имеет ацетилен.

Тепловые проявления электрической энергии

При несоответствии электрооборудования характеру технологической среды, а также в случае несоблюдения правил эксплуатации этого электрооборудования может возникнуть пожаровзрывоопасная ситуация на производстве. Пожаровзрывоопасные ситуации возникают в технологических процесах производств при КЗ, при пробоях прослойки изоляции, при чрезмерном перегреве электродвигателей, при повреждениях отдельных участков электрических сетей, при искровых разрядах статического и атмосферного электричества и т.д.

К разрядам атмосферного электричества относятся:


  • Прямые удары молнии. Опасность прямого удара молнии состоит в контакте ГС с каналом молнии, температура в котором достигает 2000оС при времени действия около 100 мкс. От прямого удара молнии воспламеняются все горючие смеси.

  • Вторичные проявления молнии. Опасность вторичного проявления молнии состоит в искровых разрядах, которые возникают в результате индукционного и электромагнитного влияния атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции. Энергия искрового разряда превышает 250 мДж и достаточна для воспламенения горючих веществ из Wmin = 0,25 Дж.

  • Занос высокого потенциала. Занос высокого потенциала в здание происходит по металлическим коммуникациям не только при их прямом поражении молнией, но и при расположении комуникаций в непосредственной близости от молниеотвода. При несоблюдении безопасных расстояний между молниеотводом и коммуникациями, энергия возможных искровых разрядов достигает значений 100 Дж и больше. То есть достаточна для загорания практически всех горючих веществ.
Электрические искры (дуги):

Термическое действие токов КЗ. В результате КЗ происходит термическое действие на проводник, который нагревается до высоких температур и может являться ИЗ горючей среды.

Электрические искры (капли металла). Электрические искры образуются при КЗ электропроводки, электросварке и при плавлении электродов электрических ламп накаливания общего назначения.

Размер капель металла при КЗ электропроводки и плавлении нити накаливания электроламп достигает 3 мм, а при электросварке 5 мм. Температура дуги при электросварке достигает 4000 оС, поэтому дуга будет источником зажигания для всех горючих веществ.

Электрические лампы накаливания. Пожарная опасность светильников обусловлена возможностью контакта ГС с колбой электрической лампы накаливания, нагретой выше температуры самовоспламенения ГС. Температура нагревания колбы электрической лампочки зависит от ее мощности, размеров и расположения в пространстве.

Искры статического электричества. Разряды статического электричества могут образоваться при транспортировании жидкостей, газов и пыли, при ударах, измельчении, распылении и подобных процессах механического влияния на материалы и вещества, являющиеся диэлектриками.

Вывод: Для обеспечения безопасности технологических процессов, в которых возможен контакт горючих веществ с источниками зажигания, необходимо точно знать их природу для исключения воздействия на среду.

Вопрос 2: Профилактические мероприятия исключающие воздействия источников зажигания на горючую среду.;

Противопожарные мероприятия, которые исключают контакт горючей среды (ГС) с открытым пламенем и раскаленными продуктами горения.

Для обеспечения пожаровзрывобезопасности технологических процессов, процессов переработки, хранения и транспортирования веществ и материалов необходимы разработка и внедрение инженерно-технических мероприятий, которые предотвращают образование или внесение в ГС источника зажигания.

Как было отмечено раньше, не каждое нагретое тело может быть источником зажигания, а только те нагретые тела, которые способны нагреть некоторый объем горючей смеси до определенной температуры, когда скорость тепловыделения равняется либо превышает скорость теплоотвода из зоны реакции. В этом случае мощность и продолжительность теплового влияния источника должны быть такие, чтобы на протяжении определенного времени поддерживались критические условия, необходимые для формирования фронта пламени. Поэтому, зная эти условия (условия формирования ИЗ), можно создать такие условия ведения технологических процессов, которые исключали бы возможность образования источников зажигания. В тех случаях, когда условия безопасности не выполняются, внедряют инженерно-технические решения, которые разрешают исключить контакт ГС с источниками зажигания.

Основным инженерно-техническим решением, которое исключает контакт горючей среды с открытым пламенем, раскаленными продуктами сгорания, а также высоконагретыми поверхностями является изоляция их от возможного соприкосновения как при нормальной работе оборудования, так и при авариях.

При проектировании технологических процессов с наличием аппаратов “огневого” действия (трубчатые печи, реакторы, факелы) необходимо предусматривать изоляцию этих установок от возможного столкновения с ними горючих паров и газов. Это достигается:


  • размещением установок в закрытых помещениях, обособленных от других аппаратов;

  • размещением на открытых площадках между “огневыми” аппаратами и пожароопасными установками защитных преград. Например, размещения закрытых сооружений, которые выполняют роль преграды.

  • соблюдением пожаробезопасных регламентированных разрывов между аппаратами;

  • применением паровых завес в тех случаях, когда невозможно обеспечить пожаробезопасное расстояние;

  • обеспечением безопасного конструктивного выполнения факельных горелок устройствами беспрерывного сжигания, схема которого приведена на рис. 1.

