Презентация "периодический закон и периодическая система химических элементов". Периодический закон и периодическая система элементов Д.И

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

ПОСЛЕДНИЕ ЭЛЕМЕНТЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И.МЕНДЕЛЕЕВА Химия

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Элемент периодической системы Менделеева № 110-Дармштадтий Дармштадтий (лат. Darmstadtium, обозначение Ds; ранее Унуннилий) - искусственно синтезированный химический элемент VIII группы периодической системы, атомный номер 110. Атомная масса=281(г/моль) История. Элемент получил название по месту открытия. Впервые синтезирован 9 ноября 1994 в Центре исследованийтяжелых ионов, Дармштадт, С. Хофманном, В. Ниновым, Ф. П. Хессбергером, П. Армбрустером, Х. Фолгером, Г. Мюнценбергом, Х. Шоттом и другими. Обнаруженный изотоп имел атомную массу 269. Получение Изотопы дармштадтия были получены в результате ядерных реакций: Свойства Радиоактивен.

4 слайд

Описание слайда:

Элемент периодической системы Менделеева №111- Рентгений Рентге́ний (лат.Roentgenium, обозначение Rg; ранее унунуний,) - искусственно синтезированный химический элемент побочной подгруппы первой группы, седьмого периодапериодической системы, с атомным номером 111. Простое вещество рентгений - переходный металл. Атомная масса 280 (г/моль) История Элемент 111 был впервые синтезирован 8 декабря 1994 г. в немецком городе Дармштадте. Авторами первой публикации, были С. Хофманн, В. Нинов, Ф. П. Хессбергер, П. Армбрустер, Х. Фольгер, Г. Мюнценберг, Х. Шётт, А. Г. Попеко, А. В. Еремин, А. Н. Андреев, С. Саро, Р. Яник и М. Лейно. Помимо немецких физиков, в международную группу входили трое учёных из российского Объединенного института ядерных исследований. Первый синтез был проведён по реакции: 209Bi + 64Ni = 272Rg + n

5 слайд

Описание слайда:

Элемент периодической системы Менделеева №112- Коперниций Коперниций (лат. Copernicium, Cn; в качестве русского названия используется также коперникий) - 112-й химический элемент. Ядро наиболее стабильного из его известных изотопов, 285Cn, состоит из 112 протонов, 173 нейтронов и имеет период полураспада около 34 секунд. Относится к той же химической группе, что цинк, кадмий и ртуть. История Коперниций впервые синтезирован 9 февраля 1996 года в Институте тяжёлых ионов в Дармштадте, С. Хоффманном (S. Hofmann), В. Ниновым (V. Ninov), Ф. П. Хессбергером (F. P. Hessberger), П. Армбрустером (P. Armbruster), Х. Фолгером (H. Folger), Г. Мюнценбергом (G. Münzenberg) и другими. Название Учёные GSI предложили для 112-го элемента название Copernicium (Cn) в честь Николая Коперника. 19 февраля 2010 года, в день рождения Коперника,ИЮПАК официально утвердил название элемента. Ранее для него предлагались названия штрассманий St, венусий Vs, фриший Fs, гейзенбергий Hb, а также лаврентий Lv, виксхаузий Wi, гельмгольций Hh.

6 слайд

Описание слайда:

Элемент периодической системы Менделеева №113- Унунтрий Унунтрий (лат. Ununtrium, Uut) или эка-таллий - 113-й химический элемент III группыпериодической системы, атомный номер 113, атомная масса , наиболее устойчивыйизотоп 284Uut. История открытия В феврале 2004 года были опубликованы результаты экспериментов, проводившихся с 14 июля по 10 августа 2003 года, в результате которых был получен 113-й элемент. Исследования проводились в Объединённом институте ядерных исследований (Дубна, Россия) . Получение Изотопы унунтрия были получены в результате α-распада изотопов унунпентия: а также в результате ядерных реакций:

7 слайд

Описание слайда:

