Сенсорный датчик. Описание работы сенсорного датчика прикосновения

Cтраница 1


Датчики касания используются просто для обнаружения факта контакта с объектом. Датчиком касания может служить простейший микровыключатель. Датчики механических напряжений используются для измерения величины силы, возникающей в месте контакта. Обычно в качестве сенсоров, измеряющих усилия, применяют тензодатчики.  

В токарных станках датчики касания применяются для контроля размеров заготовки, обработанной детали и режущей кромки инструмента. Вопросы диагностирования роботов (применяются антропоморфные и портальные роботы, встроенные в токарный станок, и внешние, работающие в цилиндрической системе координат) рассмотрены в гл.  


Для измерения износа прямыми методами применяют датчики касания, которые регистрируют либо размерный износ, либо, при их перемещении, износ по задней поверхности. Конструкция датчика приведена на рис. 4.8, а. Корпус 4 закрепляется на подвижном узле / станка. В обмотке электромагнита создается переменное магнитное поле, вызывающее колебания наконечника. При касании наконечником блока его колебания нарушаются, что регистрируется электронной системой 8 с усилителем 7, а координаты соответствуют измеряемому размеру. Датчик защищают от стружки. Его применяют на станках с ЧПУ и в ГПС не только для измерения износа, но и для определения фактических координат вершины лезвия инструмента с целью автоматической корректировки управляющих программ.  


Принцип работы проволочного тактильного датчика (датчика касания) показан на рис. 5.26. Робот автоматически по координатам двух базовых точек А и В, определяемых тактильным датчиком на угловом соединении, по скорректированной программе отыскивает требуемое место начала сварки (точку С), если отклонение стыкового соединения от исходного положения вызвано его параллельным смещением. В случае, если смещение стыкового соединения от исходного положения вызвано его параллельным смещением с разворотом относительно точки сварки, то для корректировки программы позиционирования роботом горелки в начальную точку сварки необходимо определить датчиком координаты как минимум трех базовых точек на элементах соединения.  


Нулевые головки обычно конструируются на базе датчиков касания, в качестве которых широко используются электро -, радио - и виброконтактные датчики. Эти головки, называемые еще головками касания, делятся на два класса: с изменяющимся и фиксированным нулевым положением измерительного наконечника.  

Рассмотрим особенности укзззнных выше устройств при использовании их в качестве датчика касания в специфических условиях цеха ртутного электролиза.  


Очувствление схватов и других исполнительных органов манипулятора выполняют датчики захватного усилия 6 и датчики касания 7 при взаимодействии ПР с внешней средой.  

Сварочная часть ПР включает: сварочный выпрямитель; сварочную горелку; кронштейны крепления; механизм подачи сварочной проволоки; датчик касания заготовки для сварки; устройство управлением датчика касания; необходимое количество кабелей; баллон с инертным газом, редуктор с расходомером и подогревателем газа; шланги и рукава.  

Датчик касания для Arduino

Модуль представляет собой сенсорную кнопку, на его выходе формируется цифровой сигнал, напряжение которого соответствует уровням логических единицы и нуля. Относится к емкостным датчикам касания. С такого рода устройствами ввода данных мы сталкиваемся при работе с дисплеем планшета, айфона или тачскрин монитора. Если на мониторе мы нажимаем на иконку стилусом или пальцем, то здесь для этого используется область поверхности платы размером с иконку Windows касание которой производится только пальцем, стилус исключается. Основа модуля микросхема TTP223-BA6 . Есть индикатор питания.

Управление ритмом воспроизведения мелодии

При установке в прибор сенсорную область поверхности платы модуля закрывают тонким слоем стеклотекстолита, пластмассы, стекла иди дерева. К преимуществам емкостной сенсорной кнопки относится большой срок службы и возможность герметизации передней панели прибора, антивандальные свойства. Это позволяет использовать датчик касания в работающих на открытом воздухе приборах в условиях прямого попадания капель воды. Например, кнопка дверного звонка или бытовые приборы. Интересно применение в оборудовании умный дом - замена выключателей освещения.

Характеристики

Напряжение питания 2,5 - 5,5 В
Время отклика на касание в различных режимах потребления тока
низкое 220 мс
обычное 60 мс
Выходной сигнал
Напряжение
высокий лог. уровень 0,8 Х напряжение питания
низкий лог. уровень 0,3 Х напряжение питания
Ток при питании 3 В и логических уровнях, мА
низкий 8
высокий -4
Размеры платы 28 x 24 x 8 мм

Контакты и сигнал

Нет касания - выходной сигнал имеет низкий логический уровень, касание - на выходе датчика логическая единица.

