Прижим эксцентриковый чертеж. Эксцентриковый зажим


Доброго времени суток любителям самодельных приспособлений. Когда под рукой нет тисков или же их просто нет в наличии, то самым простым решением будет собрать что-то похожее самому, так как особых навыков и труднодоступных материалов для сборки зажима не требуется. В этой статье я расскажу, как сделать деревянный зажим.

Для того, чтобы собрать свой зажим необходимо найти крепкую породу дерева, чтобы оно выдерживало большие нагрузки. В данном случае хорошо подойдет дубовая дощечка.

Для того, чтобы приступить к этапу изготовления необходимо:
*Болт, размер которого лучше взять в районе 12-14мм.
*Гайку под болт.
*Бруски из дерева дуба.
*Часть профиля из дерева сечением 15мм.
*Столярный клей или паркетный.
*Эпоксидка.
*Лак, можно заменить на морилку.
*Металлический стержень 3 мм.
*Сверло мелкого диаметра.
*Стамеска или зубило.
*Ножовка по-дереву.
*Молоток.
*Электродрель.
*Наждачка средней зернистости.
*Тиски и струбцина.

Первый шаг. В зависимости от ваших запросов размер зажима можно сделать разный, в данном случае автор выпиливает брусочки размером 3,5 х 3 х 3,5 см - одну штуку и 1,8 х 3 х 7,5 см - две штуки.


После этого зажимаем брусок длиной 75мм в тисках и сверлим отверстие с помощью дрели, отступив от края 1-2см.


Далее сопоставьте сделанное только что отверстие с отверстием в гайке и обведите контур карандашом. После разметки, вооружившись стамеской и молотком, вырежьте шестигранный потай для гайки.



Второй шаг. Для закрепления гайки в бруске необходимо промазать выточенный паз эпоксидной смолой внутри и погрузить туда ту самую гайку, немного утопив ее в бруске.



Как правило полное высыхание эпоксидной смолы достигается по истечению 24 часов, после чего можно переходить к следующему этапу сборки.
Третий шаг. Болт, который идеально подходит к нашей закрепленной гайке в брусе необходимо доработать, для этого берем дрель и просверливаем отверстие впритык к его шестиугольной шляпке.


После этого переходим к брускам, их необходимо совместить вместе, чтобы по бокам были бруски подлиннее, а между ними брусок покороче. Перед тем, как три бруса будут зажаты между собой, нужно просверлить отверстия в месте крепежа тонким сверлом, чтобы заготовка не раскололась, ибо такой расклад нам не подходит.


С помощью шуруповерта закручиваем шурупы в готовые места сверления, предварительно промазав стыки между собой клеем.



Закрепляем струбциной почти готовый зажимной механизм и ждем высыхания клея. Для удобного использования зажима необходим рычаг, при помощи которого вы сможете зажимать ваши заготовки, им как раз таки послужит металлический стержень и распиленная на две части круглопрофильная деревяшка сечением 15 мм, в обеих нужно просверлить отверстие для стержня и посадить это все на клей.




Завершающий этап. Для полного окончания сборки понадобиться лак или морилка, шлифуем наш самодельный зажим, а потом покрываем лаком в несколько слоев.

Без слесарных тисков невозможно представить авторемонтную или домашнюю мастерскую независимо от того, с каким материалом приходиться работать: металлом, пластиком или деревом. Обычно везде пользуются классическими тисками с воротком, которые медленно зажимают и разжимают детали.

Совершенно нетрудно и в короткое время можно изготовить самодельные металлические тиски с эксцентриковым зажимом, которые отличаются компактными размерами, а также позволяют быстро и надежно фиксировать заготовки. Быстродействие тисков особенно будет полезным при выполнении больших объемов работ, отличающихся однообразием и монотонностью.
Сделать самые простые металлические тиски с эксцентриковым зажимом можно своими руками из недорогих подручных материалов – остатков металлолома, которые практически всегда найдутся в домашней мастерской или гараже. Поэтому на материалах не будем останавливаться. Если будет необходимость оговорить их особенности, уточним это в процессе работы.
Нам для работы понадобятся самые обычные инструменты:

  • сварочный аппарат;
  • болгарка с отрезным диском;
  • сверлильный станок или дрель;
  • метчик для нарезки резьбы:
  • молоток;
  • клещи;
  • слесарные тиски и др.