Элемент периодической системы Менделеева №114- Унунквадий Унунква́дий,официально предложено название флёровий(лат. Flerovium, Fl) - 114-й химический элемент IV группы периодической системы, атомный номер 114. Элемент радиоактивен. История Впервые элемент был получен в декабре 1998 года путём синтеза изотопов через реакцию слияния ядер кальция с ядрами плутония. Происхождение названия Официально предложенное, но не утверждённое, название флёровий или флеровийдано в честь российского физика Г. Н. Флёрова, руководителя группы, синтезировавшей элементы с номерами от 102 до 110. После согласовательных процедур между российскими и американскими учёными 1 декабря 2011 года в комиссию по номенклатуре химических соединений ИЮПАК было направлено предложение назвать 114-й элемент флёровием. Химические свойства В некоторых исследованияхбыли получены указания[ на то, что унунквадий по химическим свойствам похож не на свинец, а на благородные газы. Унунквадий предположительно способен проявлять в соединениях степень окисления +2 и +4, хотя поскольку устойчивость степени окисления +4 с ростом порядкового номера снижается, некоторые учёныепредполагают, что унунквадий не сможет проявлять её или сможет её проявлять только в жёстких условиях.

8 слайд

Описание слайда:

Элемент периодической системы Менделеева №115- Унунпентий Унунпе́нтий (лат. Ununpentium, Uup) или эка-висмут - 115-й химический элемент V группы периодической системы, атомный номер 115, атомная масса 288, наиболее стабильным является нуклид. Искусственно синтезированный элемент, в природе не встречается. История открытия В феврале 2004 года были опубликованы результаты экспериментов, проводившихся с 14 июля по 10 августа 2003 года, в результате которых был получен 115-ый элемент.Исследования проводились в Объединённом институте ядерных исследований (Дубна, Россия). Получение Изотопы унунпентия были получены в результате ядерных реакций:

9 слайд

Описание слайда:

Элемент периодической системы Менделеева №116- Унунгексий Унунге́ксий (лат. Ununhexium, Uuh), официально предложено название ливерморий(лат.Livermorium, Lv) - 116-й химический элемент VI группы периодической системы,атомный номер 116, атомная масса 293. История открытия Заявление об открытии элементов 116 и 118 в 1999 году в Беркли (США)[ оказалось ошибочным и даже фальсифицированным. Синтез по объявленной методике не был подтверждён в российском, немецком и японском центрах ядерных исследований, а затем и в самих США. Унунгексий открыт путём синтеза изотопов в 2000 г. в Объединённом институте ядерных исследований (Дубна, Россия). Название Официально предложенное, но не утверждённое, название ливерморий дано в честь города Ливермор (Калифорния), где располагается Ливерморская национальная лаборатория. Учёные ОИЯИ предложили для 116-ого элемента название московий - в честь Московской области. Получение Изотопы унунгексия были получены в результате ядерных реакций:

10 слайд

Описание слайда:

Элемент периодической системы Менделеева №117- Унунсептий Унунсе́птий (лат. Ununseptium, Uus) или эка-астат - временное наименование для химического элемента с атомным номером 117. Временное обозначение - Uus. Период полураспада - 78 миллисекунд.Галоген. Получение Был получен в Объединённом институте ядерных исследований в Дубне, Россия в 2009-2010 годах. Для синтеза элемента использовались реакции: Происхождение названия Слово «унунсептий» образовано из корней латинских числительных и буквально обозначает что-то наподобие «одно-одно-семий» (числительное «117-й» строится совсем иначе). В дальнейшем название будет изменено.