Рисунок 1 - Факел для сжигания газов: 1 - линия подачи водяного пара; 2 - линия поджигания очередной горелки; 3 - линия подачи газа к очередной горелке; 4 - горелка; 5 - ствол факела; 6 - огнепреградитель; 7 - сепаратор; 8 - линия, по которой подводят газ на сжигание.

Поджигание газовой смеси в очередной горелке осуществляют с помощью так называемого пламени, которое бежит, (предварительно подготовленная горючая смесь поджигается электрозапалом и пламя, перемещаясь вверх, производит поджиг газа горелки). Чтобы уменьшить образование дыма и искр, к факельной горелке подводят водяной пар.


  • исключением образования “малокалорийных” ИЗ (на объектах курение разрешается только в специально оборудованных местах).

  • использованием горячей воды или водяного пара для отогревания замерзших участков технологического оборудования вместо факелов (оборудование открытых стоянок автомобилей системами подачи горячего воздуха) или индукционных грелок.

  • очисткой трубопроводов и вентиляционных систем от горючих отложений пожаробезопасным средством (пропарка и механическая очистка). В исключительных случаях допускается выжигание отходов после демонтажа трубопроводов на специально отведенных участках и постоянных местах проведения огневых работ.

  • контролем за состоянием кладки дымовых каналов при эксплуатации топок и ДВС, не допускать неплотности и прогаров выхлопных труб.

  • защитой высоконагретых поверхностей технологического оборудования (камеры ретурбентов) теплоизоляцией с защитными кожухами. Предельно допустимая температура поверхности не должна превышать 80% температуры самовоспламенения горючих веществ, которые обращаются в производстве.

  • предупреждением опасного проявления искр топок и двигателей. На практике данное направление защиты достигается предупреждением образования искр и использованием специальных устройств для улавливания и их тушения. Для предупреждения образования искр предусматривают: автоматическое поддержание оптимальной температуры подаваемой на сжигание горючей смеси; автоматическое регулирование оптимального соотношения между топливом и воздухом в горючей смеси; предупреждение продолжительной работы топок и двигателей в форсированном режиме, с перегрузкой; использование тех видов топлива, на которые рассчитаны топка и двигатель; систематическая очистка внутренних поверхностей топок, дымовых каналов от сажи и выпускных коллекторов двигателей от нагаромаслянных отложений и т.п.

Для улавливания и тушения искр, которые образуются при работе топок и двигателей, применяют искроулавливатели и искрогасители, работа которых основана на использовании гравитационных (осадочных камер), инерционных (камер с перегородками, сетками, насадками), центробежных сил (циклонные и турбинно-вихревые камеры).

Наибольшее распространение на практике получили искроулавливатели гравитационного, инерционного и центробежного типа. Ими оборудуют, например, дымовые каналы дымогазовых сушилок, системы выпуска выхлопных газов автомобилей и тракторов.

Для обеспечения глубокой очистки топочных газов от искр на практике часто применяют не один, а несколько разнообразных типов искроулавливателей и искрогасителей, которые соединяют между собою последовательно. Многоступенчатое искроулавливание и тушение надежно себя зарекомендовало, например, в технологических процессах сушки измельченных горючих материалов, где в качестве теплоносителя используются дымовые топочные газы в смеси с воздухом.

Противопожарные мероприятия, которые исключают опасные тепловые проявления механической энергии

Предотвращение образования источников зажигания от опасных тепловых влияний механической энергии является актуальной задачей на взрывопожароопасных объектах, а также на объектах, где применяются или перерабатываются пыль и волокна.

Для предотвращения образования искр при ударах, а также выделении тепла при трении применяются такие организационные и технические решения:

Применение искробезопасного инструмента. В местах возможного образования взрывоопасных смесей паров или газов необходимо применять взрывобезопасный инструмент. Искробезопасными считают инструменты, выполненные из бронзы, фосфористой бронзы, латуни, берилия и др.

Пример: 1. Искробезопасные башмаки торможения ж.д. цистерн.2. Латунный инструмент для открывания барабанов с карбидом кальция на ацетиленовых станциях.

Применение магнитных, гравитационных или инерционных улавливателей. Так, для очистки хлопка-сырца от камней перед поступлением его в машины устанавливают гравитационные или инерционные камнеулавливатели. Металлические примеси в сыпучих и волокнистых материалах улавливают также магнитными сепараторами. Такие устройства широко применяются в мукомольном и крупяном производстве, а также на комбикормовых заводах.

Если есть опасность попадания в машину твердых немагнитных примесей, осуществляют, во-первых, тщательную сортировку сырья, во-вторых, внутреннюю поверхность машин, об которую эти примеси могут удариться, футеруют мягким металлом, резиной или пластмассой.

Предотвращение возникновения ударов подвижных механизмов машин об их неподвижные части. Основные пожарно-профилактические мероприятия, направленные на предотвращение образования искр удара и трения, сводятся к тщательному регулированию и балансированию валов, правильному отбору подшипников, проверке величины зазоров между подвижными и неподвижными частями машин, их надежному креплению, которое исключает возможность продольных перемещений; предотвращению перегрузки машин.