Приступаем к изготовлению тисков

Чтобы работа спорилась, не мешает себе мысленно представить конечный результат работы, к которой мы только что приступаем: готовые быстрозажимные эксцентриковые тиски, радующие нас своей компактностью, цветовым разнообразием и поразительными возможностями быстро и надежно зажимать любые заготовки.


Ну, а теперь – к работе, чтобы мечта превратилась в реальность. Находим остаток ни к чему негодного швеллера, размечаем его с помощью линейки и маркера и отрезаем при помощи болгарки необходимый кусок. Он станет основание для подвижной и неподвижной губки наших тисков.



Из подходящего по размеру равнополочного уголка после разметки отрезаем два одинаковых по длине куска, которые в тисках станут основанием губок наших самодельных тисков.


В середине полки одного из уголков – будущей подвижной губке тисков, намечаем центр отверстия, которое просверливаем на сверлильном станке.


На перемычке заготовки швеллера по ее центральной оси ближе к одному концу намечаем границы прорези, по которой будет двигаться подвижная губка наших тисков. Отмеченные точки накерниванием и сверлим отверстия, которые и будут концами прорези.



Вырезаем с помощью болгарки полоску металла в перемычке швеллера между этими двумя отверстиями и выбиваем ее сужающимся бойком молотка. Эта прорезь будет задавать пределы перемещения подвижной губки тисков.



Отрезаем болгаркой из подходящей металлической полосы два куска, длина которых равна ширине полки уголка. Они будут служить ограничителями для подвижной губки при ее движении вдоль прорези.




Далее соединяем уголок и швеллер с помощью болта и гайки в положение, которые они будут занимать в готовых тисках.



Зажимаем эту конструкцию в слесарные тиски и привариваем к уголку поперечно с двух сторон швеллера ограничители, придерживая их клещами. Чтобы их случайно не приварить к полкам швеллера, между ними на время сварки помещаем тонкий кусок резины, пластика или другого диэлектрического материала.




Затем из отслужившего свое молотка с круглой головкой отрезаем болгаркой цилиндрическую болванку по высоте примерно равную диаметру – заготовку будущего эксцентрикового зажима.


Намечаем на его торце точку с некоторым эксцентриситетом – отступом от центральной продольной оси цилиндра. По метке сверлим сквозное отверстие, параллельное оси нашей заготовки.


Из толстой полосы металла после разметки вырезаем два куска по длине и высоте равных полке равнополочного уголка. Это будущие накладки на губки быстрозажимных тисков.





Сверлим в этих накладках по два отверстия по центру ближе к краям. Развертываем их с лицевой стороны под головки крепежных винтов. С помощью болгарки наносим насечку и зачищаем их. Пробуем качество закрепления накладок к полкам уголков (губкам) двумя болтами и гайками.




Один уголок (неподвижную губку) привариваем поперечно к перемычке швеллера со стороны, противоположной прорези. Вновь устанавливаем накладки на неподвижную и подвижную губки и уже окончательно прикручиваем их по месту, пользуясь ключом и отверткой.




Из довольно толстого металла вырезаем полоску по размеру равную длине уголка, а по ширине – расстоянию между концами полок по диагонали. Также и привариваем ее для обеспечения прочности и жесткости неподвижной губки.



Теперь берем более толстую полосу металла и сверлим с одного конца отверстие и нарезаем в ней резьбу с помощью метчика. Затем отрезаем от нее кусочек с резьбовым отверстием прямоугольной формы, чуть отличной от квадрата.
Эта самодельная прямоугольная гайка будет удерживать эксцентрик на подвижной губке, и позволять им двигаться по перемычке швеллера (направляющей) в ту или другую сторону.



Чтобы гайка не вращалась под перемычкой швеллера, с двух сторон от нее продольно вдоль всей прорези с небольшим зазором отрезаем и привариваем два направляющих прута-ограничителя.



В эксцентрике сбоку примерно посередине его высоты сверлим глухое отверстие и нарезаем в нем резьбу под крепление ручки.
Собираем подвижную губку тисков с заранее приваренными ограничителями, прикручивая к уголку двумя болтами готовую накладку с насечками.


Находим кусок листового железа достаточной толщины для обеспечения жесткости. Намечаем на нем контуры основания восьмиугольной формы с двумя отметками под отверстия для крепления. С помощью болгарки вырезаем его.
Привариваем к нему швеллер (направляющую) с неподвижной губкой. Обрабатываем сварные швы и поверхности болгаркой для удаления ржавчины, наплывов металла, шероховатостей и округления граней.





