Постоянная Хаббла. Расширение вселенной

Если кто-то думает, что слово «разбегаться» имеет сугубо спортивный, в крайнем случае, «антисупружеский» характер, то ошибается. Существуют куда более интересные толкования. К примеру, космологический Закон Хаббла свидетельствует о том, что разбегаются… галактики!

Три вида туманностей

Представьте: в черном, огромном безвоздушном пространстве звездные системы тихо и медленно удаляются друг от друга: «Прощай! Прощай! Прощай!». Пожалуй, оставим в стороне «лирические отступления» и обратимся к научным сведениям. В 1929 году самый влиятельный астроном XX века американский ученый Эдвин Пауэлл Хаббл (1889-1953) пришел к выводу: происходит неуклонное расширение Вселенной.

Человек, всю свою сознательную жизнь посвятивший разгадке структуры космоса, родился в Маршфилде С младых ногтей интересовался астрономией, хотя в итоге стал дипломированным юристом. После окончания Кембриджского университета Эдвин работал в Чикаго, в Йоркской обсерватории. В Первую мировую войну (1914-1918 гг.) воевал. Фронтовые годы лишь отодвинули открытие во времени. Сегодня весь ученый мир знает, что такое постоянная Хаббла.

На пути к открытию

Возвратившись с фронта, ученый обратил свой взор на высокогорную обсерваторию Маунт-Вилсон (штат Калифорния). Его приняли туда на работу. Влюбленный в астрономию, молодой человек проводил немало времени, глядя в объективы огромных телескопов размером в 60 и 100 дюймов. Для того времени - крупнейшие, почти фантастика! Над приборами изобретатели работали почти десятилетие, добиваясь максимально возможного увеличения и четкости изображения.

Напомним, видимая граница Вселенной именуется Метагалактикой. Она исходит к состоянию на момент Большого Взрыва (космологическая сингулярность). Современные положения гласят, что значения физических постоянных однородны (имеется в виду скорость света, элементарный заряд и др.). Считается, что Метагалактика вмещает 80 миллиардов галактик (удивительная цифра звучит еще так: 10 секстиллионов и 1 септильонов звезд). Форма, масса и размер - для Вселенной это совершенно иные, нежели принятые на Земле, понятия.

Загадочные цефеиды

Чтобы обосновать теорию, объясняющую расширение Вселенной, потребовались продолжительные глубокие исследования, сложные сопоставления и вычисления. В начале двадцатых годов XX века вчерашний солдат наконец смог классифицировать туманности, наблюдаемые отдельно от Млечного пути. Согласно его открытию, они спиральные, эллиптические и неправильные (три вида).

В ближайшей к нам но не самой близкой спиральной туманности Андромеды, Эдвин разглядел цефеиды (класс пульсирующих звезд). Закон Хаббла стал как никогда близок к своему окончательному формированию. Астроном вычислил расстояние до этих маячков и размеры крупнейшей Согласно его выводам, Андромеда содержит примерно один триллион звезд (в 2,5-5 раз больше Млечного пути).

Константа

Некоторые ученые, объясняя природу цефеидов, сравнивают их с надувными резиновыми мячами. Они то увеличиваются, то уменьшаются, то приближаются, то отдаляются. Лучевая скорость при этом колеблется. При сжатии температура «путешественниц» увеличивается (хотя поверхность уменьшается). Пульсирующие звезды представляют собой необычный маятник, который, рано или поздно, остановится.

Как и остальные туманности, Андромеда охарактеризована ученым, как островное вселенское пространство, напоминающее нашу галактику. В 1929 году Эдвин обнаружил: лучевые скорости галактик и их расстояния взаимосвязаны, линейно зависимы. Был определен коэффициент, выражаемый в км/с на мегапарсек так называемая постоянная Хаббла. Расширяется Вселенная - меняется константа. Но в конкретный момент во всех точках системы мироздания она одинакова. В 2016 году - 66,93 ± 0,62 (км/с)/Мпк.

Представления о системе мироздания, продолжающей эволюцию, расширяющейся, тогда получили наблюдательную основу. Процесс активно изучался астрономом до самого начала Второй мировой войны. В 1942 году он возглавил Отдел внешней баллистики на Абердинском испытательном полигоне (США). Разве об этом мечтал сподвижник, пожалуй, самой загадочной науки на свете? Нет, ему хотелось «расшифровывать» законы потаенных уголков далеких галактик! Что касается политических взглядов, то астроном открыто осуждал лидера Третьего рейха Адольфа Гитлера. На исходе своей жизни Хаббл прослыл мощным противником применения оружия массового поражения. Но вернемся к туманностям.