Выполнение во взрывопожароопасных помещениях полов, которые не искрят. Повышенные требования по искробезопасности выдвигаются к производственным помещениям с наличием ацетилена, этилена, окиси углерода, сероуглерода и др., полы и площадки которых выполняют из материала, который не образует искр, или выстилают резиновыми ковриками, дорожками и т.п.

Предотвращение загорания веществ в местах интенсивного тепловыделения при трении. С этой целью для предупреждения перегрева подшипников осуществляют замену подшипников скольжения на подшипники качения (там, где существует такая возможность). В других случаях осуществляется автоматический контроль температуры их нагревания. Визуальный контроль температуры осуществляется нанесением термовосприимчивых красок, которые изменяют свой цвет при нагревании корпуса подшипника.

Предупреждение перегрева подшипников также достигается: оборудованием автоматических систем охлаждения с применением в качестве хладоагента масел или воды; своевременным и качественным техническим обслуживанием (систематическая смазка, предупреждение чрезмерного затягивания, ликвидация перекосов, очищение поверхности от загрязнений).

Во избежание перегревов и загораний транспортерных лент и приводных ремней нельзя допускать работу с перегрузкой; следует контролировать степень натяжения ленты, ремня, их состояние. Нельзя допускать завалов башмаков элеваторов продукцией, перекосов лент и трение их об кожухи. При использовании мощных высокопроизводительных транспортеров и элеваторов могут применяться устройства и приспособления, которые автоматически сигнализируют о работе с перегрузкой и останавливают движение ленты при завале башмака элеватора.

Для предотвращения наматывания волокнистых материалов на вращающиеся валы машин необходимо их защищать от непосредственного столкновения с обрабатываемыми материалами путем использования втулок, цилиндрических и конических кожухов, кондукторов, направляющих планок, противонамоточных щитов и т.п. Кроме того, устанавливается минимальный зазор между цапфами вала и подшипниками; ведется систематическое наблюдение за валами, где могут быть наматывания, своевременная очистка их от волокон, защита их специальными противонамоточными острыми ножами, которые разрезают волокно, которое наматывается. Такую защиту имеют, например, трепальные машины на льнозаводах.

Предупреждение перегрева компрессоров при сжатии газов.

Предупреждение перегрева компрессоров обеспечивается делением процесса сжатия газов на несколько ступеней; устройством систем охлаждения газа на каждой ступени сжатия; установкой защитного клапана на нагнетательной линии за компрессором; автоматическим контролем и регулированием температуры сжимаемого газа путем изменения расхода охлаждающей жидкости, подаваемой в холодильники; автоматической системой блокирования, которая обеспечивает отключение компрессора в случае увеличения давления или температуры газа в нагнетательных линиях; очисткой теплообменной поверхности холодильников и внутренних поверхностей трубопроводов от нагаромасляных отложений.

Предотвращение образования источников зажигания при тепловых проявлениях химических реакций

Для предотвращения зажигания горючих веществ в результате химического взаимодействия при контакте с окислителем, водой необходимо знать, во-первых, причины, которые могут привести к такому взаимодействию, во-вторых, химию процессов самовоспламенения и самовозгорания. Знание причин и условий образования опасных тепловых проявлений химических реакций позволяет разрабатывать эффективные противопожарные мероприятия, которые исключают их появление. Поэтому основными противопожарными мероприятиями, которые предупреждают опасные тепловые проявления химических реакций являются:

Надежная герметичность аппаратов, которая исключает контакт веществ, нагретых выше температуры самовоспламенения, а также веществ с низкой температурой самовозгорания с воздухом;

Профилактика самовозгорания веществ путем снижения скорости протекания химических реакций и биологических процессов, а также устранение условий аккумуляции тепла;

Снижение скорости протекания химических реакций и биологических процессов осуществляют разнообразными методами: ограничением влажности при хранении веществ и материалов; снижение температуры хранения веществ и материалов (например зерна, комбикормов) путем искусственного охлаждения; хранение веществ в среде с пониженным содержанием кислорода; уменьшение удельной поверхности контакта самовоспламеняющихся веществ с воздухом (брикетирования, гранулирования порошковидных веществ); применение антиокислителей и консервантов (хранение комбикормов); устранение контакта с воздухом и химически активными веществами (перекисними соединениями, кислотами, щелочами и т.п.) путем раздельного хранения самовоспламеняющихся веществ в герметичной таре.

Зная геометрические размеры штабеля и начальную температуру вещества, можно определить безопасный период их хранения.

Устранение условий аккумуляции тепла осуществляется следующим способом:


  • ограничением размеров штабелей, караванов или куч хранимого вещества;

  • активным вентилированием воздуха (сена и других волокнистых растительных материалов);

  • периодическим перемешиванием веществ при их продолжительном хранении;

  • снижением интенсивности образования горючих отложений в технологическом оборудовании с помощью улавливающих устройств;

  • периодической очисткой технологического оборудования от самовоспламеняющихся горючих отложений;
предупреждение воспламенения веществ при взаимодействии с водой или влагой воздуха. С этой целью обеспечивают их защитой от контакта с водой и влажным воздухом путем изолированного хранения веществ этой группы от других горючих веществ и материалов; поддержкой избыточного количества воды (например, в аппаратах для получения ацетилена из карбида кальция).