Заклеиваем накладку губки и продольную прорезь с запасом по бокам строительным скотчем.

С их помощью одним движением ручки эксцентрика можно закрепить в них любые заготовки быстро, надежно и без лишних усилий.

Замечания в конце

Поскольку придется работать с болгаркой, сварочным аппаратом, сверлильным станком, то необходимо пользоваться индивидуальными средствами защиты, по крайней мере, очками для защиты глаз и перчатками на руки.
Чтобы подвижные части эксцентриковых тисков работали без заеданий, их можно время от времени смазывать графитовой смазкой, а рычаг эксцентрика для удобства снабдить деревянной ручкой.

Без циркулярной пилы сложно себе представить столярную мастерскую, так как самая основная и распространенная операция – это именно продольное пиление заготовок. О том, как сделать самодельную циркулярную пилу и пойдет речь в данной статье.

Введение

Станок состоит из трех основных конструктивных элементов:

  • основание;
  • распиловочный стол;
  • параллельный упор.

Основание и сам распиловочный стол – это не очень сложные конструктивные элементы. Их конструкция очевидна и не столь сложна. Поэтому в данной статье мы будем рассматривать наиболее сложный элемент – параллельный упор.

Итак, параллельный упор – это подвижная часть станка, которая является направляющей для заготовки и именно вдоль нее движется заготовка. Соответственно от параллельного упора зависит качество реза по тому, что если упор будет не параллельным, то возможно или заклинивание заготовки или кривой пил.

Кроме того, параллельный упор циркулярной пилы должен быть довольно жесткой конструкцией, так как мастер прилагает усилия, прижимая заготовку к упору, и если будут возможны смещения упора, то это приведет к непараллельности с последствиями, указанными выше.

Существуют различные конструкции параллельных упоров в зависимости от приемов его крепления к циркулярному столу. Приведем таблицу с характеристиками этих вариантов.

Конструкция параллельного упора Достоинства и недостатки
Крепление в двух точках (спереди и сзади) Достоинства: · Довольно жесткая конструкция, · Позволяет поместить упор в любое место циркулярного стола (слева или справа от пильного диска); · Не требует массивности самой направляющейНедостаток: · Для крепления мастеру нужно произвести зажим одного конца спереди станка, а также обойти станок вокруг и закрепить противоположный конец упора. Это очень неудобно при подборе необходимого положения упора и при частой переналадке является существенным недостатком.
Крепление в одной точке (спереди) Достоинства: · Менее жесткая конструкция, чем при креплении упора в двух точках, · Позволяет поместить упор в любое место циркулярного стола (слева или справа от пильного диска); · Для изменения положения упора, достаточно выполнить его фиксация с одной стороны станка, там, где располагается мастер в процессе пиления.Недостаток: · Конструкция упора должна быть массивной, чтобы обеспечить необходимую жесткость конструкции.
Крепление в пазу циркулярного стола Достоинства: · Быстрая переналадка.Недостаток: · Сложность конструкции, · Ослабление конструкции циркулярного стола, · Фиксированное положение от линии пильного диска, · Довольно сложная конструкция для самостоятельного изготовления, особенно из дерева (делается только из металла).

В данной статье мы разберем вариант создания конструкции параллельного упора для циркулярки с одной точкой крепления.

Подготовка к работе

Прежде чем приступить к работе, необходимо определиться с необходимым набором инструмента и материалов, которые понадобятся в процессе работы.

Для работы будут использованы следующие инструменты:

  1. Циркулярная пила или можно использовать.
  2. Шуруповерт.
  3. Болгарка (Угло-шлифовальная машинка).
  4. Ручной инструмент: молоток, карандаш, угольник.

В процессе работы также понадобятся следующие материалы:

  1. Фанера.
  2. Массив сосны.
  3. Стальная трубка с внутренним диаметром 6-10 мм.
  4. Стальной стержень с наружным диаметром 6-10 мм.
  5. Две шайбы с увеличенной площадью и внутренним диаметром 6-10 мм.
  6. Саморезы.
  7. Столярный клей.

Конструкция упора циркулярного станка

Вся конструкция состоит из двух основных частей – продольной и поперечной (имеется в виду – относительно плоскости пильного диска). Каждая из этих частей жестко связана с другой и является сложной конструкцией, которая включает в себя набор деталей.

Усилие прижатия достаточно большие, чтобы обеспечить прочность конструкции и надежно зафиксировать весь параллельный упор.