Великий Эдвин

Многие астрономические константы со временем корректируются, появляются новые открытия. Но все они не идут в сравнение с Законом расширения Вселенной. Знаменитого астронома XX века Хаббла (со времен Коперника равных ему не было!) ставят в один ряд с основателем экспериментальной физики Галилео Галилеем и автором новаторского вывода о существовании звездных систем Уильямом Гершелем.

Еще до того, как был открыт закон Хаббла, его автор стал членом Национальной академии наук Соединенных Штатов Америки, позже академий в разных странах, имеет множество наград. Многие, наверное, слышали про то, что свыше десяти лет назад выведен на орбиту и успешно действует космический телескоп «Хаббл». Это имя носит одна из малых планет, вращающихся между орбитами Марса и Юпитера (астероид).

Будет не совсем справедливо утверждать, что астроном только и мечтал об увековечивании своего имени, но есть косвенные свидетельства того, что Эдвин любил привлечь внимание. Сохранились фото, где он весело позирует рядом с кинозвездами. Чуть ниже мы расскажем о его попытках «зафиксировать» достижение на лауреатском уровне, еще и таким образом войти в историю космологии.

Метод Генриетты Ливитт

Знаменитый британский астрофизик в своей книге «Краткая история времени» писал, что «открытие того, что Вселенная расширяется, стало величайшей интеллектуальной революцией XX века». Хаббл был достаточно удачлив, чтобы оказаться в нужном месте в нужное время. Обсерватория Маунт-Вильсон являлась центром наблюдательной работы, лежащей в основе новой астрофизики (позже получившей название космологии). Самый мощный на Земле телескоп Хукера тогда только вступил в строй действующих.

Но постоянная Хаббла вряд ли была открыта лишь на основании везения. Требовались терпение, упорство, умение побеждать научных соперников. Так американский астроном Харлоу Шепли предлагал свою модель Галактики. Его уже знали, как ученого, определившего размеры Млечного Пути. Он широко применял методику определения расстояний по цефеидам, используя методику, составленную в 1908 году Генриеттой Суон Ливитт. Она устанавливала расстояние до объекта, опираясь на стандартные вариации света от ярких звезд (переменные цефеиды).

Не пыль и газ, а другие галактики

Харлоу Шепли считал, что ширина галактики 300 000 световых лет (приблизительно в десять раз выше допустимого значения). Однако Шепли, как и большинство астрономов того времени, был уверен: Млечный Путь - это и есть вся Вселенная. Несмотря на предположение, впервые сделанное Уильямом Гершелем в XVIII веке, он разделял распространенное мнение, что все туманности для относительно близлежащих объектов - всего лишь пятна пыли и газа в небе.

Сколько горьких, холодных ночей провел Хаббл, сидя у мощного телескопа Хукера, прежде чем смог доказать, что Шепли не прав. В октябре 1923 года Эдвин заметил в М31 туманности (созвездие Андромеды) «вспыхнувший» объект и предположил, что он не относится к Млечному Пути. После тщательного изучения фотопластин, на которых была запечатлена та же площадь, ранее исследованная другими астрономами, в том числе, Шепли, Эдвин понял, что это цефеида.

Обнаружен Космос

Хаббл использовал метод Шепли для измерения расстояния до переменной звезды. Оказалось, что оно исчисляется миллионами световых лет от Земли, что находится далеко за пределами Млечного Пути. Сама галактика содержит миллионы звезд. Известная Вселенная резко расширилась в тот же день и - в некотором смысле - был обнаружен сам Космос!

Газета "Нью-Йорк Таймс" писала: "Обнаруженные спиральные туманности являются звездными системами. Доктор Hubbel (так в оригинале) подтверждает мнение, что они похожи на "островные вселенные", похожие на нашу собственную". Открытие имело большое значение для астрономического мира, но величайший момент Хаббла был еще впереди.