Предупреждение воспламенения веществ при контакте друг с другом. Пожары от воспламенения веществ при контакте друг с другом предупреждают раздельным складированием, а также устранением причин их аварийного выхода из аппаратов и трубопроводов.

Исключение воспламенения веществ в результате саморазложения при нагревании или механическом воздействии. Предупреждение воспламенения веществ, предрасположенных к взрывному разложению, обеспечивают путем защиты от нагревания до критических температур, механических воздействий (ударов, трения, давления и т.п.).

Профилактика возникновения источников зажигания от тепловых проявлений электрической энергии

Предупреждение опасных тепловых проявлений электрической энергии обеспечивается:


  • правильным выбором уровня и вида взрывозащиты электродвигателей и аппаратов управления, другого электрического и вспомогательного оборудования в соответствии с классом пожаро- или взрывоопасности зоны, категории и группы взрывоопасной смеси;

  • периодическое проведение испытаний сопротивления изоляции электросетей и электрических машин в соответствии с графиком планово-предупредительного ремонта;

  • защита электрооборудования от токов короткого замыкания (КЗ) (применение быстродействующих предохранителей или автоматических выключателей);

  • предупреждение технологической перегрузки машин и аппаратов;

  • предупреждение больших переходных сопротивлений путем систематического обзора и ремонта контактной части электрооборудования;

  • исключение разрядов статического электричества путем заземления технологического оборудования, повышением влажности воздуха или применением антистатических примесей в наиболее вероятных местах генерирования зарядов, ионизация среды в аппаратах и ограничение скорости движения жидкостей, которые электризуются;

  • защита зданий, сооружений, отдельно стоящих аппаратов от прямых ударов молнии молниеотводами и защитой от вторичных ее воздействий.
Вывод по вопросу:

Не следует пренебрегать мерами пожарной пофилактики на предприятиях. Так как любые сэкономленные средства на противопожарной защите будут несоизмеримо малы в сравнении с убытками от пожара, возникшего по этой причине.

Вывод по занятию:

Исключение воздействия источника зажигания на вещества и материалы является одним из основных мероприятий исключающим возникновение пожара. На тех объектах где не удается исключить пожарную нагрузку, особое внимание уделяется исключению источника зажигания.

Расчет параметров источников пожара (взрыва)

На этом этапе необходимо оценить возможность источников зажигания инициировать горючие вещества.

В расчете принято четыре источника зажигания:

а) вторичное действие молнии;

б) искры короткого замыкания;

в) искры электросварки;

г) колба лампы накаливания.

д) горящую изоляцию электрокабеля (провода)

Вторичное воздействие молнии

Опасность вторичного воздействия молнии заключается в искровых разрядах, возникающих в результате индукционного и электромагнитного воздействия атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции. Энергия искрового разряда превышает 250 мДж и достаточна для воспламенения горючих веществ с минимальной энергией зажигания до 0,25 Дж.

Вторичное действие удара молнии опасно для газа, который заполнил весь объём помещения.

Термическое действие токов короткого действия

Ясно, что при коротком замыкании, когда отказывает аппарат защиты, появившиеся искры способны воспламенить ЛВЖ и взорвать газ (эта возможность оценивается ниже). Когда срабатывает защита, ток короткого замыкания длится короткое время и способен только воспламенить поливинилхлоридную проводку.

Температура проводника t пр о С, нагреваемого током короткого замыкания, вычисляется по формуле

где t н - начальная температура проводника, о С;

I к.з. - ток короткого замыкания, А;

R - сопротивление (активное) проводника, Ом;

к.з. - продолжительность короткого замыкания, с;

С пр - теплоёмкость материала провода, Дж*кг -1 *К -1 ;

m пр - масса провода, кг.

Чтобы проводка воспламенилась необходимо, чтобы температура t пр была больше температуры воспламенения поливинилхлоридной проводки t вос.пр. =330 о С.

Начальную температуру проводника принимаем равной температуре окружающей среде 20 о С. Выше в главе 1.2.2 были рассчитаны активное сопротивление проводника (Ra=1,734 Ом) и ток короткого замыкания (I к.з. =131,07 А). Теплоёмкость меди С пр =400 Дж*кг -1 *К -1 . Масса провода есть произведение плотности на объём, а объём - произведение длины L на площадь сечения проводника S

m пр =*S*L (18)

По справочнику находим значение =8,96*10 3 кг/м 3 . В формулу (18) подставляем значение площади сечения второго провода, из табл. 11, самого короткого, то есть L=2 м и S=1*10 -6 м. Масса провода равна

m пр =8,96*10 3 *10 -6 *2=1,792*10 -2

При продолжительности короткого замыкания к.з. =30 мс, по табл.11, проводник нагреется до температуры

Данной температуры не хватит, чтобы воспламенить поливинилхлоридную проводку. А если отключит защита, то необходимо будет посчитать вероятность загорания поливинилхлоридной проводки.

Искры короткого замыкания

При коротком замыкании возникают искры, которые имеют начальную температуру 2100 о С и способны воспламенить ЛВЖ и взорвать газ.