С другого ракурса.

Общий состав всех деталей выглядит следующим образом:

  • Основание поперечной части;
  1. Продольная часть
    , 2шт.);
  • Основание продольной части;
  1. Зажим
  • Рукоятка эксцентрика

Изготовление циркулярки

Подготовка заготовок

Нужно отметить пару моментов:

  • плоскостные продольные элементы делаются из, а не из массива сосны, как другие детали.

На 22 мм сверлим отверстие в торце под ручку.

Лучше это сделать с помощью сверления, но можно и просто набить гвоздем.

В циркулярной пиле, используемой для работы, используется самодельная подвижная каретка из (или как вариант можно сделать «на скорую руку» фальш-стол), который не очень жалко деформировать или испортить. В эту каретку в размеченное место заколачиваем гвоздь и откусываем шляпку.

В итоге получим ровную цилиндрическую заготовку, которую нужно обработать ленточной или эксцентриковой шлифмашинкой.

Делаем рукоятку – это цилиндр диаметром 22 мм и длиной 120-200 мм. Затем вклеиваем ее в эксцентрик.

Поперечная часть направляющей

Приступаем к изготовлению поперечной части направляющей. Она состоит, как было сказано выше из следующих деталей:

  • Основание поперечной части;
  • Верхняя поперечная прижимная планка (с косым торцом);
  • Нижняя поперечная прижимная планка (с косым торцом);
  • Торцевая (фиксирующая) планка поперечной части.

Верхняя поперечная прижимная планка

Обе прижимные планки – верхняя и нижняя имеют один торец не прямой 90º, а наклонный («косой») с углом 26,5º (если быть точным, то 63,5 º). Эти углы мы уже соблюли при распиловке заготовок.

Верхняя поперечная прижимная планка служит для перемещения по основанию и дальнейшей фиксации направляющей прижатием к нижней поперечной прижимной планке. Она собирается из двух заготовок.

Обе прижимные планки готовы. Нужно проверить плавность хода и удалить все дефекты, мешающие ровному скольжению, кроме того, нужно проверить плотность прилегания наклонных кромок; зазоров и щелей быть не должно.

При плотном прилегании прочность соединения (фиксация направляющей) будет максимальной.

Сборка поперечной всей части

Продольная часть направляющей

Вся продольная часть состоит из:

    , 2шт.);
  • Основание продольной части.

Этот элемент выполняется из по тому, что поверхность ламинированная и более гладкая – это уменьшает трение (улучшает скольжение), а также более плотная и прочная – более долговечная.

На этапе формирования заготовок мы уже напилили их в размер, осталось только облагородить кромки. Это делается с помощью кромочной ленты.

Технология кромления проста (можно даже утюгом приклеить!) и понятна.

Основание продольной части

А также дополнительно фиксируем саморезами. Не забываем соблюсти угол 90º между продольными и вертикальными элементами.

Сборка поперечной и продольной частей.

Вот тут ОЧЕНЬ!!! важно соблюсти угол 90º, так как именно от него будет зависеть параллельность направляющей с плоскостью пильного диска.

Установка эксцентрика

Установка направляющей

Пришло время закрепить всю нашу конструкцию на циркулярный станок. Для этого нужно прикрепить планку поперечного упора к циркулярному столу. Крепление, как и везде, осуществляем на клей и саморезы.

… и считаем работу законченной – циркулярная пила своими руками готова.

Видео

Видео, по которому делался этот материал.

Доброго времени суток любителям самодельных приспособлений. Когда под рукой нет тисков или же их просто нет в наличии, то самым простым решением будет собрать что-то похожее самому, так как особых навыков и труднодоступных материалов для сборки зажима не требуется. В этой статье я расскажу, как сделать деревянный зажим.

Для того, чтобы собрать свой зажим необходимо найти крепкую породу дерева, чтобы оно выдерживало большие нагрузки. В данном случае хорошо подойдет дубовая дощечка.

Для того, чтобы приступить к этапу изготовления необходимо:
*Болт, размер которого лучше взять в районе 12-14мм.
*Гайку под болт.
*Бруски из дерева дуба.
*Часть профиля из дерева сечением 15мм.
*Столярный клей или паркетный.
*Эпоксидка.
*Лак, можно заменить на морилку.
*Металлический стержень 3 мм.
*Сверло мелкого диаметра.
*Стамеска или зубило.
*Ножовка по-дереву.
*Молоток.
*Электродрель.
*Наждачка средней зернистости.
*Тиски и струбцина.