Никакой статичности

Как мы говорили, победа к «Копернику №2» пришла в 1929 году, когда он классифицировал все известные туманности и измерил их скорости от спектров излучаемого света. Его поразительная находка, что все галактики отступают от нас со скоростями, увеличивающимися пропорционально их удаленности от Млечного Пути, потрясла мир. Закон Хаббла отменил традиционное представление о статической Вселенной и показал, что сама она полна динамики. Сам Эйнштейн склонял голову перед столь потрясающей наблюдательностью.

Автор теории относительности подкорректировал собственные уравнения, которыми обосновывал расширение Вселенной. Теперь Хаббл показал, что Эйнштейн был прав. Хаббловское время - величина, обратная постоянной Хаббла (t H = 1/H). Это характерное время расширения Вселенной на текущий момент.

Взорвались и разлетелись

Если постоянная в 2016 году равна 66,93 ± 0,62 (км/с)/Мпк, то расширение в настоящее время характеризуется следующими цифрами: (4,61 ± 0,05)·10 17 с или (14,610 ± 0,016)·10 9 лет. И снова немного юмора. Оптимисты говорят: это хорошо, что галактики «разбегаются». Если представить, что они сближаются, рано или поздно наступил бы Большой взрыв. Но именно с него началось зарождение Вселенной.

Галактики «рванули» (начали движение) в разные стороны одновременно. Если бы скорость удаления не была пропорциональной расстоянию - теория взрыва бессмысленна. Еще одна производная константа - хаббловское расстояние - произведение времени на скорость света: D H = ct H = c/H. В текущий момент - (1,382 ± 0,015)·10 26 м или (14,610 ± 0,016)·10 9 световых лет.

И снова о надувном шаре. Есть мнение, что даже астрономы не всегда правильно трактуют расширение Вселенной. Часть знатоков считает, что она раздувается, словно резиновый шар, не ведая никаких физических ограничений. Сами галактики при этом не только удаляются от нас, но и хаотично «суетятся» внутри неподвижных скоплений. Иные уверяют, что дальние галактики «уплывают» осколками Большого взрыва, но делают это степенно.

Мог бы стать Нобелевским лауреатом

Хаббл пытался получить Нобелевскую премию. В конце 1940-х годов даже нанимал рекламного агента (сейчас его назвали бы пиар-менеджер), чтобы тот продвинул дело. Но усилия были напрасными: категории для астрономов не существовало. Эдвин умер в 1953 году, в ходе научных изысканий. В течение нескольких ночей он наблюдал внегалактические объекты.

Его последняя честолюбивая мечта осталась несбывшейся. Но ученый наверняка бы порадовался тому, что в его честь назван космический телескоп. И поколения братьев по разуму продолжают исследовать огромное и чудесное пространство. Оно до сих пор таит немало загадок. Сколько открытий впереди! И производные постоянные Хаббла, наверняка, помогут кому-то из молодых ученых стать «Коперником №3».

Оспаривая Аристотеля

Что будет доказано или опровергнуто, как тогда, когда в пух и прах полетела теория о бесконечности, вечности и неизменности пространства вокруг Земли, которую поддерживал сам Аристотель? Он приписывал Вселенной симметрию и совершенство. Космологический принцип подтвердил: все течет, все изменяется.

Есть мнение, что через миллиарды лет небеса будут пусты и темны. Расширение «унесет» галактики за космический горизонт, откуда свет не сможет дойти до нас. Будет ли актуальна постоянная Хаббла для пустой Вселенной? Что станет с наукой космологией? Она исчезнет? Все это предположения.

Красное смещение

Пока же телескоп «Хаббл» сделал снимок, который свидетельствует: до вселенской пустоты нам пока далеко. В профессиональной среде в ходу мнение, что ценно открытие Эдвина Хаббла, но не его закон. Однако именно он был почти сразу признан в научных кругах того времени. Наблюдения «красного смещения» не просто завоевало право на существование, оно актуально и в XXI веке.

И сегодня, определяя расстояние до галактик, опираются на супероткрытие ученого. Оптимисты утверждают: даже если наша галактика останется единственной, «скучать» нам не придется. Будут существовать миллиарды карликовых звезд и планет. А значит, рядом с нами по-прежнему будут «параллельные миры», которые нужно будет исследовать.

Великим физикам прошлого И. Ньютону и А. Эйнштейну Вселенная представлялась статичной. Советский физик А. Фридман в 1924 г. выступил с теорией «разбегающихся» галактик. Фридман предсказал расширение Вселенной. Это было революционным переворотом в физическом представлении о нашем мире.