Начальная температура медной капли 2100 о С . Высота, на которой происходит короткое замыкание, 1 м, а расстояние до лужи ЛВЖ 4 м. Диаметр капли d к =2,7 мм или d к =2,7*10 -3 .

Количество теплоты, которое капля металла способна отдать горючей среде при остывании до температуры её воспламенения, рассчитывается следующим образом: среднюю скорость полёта капли металла при свободном падении w ср, м/с, вычисляют по формуле

где g - ускорение свободного падения, 9,81 м/с 2 ;

Н - высота падения, 1 м.

Получаем, что средняя скорость полёта капли при свободном падении

Продолжительность падения капли может быть рассчитана по формуле

Затем вычисляют объём капли Vк по формуле

Масса капли m к, кг:

где - плотность металла в расплавленном состоянии, кг*м -3 .

Плотность меди в расплавленном состоянии (по данным преподавателя) равна 8,6*10 3 кг/м 3 , а масса капли по формуле (22)

m к =8,6*10 3 *10,3138*10 -9 =8,867*10 -5

Время полёта капли металла в расплавленном (жидком) состоянии р, с.:

где С р - удельная теплоёмкость расплава материала капли, для меди С р =513 Дж*кг -1 *К -1 ;

S к - площадь поверхности капли, м 2 , S к =0,785d к 2 =5,722*10 -6 ;

Т н, Т пл - температура капли в начале полёта и температура плавления металла, соответственно, Т н =2373 К, Т пл =1083 К ;

Т о - температура окружающего воздуха, Т о =293 К;

Коэффициент теплоотдачи, Вт*м -2 *К -1 .

Коэффициент теплоотдачи рассчитывается следующей последовательности:

1) сначала вычисляют число Рейнольдса

где v=1,51*10 -5 1/(м 2 *с) - коэффициент кинематической вязкости воздуха при температуре 293 К,

где =2,2*10 -2 Вт*м -1 *К -1 - коэффициент теплопроводности воздуха,

1*10 2 Вт*м -2 *К -1 .

Рассчитав коэффициент теплоотдачи найдем время полёта капли металла в расплавленном (жидком) состоянии по формуле (23)

Так как < р, то конечную температуру капли определяют по формуле

Температура самовоспламенения пропана 466 о С, а температура капли (искры) к моменту подлета её к луже ЛВЖ 2373 К или 2100 о С. При данной температуре изопрен возгорится и будет устойчиво гореть, а пропан взорвется ещё при возникновении искры короткого замыкания. Температура вспышки изопрена -48 0 С.

Страница 5 из 14

Удары твердых тел с образованием искр.

При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называют искрами удара или трения.

Искры представляют собой нагретые до высокой температуры (раскаленные) частицы металла или камня (в зависимости от того, какие твердые тела участвуют в соударении) размером от 0,1 до 0,5 мм и более.

Температура искр удара из обычных конструкционных сталей достигает температуры плавления металла - 1550 °С.

Несмотря на высокую температуру искры ее воспламеняющая способность сравнительно невысока, т. к. из-за малых размеров (массы) запас тепловой энергии искры очень мал. Искры способны воспламенить парогазовоздушные смеси, имеющие малый период индукции, небольшую минимальную энергию зажигания. Наибольшую опасность в этой связи представляют ацетилен, водород, этилен, оксид углерода и сероуглерод.

Воспламеняющая способность искры, находящейся в покое, выше летящей, так как неподвижная искра медленнее охлаждается, она отдает тепло одному и тому же объему горючей среды и, следовательно, может его нагреть до более высокой температуры. Поэтому искры, находящиеся в покое, способны воспламенить даже твердые вещества в измельченном виде (волокна, пыли).

Искры в условиях производства образуются при работе с инструментом ударного действия (гаечными ключами, молотками, зубилами и т. п.), при попадании примесей металла и камней в машины с вращающимися механизмами (аппараты с мешалками, вентиляторы, газодувки и т. п.), а также при ударах подвижных механизмов машины о неподвижные (молотковые мельницы, вентиляторы, аппараты с откидными крышками, люками и т. п.).

Мероприятия по предупреждению опасного проявления искр от удара и трения:

  1. Применение во взрывоопасных зонах (помещениях) применять искробезопасного инструмента.
  2. Обдув чистым воздухом места производства ремонтных и др. работ.
  3. Исключение попадания в машины металлических примесей и камней (магнитные уловители и камнеуловители).
  4. Для предупреждения искр от ударов подвижных механизмов машин о неподвижные:
    1. тщательная регулировка и балансировка валов;
    2. проверка зазоров между этими механизмами;
    3. недопущение перегрузки машин.
  5. Применять искробезопасные вентиляторы для транспортировки паро- и газовоздушных смесей, пылей и твердых горючих материалов.
  6. В помещениях получения и хранения ацетилена, этилена и т.п. полы выполнять из неискрящего материала или застилать их резиновыми ковриками.

Поверхностное трение тел.