Первый шаг. В зависимости от ваших запросов размер зажима можно сделать разный, в данном случае автор выпиливает брусочки размером 3,5 х 3 х 3,5 см - одну штуку и 1,8 х 3 х 7,5 см - две штуки.


После этого зажимаем брусок длиной 75мм в тисках и сверлим отверстие с помощью дрели, отступив от края 1-2см.


Далее сопоставьте сделанное только что отверстие с отверстием в гайке и обведите контур карандашом. После разметки, вооружившись стамеской и молотком, вырежьте шестигранный потай для гайки.



Второй шаг. Для закрепления гайки в бруске необходимо промазать выточенный паз эпоксидной смолой внутри и погрузить туда ту самую гайку, немного утопив ее в бруске.



Как правило полное высыхание эпоксидной смолы достигается по истечению 24 часов, после чего можно переходить к следующему этапу сборки.
Третий шаг. Болт, который идеально подходит к нашей закрепленной гайке в брусе необходимо доработать, для этого берем дрель и просверливаем отверстие впритык к его шестиугольной шляпке.


После этого переходим к брускам, их необходимо совместить вместе, чтобы по бокам были бруски подлиннее, а между ними брусок покороче. Перед тем, как три бруса будут зажаты между собой, нужно просверлить отверстия в месте крепежа тонким сверлом, чтобы заготовка не раскололась, ибо такой расклад нам не подходит.


С помощью шуруповерта закручиваем шурупы в готовые места сверления, предварительно промазав стыки между собой клеем.



Закрепляем струбциной почти готовый зажимной механизм и ждем высыхания клея. Для удобного использования зажима необходим рычаг, при помощи которого вы сможете зажимать ваши заготовки, им как раз таки послужит металлический стержень и распиленная на две части круглопрофильная деревяшка сечением 15 мм, в обеих нужно просверлить отверстие для стержня и посадить это все на клей.


Завершающий этап. Для полного окончания сборки понадобиться лак или морилка, шлифуем наш самодельный зажим, а потом покрываем лаком в несколько слоев.


На этом изготовление зажима своими руками готово и в рабочее состояние он перейдет, когда лак высохнет полностью, после этого можно с полной уверенностью работать с данным приспособлением.

В приспособлениях применяются два типа эксцентриковых механизмов:

1. Круговые эксцентрики.

2. Криволинейные эксцентрики.

Тип эксцентрика определяется формой кривой на рабочем участке.

Рабочая поверхность круговых эксцентриков – окружность постоянного диаметра со смещенной осью вращения. Расстояние между центром окружности и осью вращения эксцентрика называется эксцентриситетом (е ).

Рассмотрим схему кругового эксцентрика (Рис.5.19). Линия, проходящая через центр окружности О 1 и центр вращения О 2 кругового эксцентрика, делит его на два симметричных участка. Каждый из них это клин, расположенный на окружности, описанной из центра вращения эксцентрика. Угол подъема эксцентрика α (угол между зажимаемой поверхностью и нормалью к радиусу вращения) образуют радиус окружности эксцентрика R и радиус вращения r , проведенные из своих центров в точку касания с деталью.

Угол подъема рабочей поверхности эксцентрика определяется зависимостью

Эксцентриситет; - угол поворота эксцентрика.

Рисунок 5.19 – Расчетная схема эксцентрика

где - зазор для свободного ввода заготовки под эксцентрик (S 1 = 0,2 …0,4 мм); T – допуск на размер заготовки в направлении зажима; - запас хода эксцентрика, предохраняющий его от перехода через мертвую точку (= 0,4…0, 6 мм); y – деформация в зоне контакта;

где Q –усилие в месте контакта эксцентрика; - жесткость зажимного устройства,

К недостаткам круговых эксцентриков относится изменение угла подъема α при повороте эксцентрика (следовательно, и усилия зажима). На рисунке 5.20 приведен профиль развертки рабочей поверхности эксцентрика при его повороте на угол ρ . В начальной стадии при ρ = 0° угол подъема α = 0°. При дальнейшем повороте эксцентрика угол α увеличивается, достигая максимума (α Мах) при ρ = 90°. Дальнейший поворот приводит к уменьшению угла α , и при ρ = 180° угол подъема снова равен нулю α =0°

Рис. 5.20 – Развертка эксцентрика.