Американский астроном Эдвин Хаббл исследовал туманность Андромеды. К 1923 году ему удалось рассмотреть, что ее окраины представляют собой скопления отдельных звезд. Хаббл рассчитал расстояние до туманности. У него оказалось – 900 000 световых лет (более точно рассчитанное на сегодняшний день расстояние составляет 2,3 миллиона световых лет). То есть туманность находится далеко за пределами Млечного Пути – Нашей Галактики. Пронаблюдав эту и другие туманности, Хаббл пришел к выводу о структуре Вселенной.

Вселенная состоит из набора огромных звездных скоплений – галактик .

Именно они и представляются нам в небе далекими туманными «облаками», поскольку отдельных звезд на столь огромном удалении мы рассмотреть попросту не можем.

Э. Хаббл подметил важный аспект в полученных данных, который астрономы наблюдали и прежде, но интерпретировать затруднялись. А именно: наблюдаемая длина спектральных световых волн, излучаемых атомами удаленных галактик, несколько больше длины спектральных волн, излучаемых теми же атомами в условиях земных лабораторий. То есть в спектре излучения соседних галактик квант света, излучаемый атомом при скачке электрона с орбиты на орбиту, смещен по частоте в направлении красной части спектра по сравнению с аналогичным квантом, испущенным таким же атомом на Земле. Хаббл взял на себя смелость интерпретировать это наблюдение как проявление эффекта Доплера.

Все наблюдаемые соседние галактики удаляются от Земли, поскольку практически у всех галактических объектов за пределами Млечного Пути наблюдается именно красное спектральное смещение, пропорциональное скорости их удаления.

Самое главное, Хабблу удалось сопоставить результаты своих измерений расстояний до соседних галактик с измерениями скоростей их удаления (по красному смещению).

Математически закон формулируется очень просто:

где v – скорость удаления галактики от нас,

r – расстояние до нее,

H – постоянная Хаббла.

И, хотя изначально Хаббл пришел к этому закону по результатом наблюдения всего нескольких ближайших к нам галактик, ни одна из множества открытых с тех пор новых, все более удаленных от Млечного Пути галактик видимой Вселенной, из-под действия этого закона не выпадает.

Итак, главное следствие закона Хаббла:

Вселенная расширяется.

Расширяется сама ткань мирового пространства. Все наблюдатели (и мы с вами не исключение) считают себя находящимися в центре Вселенной.

4. Теория Большого Взрыва

Из экспериментального факта разбегания галактик был оценен возраст Вселенной. Он оказался равным – около 15 миллиардов лет! Так началась эпоха современной космологии.

Естественно возникает вопрос: а что было в начале? Всего около 20 лет понадобилось ученым, чтобы вновь полностью перевернуть представления о Вселенной.

Ответ предложил выдающийся физик Г. Гамов (1904 – 1968) в 40-ые годы. История нашего мира началась с Большого взрыва. Именно так думает большинство астрофизиков и cегодня.

Большой взрыв – это стремительное падение изначально огромной плотности, температуры и давления вещества, сконцентрированного в очень малом объеме Вселенной. Все вещество мироздания было сжато в плотный комок протоматерии, заключенный в совсем небольшом в сопоставлении с нынешними масштабами Вселенной объеме.

Представление о Вселенной, родившейся из сверхплотного сгустка сверхгорячего вещества и с тех пор расширяющейся и остывающей, получило название теории Большого взрыва.

Более удачной космологической модели происхождения и эволюции Вселенной на сегодня не имеется.

Согласно теории Большого взрыва, ранняя Вселенная состояла из фотонов, электронов и других частиц. Фотоны постоянно взаимодействовали с остальными частицами. По мере расширения Вселенной, она остывала, и на определенном этапе электроны стали соединяться с ядрами водорода и гелия и образовывать атомы. Это случилось при температуре около 3000 К и примерном возрасте Вселенной 400 000 лет. С этого момента фотоны смогли свободно перемещаться в пространстве, практически не взаимодействуя с веществом. Но нам остались «свидетели» той эпохи – это реликтовые фотоны. Считается, что реликтовое излучение сохранилось с начальных этапов существования Вселенной и равномерно ее заполняет. В результате дальнейшего остывания излучения его температура снизилась и сейчас составляет около 3 К.