11 слайд

Описание слайда:

Элемент периодической системы Менделеева №118- Унуноктий Унуно́ктий (лат. Ununoctium, Uuo) или эка-радон - временное наименование для химического элемента с атомным номером 118, синтез изотопов которого был впервые осуществлён в 2002 и 2005 годах в Объединённом институте ядерных исследований (Дубна) в сотрудничестве с Ливерморской национальной лабораторией. Результаты этих экспериментов были опубликованы в 2006 году. Временное обозначение - Uuo. Элемент является самым тяжёлым неметаллом, который может существовать, и относится, вероятно, к инертным газам. История открытия Заявление об открытии элементов 116 и 118 в 1999 году в Беркли(США) оказалось ошибочным и даже фальсифицированным. Синтез по объявленной методике не был подтверждён в российском, немецком и японском центрах ядерных исследований, а затем и в США. Первое событие распада 118-го элемента наблюдалось в эксперименте, проведённом в ОИЯИ в феврале - июне 2002 года. Получение Унуноктий был получен в результате ядерной реакции:

12 слайд

Описание слайда:

Интересные факты: Элементы с номерами 110, 111 и 112 были открыты немецкими учеными еще в 1990-х годах. Предварительно им были присвоены труднопроизносимые имена унуннилий, унуниний и унубий. В пятницу ИЮПАК одобрил новые названия этих искусственно синтезированных элементов - дармштадтий, рентгений и коперниций. Официальные символы элементов в таблице Менделеева - Ds, Rg и Cn. Название 114-го и 116-го элементов пока не утверждено. В природе не существует элементов с атомными номерами (числом протонов в ядре атома) больше 92, то есть тяжелее урана. Более тяжелые элементы, например плутоний, могут нарабатываться в атомных реакторах, а элементы тяжелее 100-го (фермия) можно получать только на ускорителях, путем бомбардировки мишени тяжелыми ионами. При слиянии ядер мишени и «снаряда» и возникают ядра нового элемента. Где конец таблицы? Академик Оганесян в статье, опубликованной в журнале Pure and Applied Chemistry, пишет, что теория квантовой электродинамики и теория атома, созданная Резерфордом, допускает существования атомов с числом протонов в ядре, равном 170 и даже больше. То есть, теоретически, таблица Менделеева может продолжаться до 170-й клетки.

«Периодический закон Д.И.Менделеева» - Периодическая таблица Д.И. Менделеева. Изменение радиуса атома в группе. Окислительно-восстановительные свойства. Периоды. Изменение радиуса атома в периоде. Вертикальные столбики. Первый вариант. Свойства образованных химическими элементами веществ. Периодическая таблица химических элементов. Восстановительные свойства атомов.

«Значение периодического закона» - Иного завета, лучшего дать не могу. Каково значение ПСХЭ и ПЗ для современной науки и техники? Завет детям Д.И.Менделеева. Каково физическое обоснование закона? Фосфор обнаружен буквально во всех органах зеленых растений. Высказывание Д.И.Менделеева: Сколько селитры и воды потребуется для приготовления такого раствора массой 0,12 кг?

«Периодическая система химия» - Спираль де Шанкуртуа Октавы Ньюлендса Таблицы Одлинга и Мейера. И. Дёберейнер, Ж. Дюма, французский химик А. Шанкуртуа, англ. химики У. Одлинг, Дж. Ньюлендс - существование групп элементов, сходных по химическим свойствам. Открытие периодического закона. Периодический закон, Периодическая система химических элементов Д. И. Менделеева.

«Периодическая таблица Менделеева» - Тритий. Борий. Орбитали. Дейтерий. Модель строения атома. Дмитрий Иванович Менделеев. Значение периодической системы. Электронная конфигурация. Изотопы. Форма S-подуровня. Научная деятельность. Примеры графических формул. Электронное облако. Золото. Неметаллы. Вольфрам. Заряд атома водорода. Короткая форма таблицы.

«Периодический закон» - Sb. Ni. Д.И.Менделеев (1834-1907)-великий русский учёный. ТЕМА: ПЕРИОДИЧЕСКИЙ ЗАКОН Д. И. Менделеева. Cl. Si. K. Ir. Cu. Ba. Li. Y. V. I. Ra. Hf. Br. Pb. N. Tc. Po. H. Открыл периодический закон химических элементов. Ga. In. Открытие периодического закона. At. Mg. C. Fe. As. Na. Co. Be. P. O.