Перемещение относительно друг друга соприкасающихся тел требует затраты энергии на преодоление сил трения. Эта энергия почти целиком превращается в теплоту, которая, в свою очередь, зависит от вида трения, свойств трущихся поверхностей (их природы, степени загрязнения, шероховатости), от давления, размера поверхности и начальной температуры. При нормальных условиях выделяющееся тепло своевременно отводится, и этим обеспечивается нормальный температурный режим. Однако при определенных условиях температура трущихся поверхностей может повыситься до опасных значений, при которых они могут стать источником зажигания.

Причинами роста температуры трущихся тел в общем случае является увеличение количества тепла или уменьшение теплоотвода. По этим причинам в технологических процессах производств происходят опасные перегревы подшипников, транспортных лент и приводных ремней, волокнистых горючих материалов при наматывании их на вращающиеся валы, а также твердых горючих материалов при их механической обработке.

Мероприятия по предупреждению опасного проявления поверхностного трения тел:

  1. Замена подшипников скольжения на подшипники качения.
  2. Контроль за смазкой, температурой подшипников.
  3. Контроль за степенью натяжения транспортерных лент, ремней, не допущение работы машин с перегрузкой.
  4. Замена плоскоременных передач на клиноременные.
  5. Для предупреждения наматывания волокнистых материалов на вращающиеся валы используют:
    1. применение свободнонасаженных втулок, кожухов и т.п. для защиты открытых участков валов от контакта с волокнистым материалом;
    2. предотвращение перегрузки;
    3. устройство специальных ножей для срезания наматывающихся волокнистых материалов;
    4. установка минимальных зазоров между валом и подшипником.
  6. При механической обработке горючих материалов необходимо:
    1. соблюдать режим резания,
    2. своевременно затачивать инструмент,
    3. использовать локальное охлаждения места резания (эмульсии, масла, вода и т.п.).

4.9. На основании собранных данных вычисляют коэффициент безопасности K s в следующей последовательности.
4.9.1. Вычисляют среднее время существования пожаровзрывоопасного события (t0) (среднее время нахождения в отказе) по формуле
(68)
где tj - время существования i -го пожаровзрывоопасного события, мин;
m - общее количество событий (изделий);
j - порядковый номер события (изделия).
4.9.2. Точечную оценку дисперсии (D 0) среднего времени существования пожаровзрывоопасного события вычисляют по формуле
(69)
4.9.3. Среднее квадратическое отклонение () точечной оценки среднего времени существования события - t0 вычисляют по формуле
(70)
4.9.4. Из табл. 5 выбирают значение коэффициента t b в зависимости от числа степеней свободы (m -1) при доверительной вероятности b=0,95.
Таблица 5