Существование реликтового излучения было предсказано теоретически в рамках теории Большого взрыва. Оно рассматривается как одно из главных подтверждений теории Большого взрыва.

В настоящее время по данным астрономических наблюдений установлено, что Вселенная в больших масштабах однородна , т.е. все ее области размером от 300 млн. световых лет и больше выглядят одинаково. В меньших масштабах во Вселенной есть районы, где обнаруживаются скопления галактик и, наоборот, пустоты, где их мало.

Галактикой называется система звезд имеющих общее происхождение и связанных силами притяжения. Галактика, в которой находится наше Солнце – Млечный путь

Расстояния до небесных тел в астрономии определяются по-разному в зависимости от того близко или далеко от нашей планеты эти объекты находятся. В космическом пространстве принято использовать следующие единицы для измерения расстояний:

1 а.е.(астрономическая единица ) = (149597870 2) км;

1 пк (парсек ) = 206265 а.е. = 3,086·10 м;

1 с.г. (световой год ) = 0,307 пк = 9,5·10 м. Световой год – путь, который свет проходит за год.

В настоящей работе предлагается метод определения расстояний до далеких галактик по «красному смещению», т.е. по увеличению длин волн в спектре наблюдаемого удаленного источника излучения по сравнению с соответствующими длинами волн линий в эталонных спектрах.

Под источником света понимают излучение далеких галактик (наиболее ярких звезд или газопылевых туманностей в них). Под «красным смещением » - сдвиг спектральных линий в спектрах химических элементов, из которых состоят эти объекты, в длинноволновую (красную) сторону, по сравнению с длинами волн в спектрах эталонных элементов на Земле. «Красное смещение» обусловлено эффектом Доплера.

Эффект Доплера состоит в том, что излучение, посланное источником, удаляющимся от неподвижного приемника, будет приниматься им как более длинноволновое, по сравнению с излучением от такого же неподвижного источника. Если же источник приближается к приемнику, то длина волны регистрируемого сигнала, наоборот, будет уменьшаться.

В 1924 г советский физик Александр Фридман предсказал, что Вселенная расширяется. Имеющиеся в настоящее время данные показывают, что эволюция Вселенной началась с момента Большого Взрыва. Около 15 млрд. лет назад Вселенная представляла собой точку (ее называют точкой сингулярности ), к которой из-за сильнейшей гравитации в ней, очень высокой температуры и плотности неприменимы известные законы физики. В соответствии с принятой сейчас моделью Вселенная начала раздуваться из точки сингулярности с нарастающим ускорением.



В 1926 г. были получены экспериментальные доказательства расширения Вселенной. Американский астроном Э.Хаббл, при исследовании с помощью телескопа спектров далеких галактик, открыл красное смещение спектральных линий. Это означало, что галактики удаляются друг от друга, причем со скоростью, возрастающей с расстоянием. Хаббл построил линейную зависимость между расстоянием и скоростью, связанную с эффектом Доплера (закон Хаббла):

(1) , где

r – расстояние между галактиками;

v – скорость удаления галактик;

Н – постоянная Хаббла. Значение Н зависит от времени, прошедшего с начала расширения Вселенной до настоящего момента, и меняется в интервале от 50 до 100 км/с·Мпк. В астрофизике, как правило, используют Н= 75 км/с·Мпк. Точность определения постоянной Хаббла составляет

0,5 км/с·Мпк;

с – скорость света в вакууме;

Z – красное смещение длины волны, т.н. космологический фактор.

(2) , где

– длина волны принятого приемником излучения;

– длина волны излучения, испущенного объектом.

Таким образом, измеряя величину смещения линий, например, ионизированного водорода (Н+) в видимой части спектра, можно для наблюдаемой с Земли галактики, определить по формуле (2) ее красное смещение Z и, пользуясь законом Хаббла (1), вычислить расстояние до нее или скорость ее удаления:

Порядок выполнения работы

1. Вызвать программу «Определение расстояний до галактик» на рабочем столе компьютера. На экране монитора появится область Вселенной с девятью разными галактиками, наблюдаемыми с поверхности Земли. В верхней части экрана появляется спектр видимого света и маркер длины волны ионизированного водорода H+.