«Создание периодического закона» - Лекок де Буободран. Актуализация опорных знаний. Периодическая система химических элементов Д.И. Менделеева. Структура Периодической системы. Джон Ньюлендс. Деберейнер Иоганн Вольфганг. Вариант Лотара Мейера. Принципы обучения. Предпосылки создания Периодического закона. Менделеев Дмитрий Иванович. Труд.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Предпосылки создания таблицы Предпосылки создания таблицы Величайшим вкладом, изменившим весь ход науки, была идея гениального русского ученого Дмитрия Ивановича Менделеева, поставившего перед собой цель разобраться во всем многообразии химических элементов и свести их в единую систему. Каким образом поставленная Менделеевым задача была решена? "Посвятив свои силы изучению вещества, я вижу в нем два таких признака или свойства: массу, занимающую пространство и проявляющуюся в весе, и индивидуальность, выраженную в химических превращениях". Отсюда, продолжал Д.И. Менделеев, "... невольно зарождается мысль о том, что между массою и химическими элементами должна быть связь, а так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде атомов, то надо искать соответствия между индивидуальными свойствами элементов и их атомными весами". Так, в бесконечном многообразии свойств, присущих различным веществам, Менделеев усмотрел то общее свойство, которое оказавшись присущим всех химическим элементам, привело его к открытию величайшего закона природы, ставшего руководящим законом не только для химиков и физиков, но и любых специалистов, занимающихся изучением вещества. Таким образом, присущим всем веществам свойством, оказался вес составляющих их атомов - атомный вес.

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

В марте 1869г. Менделеев сообщил Русскому химическому обществу об открытом им законе в статье "Соотношение свойств с атомным весом элементов" и тогда же сформулировал основные положения открытого законе. Пользуясь законом, Менделеев предсказал и подробно описал свойства некоторых еще не известных элементов. Дальнейшие открытия химических элементов подтвердили правильность предсказаний Менделеева и поставили имя Менделеева на первое место в истории не только химии, но и всего естествознания. Всего Менделеевым было предсказано существование одиннадцати химических элементов, в том числе и таких, как полоний, радий, протактиний. В марте 1869г. Менделеев сообщил Русскому химическому обществу об открытом им законе в статье "Соотношение свойств с атомным весом элементов" и тогда же сформулировал основные положения открытого законе. Пользуясь законом, Менделеев предсказал и подробно описал свойства некоторых еще не известных элементов. Дальнейшие открытия химических элементов подтвердили правильность предсказаний Менделеева и поставили имя Менделеева на первое место в истории не только химии, но и всего естествознания. Всего Менделеевым было предсказано существование одиннадцати химических элементов, в том числе и таких, как полоний, радий, протактиний.

краткое содержание других презентаций

«Внеклассное мероприятие по химии» - Придумайте четверостишия. Для чего применяют химические индикаторы. Поставьте в соответствие название вещества с формулой. Цели мероприятия. Закон сохранения масс. Основные законы химии. Выдающийся естествоиспытатель древности Плиний Старший. Петр Великий говорил: “Я предчувствую, что Россияне, когда–нибудь, а. Лабиринт пройден. Этот элемент называют королем живой природы. Соли каких катионов окрашивают пламя.

«Кристаллическая решётка вещества» - Закон постоянства состава веществ. Мотивация. Атомы. Макет кристаллической решетки. Дайте характеристику аморфным веществам. Подведение итогов. Лабораторный опыт. Твердые вещества. Кристалл. Вещества с атомной кристаллической решеткой. Агрегатное состояние веществ. Кристаллические решетки. Кристаллы серы. Шкала оценок. Познать сущее. Возгонка. Агрегатное состояние воды. Диктант. Ответьте на вопросы.