Уравнения сил в круговом эксцентрике с достаточной для практических расчетов точностью можно записать, по аналогии с расчетом усилий плоского односкосого клина с углом в точке контакта. Тогда усилие на рукоятке длиной можно определить по формуле

где l – расстояние от оси вращения эксцентрика до точки приложения усилия W ; r – расстояние от оси вращения до точки контакта (Q ); - угол трения между эксцентриком и заготовкой; - угол трения на оси вращения эксцентрика.


Самоторможение круговых эксцентриков обеспечивается отношении его наружного диаметра D к эксцентриситету. Это отношение называют характеристикой эксцентрика.

Круглые эксцентрики изготавливают из стали 20Х, цементируют на глубину 0,8…1,2 мм и затем закаливают до твердости HRC 55…60. Размеры круглого эксцентрика необходимо применять с учетом ГОСТ 9061-68 и ГОСТ 12189-66. Стандартные круговые эксцентрики имеют размеры D= 32-80 мм и е = 1,7 – 3,5 мм. К недостаткам круговых эксцентриков следует отнести небольшой линейный ход, непостоянство угла подъема, а, следовательно, и зажимного усилия при закреплении заготовок с большими колебаниями размеров в направлении зажима.

На рисунке 5.21 показан нормализованный эксцентриковый прихват для зажима деталей. Обрабатываемая деталь 3 установлена на неподвижных опорах 2 и прижимается к ним планкой 4. При зажиме детали к рукоятке эксцентрика 6 прикладывается усилие W ,и он проворачивается относительно своей оси, опираясь на пяту 7. Возникающая при этом на оси эксцентрика сила Р передается через планку 4 к детали.

Рисунок 5.21 – Нормализованный эксцентриковый прихват

В зависимости от размеров планки (l 1 и l 2 ) получим зажимное усилие Q . Планка 4 прижимается к головке 5 винта 1 пружиной. Эксцентрик 6 с планкой 4 после разжима детали перемещается вправо.

Криволинейные кулачки , в отличие от круговых эксцентриков, ха­рактеризуются постоянством угла подъёма, что обеспечивает одинаковые самотормо­зящие свойства при любом угле поворота кулачка.

Рабочая поверхность таких кулачков выполняется в виде ло­гарифмической или архимедовой спирали.

При рабочем профиле в виде логарифмической спирали радиус-вектор кулачка ( р ) определяется зависимостью

р = Се а G

где С- постоянная величина; е - основание натуральных логарифмов; а - коэффициент пропорциональности; G - полярный угол.

Если используется профиль, выполненный по архимедовой спирали, то

р=аG .

Если первое уравнение представить в логарифмическом виде, то оно, как и второе уравнение, в декартовых координатах будет представлять прямую линию. Поэтому построение кулачков с рабочими поверхностями в виде логарифмической или Архимедовой спирали можно выполнить с достаточной точностью просто, если значения р, взятые по графику в де­картовых координатах, отложить от центра окружности в полярных коор­динатах. При этом диаметр окружности подбирают в зависимости от тре­бующейся величины хода эксцентрика (h ) (Рис. 5.22).

Рисунок 5.22 – Профиль криволинейного кулачка

Эти эксцентрики изготавливают из сталей 35 и 45. Наружные рабочие поверхности подвергают термообработке до твердости HRC 55…60. Основные размеры криволинейных эксцентриков нормализованы.

Эксцентриковый зажим является зажимным элементом усовершенствованных конструкции. Эксцентриковые зажимы (ЭЗМ) используются для непосредственного зажима заготовок и в сложных зажимных системах.

Ручные винтовые зажимы просты по конструкции, но имеют существенный недостаток - для закрепления детали рабочий должен выполнить большое количество вращательных движений ключом, что требует дополнительных затрат времени и усилий и в результате снижает производительность труда.

Приведенные соображения заставляют, там где это возможно, заменять ручные винтовые зажимы быстродействующими.

Наибольшее распространение получили и.

Хотя и отличается быстродействием, но не обеспечивает большой силы зажима детали, поэтому его применяют лишь при сравнительно небольших силах резания.

Преимущества:

  • простота и компактность конструкции;
  • широкое использование в конструкции стандартизованных деталей;
  • удобство в наладке;
  • способность к самоторможению;
  • быстродействие (время срабатывания привода около 0.04 мин).

Недостатки:

  • сосредоточенный характер сил, что не позволяет применять эксцентриковые механизмы для закрепления нежестких заготовок;
  • силы закрепления круглыми эксцентриковыми кулачками нестабильны и существенно зависят от размеров заготовок;
  • пониженная надежность в связи с интенсивным изнашиванием эксцентриковых кулачков.