2. Установите курсор на галактике, указанной преподавателем и щелкните клавишей.

3. Запишите в таблицу измерений длину волны и λ излучаемую этой галактикой при ее удалении.

Рассмотрим две галактики, находящиеся на расстоянии L друг от друга и удаляющиеся друг от друга со скоростью V . Чему равна величина красного смещения в спектре первой галактики, измеренная наблюдателем, находящимся на второй?

Казалось бы, ответ очевиден. Величина красного смещения z равна:

Однако такую величину красного смещения следовало бы ожидать в стационарной Вселенной. Но ведь наша Вселенная расширяется! Может ли сам факт расширения Вселенной влиять на величину красного смещения?

Изменим условие задачи. Теперь предположим, что галактики находятся на фиксированном расстоянии L друг от друга (например, они медленно вращаются вокруг общего центра масс). Обнаружит ли наблюдатель, находящийся на одной галактике, красное смещение в спектре другой, из-за того, что Вселенная расширяется?

Когда Вселенная расширяется, она преодолевает гравитационное притяжение между своими частями. Поэтому по мере расширения Вселенной скорость её расширения уменьшается. Фотон, двигаясь от одной галактики к другой, так же, как и любой объект внутри Вселенной, гравитационно взаимодействует с расширяющейся материей и, тем самым, «тормозит» расширение Вселенной. Поэтому энергия фотона, движущегося в расширяющейся Вселенной, должна уменьшаться. Сделаем количественные оценки.

Когда фотон вылетел из одной галактики, гравитационный потенциал внутри Вселенной, создаваемый всей материей Вселенной, был равен Ф 1 . Когда фотон прилетел во вторую галактику, гравитационный потенциал внутри Вселенной увеличился из-за расширения Вселенной и стал равен Ф 2 > Ф 1 (при этом |Ф 2 | < | Ф 1 |, так как гравитационный потенциал меньше нуля). То есть фотон, вылетев из области с более низким гравитационным потенциалом, прилетел в область с более высоким гравитационным потенциалом. В результате этого энергия фотона уменьшилась.

Таким образом, величина красного смещения в спектре излучения галактики, которая удаляется от нас, будет складываться из двух частей. Первая часть, вызванная непосредственно скоростью удаления галактик, – это так называемый доплеровский эффект. Его величина равна:

Вторая часть вызвана тем, что Вселенная расширяется, и поэтому гравитационный потенциал внутри неё возрастает. Это так называемое красное гравитационное смещение. Его величина равна:

(8.9)

Здесь Ф 1 – гравитационный потенциал Вселенной в месте вылета фотона, в момент его вылета; Ф 2 – гравитационный потенциал Вселенной в месте регистрации фотона, в момент его регистрации.

В результате величина красного смещения в спектре излучения удаляющейся от нас галактики будет равна:

(8.10)

И мы приходим к очень важному выводу. Только часть красного космологического смещения, наблюдаемого в спектрах излучения далёких галактик, вызвана непосредственно удалением этих галактик от нас. Другая же часть красного смещения вызвана увеличением гравитационного потенциала Вселенной. Поэтому скорости, с которыми галактики удаляются от нас, меньше , чем предполагается в современной космологии, а возраст Вселенной, соответственно, больше .

Расчёты, выполненные в , показывают, что если плотность Вселенной близка к критической (такой вывод делается на основе изучения крупномасштабного распределения галактик), то:

То есть только 2/3 величины красного космологического смещения z 0 в спектрах далёких галактик (8.10) вызвано скоростью удаления галактик. Соответственно, постоянная Хаббла в 1,5 раза меньше, чем предполагается в современной космологии, а возраст Вселенной, наоборот, в 1,5 раза больше.

А как решается вопрос о происхождении красного космологического смещения в общей теории относительности? Рассмотрим две галактики, которые участвуют в космологическом расширении Вселенной и пекулярные скорости которых настолько малы, что ими можно пренебречь. Пусть расстояние между галактиками в момент вылета фотона из первой галактики равно L . Когда фотон прилетит во вторую галактику, расстояние между галактиками увеличится и будет равно L + L D. В общей теории относительности гравитационное взаимодействие полностью сводится к геометрии. Согласно этой теории наиболее важной величиной, характеризующей расширяющуюся Вселенную, является так называемый масштабный фактор. Если пекулярными скоростями двух удалённых друг от друга галактик можно пренебречь, то масштабный фактор будет изменяться пропорционально изменению расстояния между этими галактиками.