«Хлор» - Хлор - один из самых активных неметаллов. Образует соединения с другими галогенами. Молекула хлора. Хлор. Хлор – ядовитый газ желто-зеленого цвета с резким запахом. Применение хлора. Производство хлорорганических инсектицидов. Возбуждения. Химические свойства. Хлор в органике. Хлор растворяется вводе. Физические свойства. Минералы. Распространение в природе. Cu+Cl2=CuCl2. Получение. Строение атома.

«Нуклеиновые кислоты в клетке» - Задачи на комплементарность. Свойства генетического кода. Антикодоны. Состав и структура РНК. Полный оборот. Биологическая роль и-РНК. Строение и функции РНК. Эрвин Чаргафф. Фридрих Фишер. Содержание ДНК в клетке. Генетический код. Уотсон Джеймс Дьюи. Репликация ДНК. Дезоксирибонуклеиновая кислота. Молекулы ДНК. Структуры ДНК и РНК. Сходства. Приспособленность организма к среде обитания. Сахар. Нуклеиновые кислоты.

«Многообразие веществ» - Название углеводорода. Формулы веществ. Общая формула. Функциональная группа. Многообразие неорганических и органических веществ. Названия веществ. Название углевода. Название оксида. Установите соответствие. Сложные эфиры. Название вещества.

««Задачи» химия 11 класс» - Деление куба. Микрофотографии золотых нанотрубок. Образование одностенной трубки. Тепловой наномотор. Объемная структура алмаза. Структура графенового монослоя. Решение задач по нанохимии и нанотехнологии. Структура нанопроволоки. Применение наноматериалов. Два подхода к получению наночастиц. Обнаружение метастаза. Зависимость цвета золей золота (а) от размера частиц. Наночастица золота. Возможные структуры нанокластера.

    Слайд 1

    Периодический закон и Периодическая система химических элементов Д.И.Менделеева “Мощь и сила науки во множестве фактов, цель в обобщении этого множества и возведении их к началам… Собрание фактов и гипотез – это ещё не наука; оно есть только преддверие её, мимо которого нельзя прямо войти в святилище науки. На этих преддвериях надпись – наблюдения, предложения, опыт”. Д.И. Менделеев сайт

    Слайд 2

    Первые попытки систематизации элементов В 1829 г немецкий химик Иоган Вольфганг Дёберейнер сформулировал закон триад.

    Слайд 3

    Разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, тем не менее, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в порядке возрастания их атомных весов.

    Слайд 4

    Первые попытки систематизации элементов В 1843 г Леопольд Гмелинпривёл таблицу химически сходных элементов, расставленных по группам в порядке возрастания "соединительных масс". Вне групп элементов, вверху таблицы, Гмелин поместил три "базисных" элемента – кислород, азот и водород. Под ними были расставлены триады, а также тетрады и пентады (группы из четырех и пяти элементов), причём под кислородом расположены группы металлоидов (по терминологии Берцелиуса), т.е. электроотрицательных элементов; электроположительные и электроотрицательные свойства групп элементов плавно изменялись сверху вниз.

    Слайд 5

    Часть таблицы Леопольда Гмелина

    Слайд 6

    Первые попытки систематизации элементов Джон Александр Рейна Ньюлендсв1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав. Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Такая зависимость действительно имеет место для лёгких элементов, однако Ньюлендс пытается придать ей всеобщий характер. В таблице Ньюлендса сходные элементы располагались в горизонтальных рядах; однако, в одном и том же ряду часто оказывались и элементы совершенно непохожие. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица Ньюлендса не содержит свободных мест.

    Слайд 7

    Таблица Ньюлендса

    Слайд 8

    Первые попытки систематизации элементов В 1864 году Уильям Одлинг, пересмотрев предложенную им в 1857 г. систематику элементов, основанную на эквивалентных весах, предложил следующую таблицу, не сопровождаемую какими-либо пояснениями.