Рис. 113. Эксцентриковый зажим: а - деталь не зажата; б - положение при зажатой детали

Конструкция эксцентрикового зажима

Круглый эксцентрик 1, представляющий собой диск со смещенным относительно его центра отверстием, показан на рис. 113, а. Эксцентрик свободно устанавливается на оси 2 и может вращаться вокруг нее. Расстояние е между центром С диска 1 и центром О оси называется эксцентриситетом.

К эксцентрику прикреплена рукоятка 3, поворотом которой осуществляется зажим детали в точке А (рис. 113, б). Из этого рисунка видно, что эксцентрик работает как криволинейный клин (см. заштрихованный участок). Во избежание отхода эксцентриков после зажима они должны быть самотормозящим и. Свойство самоторможения эксцентриков обеспечивается правильным выбором отношения диаметра D эксцентрика к его эксцентриситету е. Отношение D/e называется характеристикой эксцентрика.

При коэффициенте трения f = 0,1 (угол трения 5°43") характеристика эксцентрика должна быть D/e ≥ 20 ,а при коэффициенте трения f = 0,15 (угол трения 8°30")D/e ≥ 14.

Таким образом, все эксцентриковые зажимы, у которых диаметр D больше эксцентриситета е в 14 раз, обладают свойством самоторможения, т. е. обеспечивают надежный зажим.

Рисунок 5.5 - Схемы для расчета эксцентриковых кулачков: а – круглых, нестандартных; б- выполненных по спирали Архимеда.

В состав эксцентриковых зажимных механизмов входят эксцентриковые кулачки, опоры под них, цапфы, рукоятки и другие элементы. Различают три типа эксцентриковых кулачков: круглые с цилиндрической рабочей поверхностью; криволинейные, рабочие поверхности которых очерчены по спирали Архимеда (реже – по эвольвенте или логарифмической спирали); торцевые.

Круглые эксцентрики

Наибольшее распространение, из-за простоты изготовления, получили круглые эксцентрики.

Круглый эксцентрик (в соответствии с рисунком 5.5а) представляет собой диск или валик, поворачиваемый вокруг оси, смещенной относительно геометрической оси эксцентрика на величину А, называемой эксцентриситетом.

Криволинейные эксцентриковые кулачки (в соответствии с рисунком 5.5б) по сравнению с круглыми обеспечивают стабильную силу закрепления и больший (до 150°) угол поворота.

Материалы кулачков

Эксцентриковые кулачки изготавливают из стали 20Х с цементацией на глубину 0.8…1.2 мм и закалкой до твердости HRCэ 55-61.

Эксцентриковые кулачки различают следующих конструктивных исполнений: круглые эксцентриковые (ГОСТ 9061-68), эксцентриковые (ГОСТ 12189-66), эксцентриковые сдвоенные (ГОСТ 12190-66), эксцентриковые вильчатые (ГОСТ 12191-66), эксцентриковые двухопорные (ГОСТ 12468-67).

Практическое использование эксцентриковых механизмов в различных зажимных устройствах показано на рисунке 5.7

Рисунок 5.7 - Виды эксцентриковых зажимных механизмов

Расчет эксцентриковых зажимов

Исходными данными для определения геометрических параметров эксцентриков являются: допуск δ размера заготовки от ее установочной базы до места приложения зажимной силы; угол a поворота эксцентрика от нулевого (начального) положения; потребная сила FЗ зажима детали. Основными конструктивными параметрами эксцентриков являются: эксцентриситет А; диаметр dц и ширина b цапфы (оси) эксцентрика; наружный диаметр эксцентрика D; ширина рабочей части эксцентрика В.

Расчеты эксцентриковых зажимных механизмов выполняют в следующей последовательности:

Расчет зажимов со стандартным эксцентриковым круглым кулачком (ГОСТ 9061-68)

1. Определяют ход h к эксцентрикового кулачка, мм.:

Если угол поворота эксцентрикового кулачка не имеет ограничений (a ≤ 130°), то

где δ - допуск размера заготовки в направлении зажима, мм;

D гар = 0,2…0,4 мм – гарантированный зазор для удобной установки и снятия заготовки;

J = 9800…19600 кН/м жёсткость эксцентрикового ЭЗМ;

D = 0,4...0,6 мм – запас хода, учитывающий износ и погрешности изготовления эксцентрикового кулачка.