Согласно общей теории относительности длина волны фотона l, движущегося в расширяющейся Вселенной, изменяется пропорционально изменению масштабного фактора, и красное смещение, соответственно, равно:

(8.12)

Если V – скорость удаления галактик друг от друга, t – время полёта фотона, то:

В результате получаем:

Таким образом, согласно общей теории относительности красное космологическое смещение не зависит ни от плотности Вселенной, ни от скорости, с которой изменяется гравитационный потенциал Вселенной, а зависит только от относительной скорости разбегания галактик. И если бы, например, наша Вселенная расширялась с такой же скоростью, что и сейчас, но имела бы при этом в несколько раз меньшую плотность, то согласно общей теории относительности величина красного космологического смещения в спектрах излучения галактик была бы той же самой . Получается, что существование огромных масс внутри Вселенной, сдерживающих расширение Вселенной, никак не влияет на энергию движущихся фотонов! Это представляется маловероятным.

Возможно, именно поэтому возникли серьёзные проблемы при попытке объяснить в рамках общей теории относительности зависимость красных смещений в спектрах очень далёких сверхновых звёзд от величины расстояния до них. И чтобы «спасти» общую теорию относительности, в конце двадцатого века космологи выдвинули предположение, что наша Вселенная расширяется не с замедлением, а, наоборот, с ускорением, вопреки закону Всемирного тяготения (эта тема обсуждается в ).

Здесь мы не будем обсуждать гипотезу ускоренного расширения Вселенной (хотя, по моему глубокому убеждению, не только общая теория относительности, но и никакая другая теория не стоит того, чтобы её спасать при помощи подобных гипотез), а вместо этого постараемся перевести данную проблему из области теоретической физики в область эксперимента. Действительно, зачем вести теоретические споры о происхождении красного космологического смещения, если можно получить ответ на этот вопрос в физической лаборатории?

Сформулируем этот важный вопрос ещё раз. Существует ли красное космологическое смещение, вызванное не доплеровским эффектом удаления галактик, а тем фактом, что при движении фотона возрастает гравитационный потенциал Вселенной?

Чтобы ответить на этот вопрос, достаточно провести следующий эксперимент (см. рис. 33).

Луч лазера разделяется на два луча так, что один луч сразу попадает на детектор, а второй луч сначала движется некоторое время между двумя параллельными зеркалами и только после этого попадает на детектор. Таким образом, второй луч попадает на детектор с временной задержкой t(несколько минут). И на детекторе сравниваются длины волн двух лучей, испущенных в моменты времени t -tи t . Изменение длины волны второго луча относительно первого следует ожидать из-за возрастания гравитационного потенциала Вселенной, вызванного её расширением.

Этот эксперимент подробно обсуждается в , поэтому сейчас мы рассмотрим только основные выводы, которые можно будет сделать после его проведения.


Рис. 33 . Принципиальная схема эксперимента по измерению красного космологического смещения, вызванного не доплеровским эффектом, а изменением гравитационного потенциала внутри Вселенной.

Луч лазера направляется на полупрозрачное зеркало. При этом одна часть луча проходит сквозь зеркало и по кратчайшему пути попадает на детектор. А вторая часть луча, отразившись от зеркала и пройдя через систему зеркал 1, 2, 3, попадает на детектор с некоторой задержкой по времени. И в результате на детекторе сравниваются длины волн двух лучей, испущенных в разные моменты времени.

Во-первых, мы сможем узнать, существует или нет красное космологическое смещение, вызванное не скоростью удаления источника, а самим фактом расширения Вселенной, то есть возрастанием гравитационного потенциала внутри Вселенной.

Во-вторых, если такое смещение будет обнаружено (а для этого есть все основания), то, тем самым, мы, посредством лабораторного эксперимента, докажем сам факт расширения Вселенной . И более того, сможем измерить скорость, с которой возрастает гравитационный потенциал, создаваемый всей материей во Вселенной.

В-третьих, отняв от величины красного смещения в спектрах далёких галактик ту часть, которая вызвана не скоростью их удаления, а изменением гравитационного потенциала, мы узнаем истинную скорость удаления галактик, и таким образом сможем исправить существующую оценку возраста Вселенной.