    Слайд 9

    Таблица Одлинга

    Слайд 10

    В 1870 г. Юлиус Лотар Мейеропубликовал свою первую таблицу, в которую включены 42 элемента (из 63), размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах подобных элементов. Первые попытки систематизации элементов

    Слайд 11

    Таблица Майера

    Слайд 12

    В марте 1869 г. русский химик Дмитрий Иванович Менделеев представил Русскому химическому обществу периодический закон химических элементов, изложенный в нескольких основных положениях. В том же 1869 г. вышло и первое издание учебника "Основы химии", в котором была приведена периодическая таблица Менделеева.

    Слайд 13

    Первая таблица Д.И.Менделеева, 1869 г

    Слайд 14

    В конце 1870 г. Менделеев доложил РХО статью "Естественная система элементов и применение её к указанию свойств неоткрытых элементов", в котором предсказал свойства неоткрытых ещё элементов – аналогов бора, алюминия и кремния (соответственно экабор, экаалюминий и экасилиций).

    Слайд 15

    В 1871 г. Менделеев в итоговой статье "Периодическая законность химических элементов" дал формулировку Периодического закона: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса». Тогда же Менделеев придал своей периодической таблице классический вид.

    Слайд 16

    Распространённее других являются 3 формы таблицы Менделеева: «короткая» (короткопериодная) «длинная» (длиннопериодная) «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды и актиноиды вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток.

    Слайд 17

    Слайд 18

    Слайд 19

    Вторая формулировка Периодического закона Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер.

    Слайд 20

    Третья формулировка Периодического закона Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от периодичности в изменении конфигураций внешних электронных слове атомов химических элементов.

    Слайд 21

    Немецкий химик Леопольд Гмелин родился в Гёттингене в семье известного химика и врача Иоганна Фридриха Гмелина. Учился в Тюбингенском и Гёттингенском университетах; в 1812 получил степень доктора медицины. С 1813 по 1851 работал в Гейдельбергском университете; с 1817 - профессор медицины и химии.

    Слайд 22

    Джон Александр Рейна Ньюлендс родился в Лондоне 26 ноября 1837 г. Отец, шотландский священник Уильям Ньюлендс, не хотевший, чтобы сын пошёл по его стопам, подготовил его к поступлению в в химический колледж. Мать, Мэри Сара Рейна, итальянка, привила сыну любовь к музыке. Получив образование в колледже, он в 1857 г. Ньюлендс становится ассистентом химика в Королевском сельскохозяйственном обществе. Однако под влиянием матери Ньюлендс уезжает на её родину, в Италию, где набирало силу освободительное движение во главе с Джузеппе Гарибальди. Там в начале 1860 г. Ньюлендс познакомился со Станислао Канниццаро – одним из реформаторов атомно-молекулярного учения. Общение с Канниццаро, по-видимому, привлекло внимание Ньюлендса к проблеме атомных весов элементов.

    Слайд 23

    Английский химик Уильям Одлинг родился в Саутуорке, близ Лондона. В 1846-1850 гг. он получил медицинское образование в медицинской школе при госпитале Св. Варфоломея в Лондоне. В 1850 г. изучал химию в Париже у Шарля Жерара. С 1868 г. – профессор Королевского института, с 1872 г. – Оксфордского университета. Член Лондонского королевского общества с 1859 г., его почётный Секретарь (1856-1869), Вице-президент (1869-1872) и Президент (1873-1875).

    Слайд 24

    Юлиус Лотар Мейер родился 19 августа 1830 года в семье врача в маленьком городке Фареле в провинции Ольденбург. Обладая слабым здоровьем, среднюю школу он смог закончить только к двадцати одному году. После школы по примеру своего отца Мейер стал изучать медицину, и в 1854 году получил степень доктора в Вюрцбургском университете.

    Слайд 25

    Д.И. Менделеев родился 8 февраля 1834г. в г.Тобольске, в семье директора гимназии и попечителя училищ. Мать - владелица небольшого стекольного производства.

    Слайд 26

Посмотреть все слайды