Если угол поворота эксцентрикового кулачка ограничен (a ≤ 60°), то

2. Пользуясь таблицами 5.5 и 5.6 подбирают стандартный эксцентриковый кулачок. При этом должны соблюдаться условия: F з max и h к h (размеры, материал, термическая обработка и другие технические условия по ГОСТ 9061-68. Проверять стандартный эксцентриковый кулачок на прочность нет необходимости.

Таблица 5.5 -Стандартный круглый эксцентриковый кулачок (ГОСТ 9061-68)

Обозначение

Наружный

эксцентрикового

кулачка, мм

Эксцентриситет,

Ход кулачка h, мм, не менее

Угол поворота

ограничен a≤60°

Угол поворота

ограничен a≤130°

Примечание: Для эксцентриковых кулачков 7013-0171…1013-0178 значения Fз мах и Ммах вычислены по параметру прочности, а для остальных – с учетом требований эргономики при предельной длине рукоятки L=320 мм.

3. Определяют длину рукоятки эксцентрикового механизма, мм

Значения M max и P з max выбираются по таблице 5.5.

Таблица 5.6 - Кулачки эксцентриковые круглые (ГОСТ 9061-68). Размеры, мм

Рисунок - чертеж эксцентрикового кулачка

Эксцентриковый зажим своими руками

Видео подскажет как сделать самодельный эксцентриковый зажим, предназначенный для фиксации заготовки. Эксцентриковый прижим, изготовленный своими руками.

При больших программах выпуска изделий широко применяют быстродействующие зажимы. Одним из видов таких ручных зажимов являются эксцентриковые, в которых поворотом эксцентриков создаются усилия зажима.

Значительные усилия при малой площади касания рабочей поверхности эксцентрика могут вызвать повреждение поверхности детали. Поэтому обычно эксцентрик действует на деталь через подкладку, толкатели, рычаги или тяги.

Зажимные эксцентрики могут быть с различным профилем рабочей поверхности: в виде окружности (круглые эксцентрики) и со спиральным профилем (в виде логарифмической или архимедовой спирали).

Круглый эксцентрик представляет собой цилиндр (валик или кулачок), ось которого расположена эксцентрично по отношению к оси вращения (фиг. 176, а, бив). Такие эксцентрики наиболее просты в изготовлении. Для поворота эксцентрика служит рукоятка. Эксцентриковые зажимы выполняют часто в виде кривошипных валиков с одной или двумя опорами.

Эксцентриковые зажимы всегда ручные, поэтому основным условием правильной работы их является сохранение углового положения эксцентрика после его поворота для зажатия - «самоторможение эксцентрика». Это свойство эксцентрика определяется отношением диаметра О цилиндрической рабочей поверхности к эксцентриситету е. Это отношение называется характеристикой эксцентрика. При определенном отношении – условие самоторможения эксцентрика выполняется.

Обычно диаметром Б круглого эксцентрика задаются из конструктивных соображений, а эксцентриситет е рассчитывают исходя из условий самоторможения.

Линия симметрии эксцентрика делит его на две части. Можно представить себе два клина, одним из которых при повороте эксцентрика закрепляется деталь. Положение эксцентрика при его контакте с поверхностью детали минимального размера.

Обычно положение участка профиля эксцентрика, который участвует в работе, выбирают так. чтобы при горизонтальном положении линий 0\02 эксцентрик касался бы точкой с2 зажимаемой летали средних размеров. При зажиме деталей с максимальными и минимальными размерами детали будут касаться соответственно точек сI и с3 эксцентрика, симметрично расположенных относительно точки с2. Тогда активным профилем эксцентрика будет дуга С1С3. При этом часть эксцентрика, ограниченную на фигуре штриховой линией, можно удалить (при этом ручку надо переставить в другое место).

Угол а между зажимаемой поверхностью и нормалью к радиусу вращения называют углом подъема. Он различен при разных угловых положениях эксцентрика. Из развертки видно, что при касании детали и эксцентрика точками а и Б угол а равен нулю. Его величина наибольшая при касании эксцентрика точкой с2. При малых углах клиньев возможно заедание, при больших - самопроизвольное ослабление. Поэтому зажим при касании с деталью точек эксцентрика а и б нежелателен. Для спокойного и надежного закрепления детали необходимо, чтобы эксцентрик соприкасался на участке С\С3 с деталью, когда угол а не бывает равен нулю и не может колебаться в широких пределах.