m -1
1
2
От 3 до 5
От 6 до 10
От 11 до 20
20
t b
12,71
4,30
3,18
2,45
2,20
2,09

4.9.5. Коэффициент безопасности (K б) (коэффициент, учитывающий отклонение значения параметра t0, вычисленного по формуле (68), от его истинного значения) вычисляют из формулы
(71)
4.9.6. При реализации в течение года только одного события коэффициент безопасности принимают равным единице.
5. Определение пожароопасных параметров тепловых источников интенсивности отказов элементов
5.1. Пожароопасные параметры тепловых источников
5.1.1. Разряд атмосферного электричества
5.l.l.l. Прямой удар молнии
Опасность прямого удара молнии заключается в контакте горючей среды с каналом молнии, температура в котором достигает 30000°С при силе тока 200000 А и времени действия около 100 мкс. От прямого удара молнии воспламеняются все горючие среды.
5.1.1.2. Вторичное воздействие молнии
Опасность вторичного воздействия молнии заключается в искровых разрядах, возникающих в результате индукционного и электромагнитного воздействия атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции. Энергия искрового разряда превышает 250 мДж и достаточна для воспламенения горючих веществ с минимальной энергией зажигания до 0,25 Дж.
5.1.1.3. Занос высокого потенциала
Занос высокого потенциала в здание происходит по металлическим коммуникациям не только при их прямом поражении молнией, но и при расположении коммуникаций в непосредственной близости от молниеотвода. При соблюдении безопасных расстояний между молниеотводами и коммуникациями энергия возможных искровых разрядов достигает значений 100 Дж и более, то есть достаточна для воспламенения всех горючих веществ.
5.1.2. Электрическая искра (дуга)
5.1.2.1. Термическое действие токов короткого замыкания
Температуру проводника (t пр), °С, нагреваемого током короткого замыкания, вычисляют по формуле
(72)
где t н - начальная температура проводника, °С;
I к.з - ток короткого замыкания, А;
R - сопротивление проводника, Oм;
tк.з - время короткого замыкания, с;
С пр - теплоемкость проводника, Дж×кг-1×К-1;
m пр - масса проводника, кг.
Воспламеняемость кабеля и проводника с изоляцией зависит от значения кратности тока короткого замыкания I к.з, т. е. от значения отношения I к.з к длительно допустимому току кабеля или провода. Если эта кратность больше 2,5, но меньше 18 для кабеля и 21 для провода, то происходит воспламенение поливинилхлоридной изоляции.
5.1.2.2. Электрические искры (капли металла)
Электрические искры (капли металла) образуются при коротком замыкании электропроводки, электросварке и при плавлении электродов электрических ламп накаливания общего назначения. Размер капель металла при этом достигает 3 мм (при потолочной сварке - 4 мм). При коротком замыкании и электросварке частицы вылетают во всех направлениях, и их скорость не превышает 10 и 4 м×с-1 соответственно. Температура капель зависит от вида металла и равна температуре плавления. Температура капель алюминия при коротком замыкании достигает 2500 °С, температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100 °C. Размер капель при резке металла достигает 15-26 мм, скорость - 1 м×с-1 температура 1500 °C. Температура дуги при сварке и резке достигает 4000 °С, поэтому дуга является источником зажигания всех горючих веществ.
Зона разлета частиц при коротком замыкании зависит от высоты расположения провода, начальной скорости полета частиц, угла вылета и носит вероятностный характер. При высоте расположения провода 10 м вероятность попадания частиц на расстояние 9 м составляет 0,06; 7м-0,45 и 5 м-0,92; при высоте расположения 3 м вероятность попадания частиц на расстояние 8 м составляет 0,01, 6 м - 0,29 и 4 м- 0,96, а при высоте 1 м вероятность разлета частиц на 6 м- 0,06, 5 м - 0,24, 4 м - 0,66 и 3 м - 0,99.
Количество теплоты, которое капля металла способна отдать горючей среде при остывании до температуры ее самовоспламенения, рассчитывают следующим способом.
Среднюю скорость полета капли металла при свободном падении (wк), м×с-1, вычисляют по формуле
(73)
где g =9,8l м×с-1 - ускорение свободного падения;
Н - высота падения, м.
Объем капли металла (V к), м3, вычисляют по формуле
(74)
где d k - диаметр капли, м.
Массу капли (m k), кг, вычисляют по формуле
(75)
где r - плотность металла, кг×м-3.
В зависимости от продолжительности полета капли возможны три ее состояния: жидкое, кристаллизации, твердое.
Время полета капли в расплавленном (жидком) состоянии (tp), с, рассчитывают по формуле
(76)
где C p - удельная теплоемкость расплава металла, Дж×к-1К-1;
m k - масса капли, кг;
S k=0,785 - площадь поверхности капли, м2;
Т н, Т пл - температура капли в начале полета и температура плавления металла соответственно, К;
Т 0 - температура окружающей среды (воздуха), К;
a - коэффициент теплоотдачи, Вт, м-2 К-1.
Коэффициент теплоотдачи определяют в следующей последовательности:
а) вычисляют число Рейнольдса по формуле
(77)
где d k - диаметр капли м;
v = 15,1×10-6 - коэффициент кинематической вязкости воздуха при температуре 20°С, м-2×с-1.
б) вычисляют критерий Нуссельта по формуле
(78)
в) вычисляют коэффициент теплоотдачи по формуле
, (79)
где lВ=22×10-3 - коэффициент теплопроводности воздуха, Вт×м-1× -К-1.
Если t£tр, то конечную температуру капли определяют по формуле
(80)
Время полета капли, в течение которого происходит ее кристаллизация, определяют по формуле
(81)
где С кр - удельная теплота кристаллизации металла, Дж×кг-1.
Если tр (82)
Если t>(tр+tкр), то конечную температуру капли в твердом состоянии определяют по формуле
(83)
где С к - удельная теплоемкость металла, Дж кг -1×K-1.
Количество тепла (W ), Дж, отдаваемое каплей металла твердому или жидкому горючему материалу, на который она попала, вычисляют по формуле
(84)
где Т св - температура самовоспламенения горючего материала, К;
К - коэффициент, равный отношению тепла, отданного горючему веществу, к энергии, запасенной в капле.
Если отсутствует возможность определения коэффициента К , то принимают К =1.
Более строгое определение конечной температуры капли может быть проведено при учете зависимости коэффициента теплоотдачи от температуры.
5.1.2.3. Электрические лампы накаливания общего назначения
Пожарная опасность светильников обусловлена возможностью контакта горючей среды с колбой электрической лампы накаливания, нагретой выше температуры самовоспламенения горючей среды. Температура нагрева колбы электрической лампочки зависит от мощности лампы, ее размеров и расположения в пространстве. Зависимость максимальной температуры на колбе горизонтально расположенной лампы от ее мощности и времени приведена на черт. 3.


Черт. 3

5.1.2.4. Искры статического электричества
Энергию искры (W и), Дж, способной возникнуть под действием напряжения между пластиной и каким-либо заземленным предметом, вычисляют по запасенной конденсатором энергии из формулы
(85)
где С - емкость конденсатора, Ф;
U - напряжение, В.
Разность потенциалов между заряженным телом и землей измеряют электрометрами в реальных условиях производства.

Если W и³0,4 W м.э.з (W м.э.з ¾ минимальная энергия зажигания среды), то искру статического электричества рассматривают как источник зажигания.
Реальную опасность представляет “контактная” электризация людей, работающих с движущимися диэлектрическими материалами. При соприкосновении человека с заземленным предметом возникают искры с энергией от 2,5 до 7,5 мДж. Зависимость энергии электрического разряда с тела человека и от потенциала зарядов статического электричества показана на черт. 4.
5.1.3. Механические (фрикционные) искры (искры от удара и трения)
Размеры искр удара и трения, которые представляют собой раскаленную до свечения частичку металла или камня, обычно не превышают 0,5 мм, а их температура находится в пределах температуры плавления металла. Температура искр, образующихся при соударении металлов, способных вступать в химическое взаимодействие друг с другом с выделением значительного количества тепла, может превышать температуру плавления и поэтому ее определяют экспериментально или расчетом.
Количество теплоты, отдаваемое искрой при охлаждении от начальной температуры t н до температуры самовоспламенения горючей среды t св вычисляют но формуле (84), а время остывания t - следующим образом.
Отношение температур (Qп) вычисляют по формуле
(86)
где t в - температура воздуха, °С.
Коэффициент теплоотдачи (a ), Вт×м-2×К-1, вычисляют по формуле
(87)
где w и - скорость полета искры, м×с-1.
Скорость искры (w и), образующейся при ударе свободно падающего тела, вычисляют по формуле
(88)
а при ударе о вращающееся тело по формуле
(89)
где n - частота вращения, с-1;
R - радиус вращающегося тела, м.
Скорость полета искр, образующихся при работе с ударным инструментом, принимают равной 16 м×с-1, а с высекаемых при ходьбе в обуви, подбитой металлическими набойками или гвоздями, 12 м×с-1.
Критерий Био вычисляют по формуле
(90)
где d и - диаметр искры, м;
lи - коэффициент теплопроводности металла искры при температуре самовоспламенения горючего вещества (t св), Вт м -1×K-1.
По значениям относительной избыточной температуры qп и критерия В i определяют по графику (черт. 5) критерий Фурье.

Черт. 5

Длительность остывания частицы металла (t), с, вычисляют по формуле
(91)
где F 0 - критерий Фурье;
С и - теплоемкость металла искры при температуре самовоспламенения горючего вещества, Дж×кг-1×К-1;
rи - плотность металла искры при температуре самовоспламенения горючего вещества, кг×м-3.
При наличии экспериментальных данных о поджигающей способности фрикционных искр вывод об их опасности для анализируемой горючей среды допускается делать без проведения расчетов.
5.1.4. Открытое пламя и искры двигателей (печей)
Пожарная опасность пламени обусловлена интенсивностью теплового воздействия (плотностью теплового потока), площадью воздействия, ориентацией (взаимным расположением), периодичностью и временем его воздействия на горючие вещества. Плотность теплового потока диффузионных пламен (спички, свечи, газовой горелки) составляет 18-40 кВт×м-2, а предварительно перемешанных (паяльные лампы, газовые горелки) 60-140 кВт×м-2 В табл. 6 приведены температурные и временные характеристики некоторых пламен и малокалорийных источников тепла.
Таблица 6

Наименование горящего вещества (изделия) или пожароопасной операции
Температура пламени (тления или нагрева), оС
Время горения (тления), мин
Легковоспламеняющиеся и горючие жидкости
880
¾
Древесина и лесопиломатериалы
1000
-
Природные и сжиженные газы
1200
-
Газовая сварка металла
3150
-
Газовая резка металла
1350
-
Тлеющая папироса
320-410
2-2,5
Тлеющая сигарета
420¾460
26-30
Горящая спичка
600¾640
0,33

Открытое пламя опасно не только при непосредственном контакте с горючей средой, но и при ее облучении. Интенсивность облучения (g р), Вт×м-2, вычисляют по формуле
(92)
где 5,7 - коэффициент излучения абсолютно черного тела, Вт×м-2×К-4;
eпр - приведенная степень черноты системы
(93)
eф - степень черноты факела (при горении дерева равна 0,7, нефтепродуктов 0,85);
eв - степень черноты облучаемого вещества принимают по справочной литературе;
Т ф - температура факела пламени, К,
Т св - температура горючего вещества, К;
j1ф- коэффициент облученности между излучающей и облучаемой поверхностями.
Критические значения интенсивности облучения в зависимости от времени облучения для некоторых веществ приведены в табл. 7.
Пожарная опасность искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров, в значительной степени определяется их размером и температурой. Установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм-800 °С, диаметром 5 мм-600 °С.
Теплосодержание и время остывания искры до безопасности температуры вычисляют по формулам (76 и 91). При этом диаметр искры принимают 3 мм, а скорость полета искры (wи), м×с-1, вычисляют по формуле
(94)
где wв - скорость ветра, м×с-1;
H - высота трубы, м.
Таблица 7
Материал
Минимальная интенсивность облучения, Вт×м-2, при продолжительности облучения, мин

3
5
15
Древесина (сосна влажностью 12%)
18800
16900
13900
Древесно-стружечная плита плотностью 417 кг×м-3
13900
11900
8300
Торф брикетный
31500
24400
13200
Торф кусковой
16600
14350
9800
Хлопок-волокно
11000
9700
7500
Слоистый пластик
21600
19100
15400
Стеклопластик
19400
18600
17400
Пергамин
22000
19750
17400
Резина
22600
19200
14800
Уголь
¾
35000
35000