Почему это работает или немного теории

Тело человека, как и все что нас окружает, обладает электрическими характеристиками. При срабатывании датчика прикосновения проявляются наши емкость, сопротивление, индуктивность. На нижней стороне платы модуля расположен участок фольги соединенный с входом микросхемы. Между пальцем оператора и фольгой на нижней стороне расположен слой диэлектрика - материал несущей основы печатной платы модуля. В момент касания происходит заряд тела человека микроскопическим током, протекающим через конденсатор, образованный участком фольги и пальцем человека. При упрощенном рассмотрении ток протекает через два последовательно соединенных конденсатора: фольга, палец находящихся на противоположных поверхностях платы и тело человека. Поэтому если поверхность платы закрыть тонким слоем изолятора, то это приведет к увеличению толщины слоя диэлектрика конденсатора фольга-палец и не нарушит работу модуля.
Микросхема TTP223-BA6 фиксирует ничтожный импульс микротока и регистрирует прикосновение. Благодаря свойствам микросхемы работать с такими токами никакого вреда такая технология не наносит. Когда мы касаемся корпуса работающего телевизора или монитора через нас проходят микротоки большей величины.

Режим пониженного потребления

После подачи питания датчик касания находится в режиме пониженного энергопотребления. После срабатывания на 12 секунд модуль переходит в обычный режим. Если далее касание не произошло, то модуль вернется в режим пониженного потребления тока. Скорость реакции модуля на касание в различных режимах приведена в характеристиках выше.

Работа совместно с Arduino UNO

Загрузите в Arduino UNO следующую программу.

#define ctsPin 2 // Контакт подключения линии сигнала датчика касания
int ledPin = 13; // Контакт для светодиода

Void setup() {
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(ctsPin, INPUT);
}

Void loop() {
int ctsValue = digitalRead(ctsPin);
if (ctsValue == HIGH){
digitalWrite(ledPin, HIGH);
Serial.println("TOUCHED");
}
else{
digitalWrite(ledPin,LOW);
Serial.println("not touched");
}
delay(500);
}

Соедините датчик касания и Arduino UNO как показано на рисунке. Схему можно дополнить включающимся при касании датчика светодиодом, подключенным через резистор 430 Ом к контакту 13. Сенсорные кнопки часто оснащают индикатором касания. Так удобней работать оператору. При нажатии на механическую кнопку мы чувствуем щелчок независимо от реакции системы. Здесь новизна технологии немного удивляет из-за нашей моторики сложившейся годами. Индикатор нажатия избавляет нас от излишнего ощущения новизны.

Здесь будут рассмотрены датчики звука и касания, чаще всего использующиеся в составе сигнализаций.

Модуль датчика касания KY-036

Модуль, по сути, представляет собой сенсорную кнопку. Как понимает автор, принцип действия устройства основан на том, что, прикасаясь к контакту датчика человек, становится антенной для приема наводок на частоте бытовой сети переменного тока . Эти сигналы поступают на компаратор LM393YD

Габариты модуля 42 х 15 х 13 мм, масса 2,8 г., в плате модуля имеется крепежное отверстие диаметром 3 мм. Индикация питания осуществляется светодиодом L1.

При срабатывании датчика загорается (мигает) светодиод L2. Потребляемый ток 3,9 мА в ждущем режиме и 4,9 мА при срабатывании.

Не совсем ясно, какой порог чувствительности датчика должен регулироваться переменным резистором. Данные модули с компаратором LM393YD являются стандартными и к ним припаивают различные датчики, получая, таким образом, модули различного назначения. Выводы питания «G» — общий провод, «+» – питание +5В. На цифровом входе «D0» присутствует низкий логический уровень, при срабатывании датчика на выходе появляется импульсы с частотой 50 Гц. На контакте «A0» присутствует инвертированный относительно «D0» сигнал . В целом модуль срабатывает дискретно, как кнопка, в чем можно убедиться с помощью программы LED_with_button .

Датчик касания позволяет использовать в качестве кнопки управления любую металлическую поверхность, отсутствие движущихся частей должно положительно сказаться на долговечности и надежности.

Модуль датчика звука KY-037

Модуль должен срабатывать от звуков, громкость которых превышает заданный предел. Чувствительным элементом модуля является микрофон, работающий вместе с компаратором на микросхеме LM393YD .

Габариты модуля 42 х 15 х 13 мм, масса 3,4 г., аналогично предыдущему случаю в плате модуля имеется крепежное отверстие диаметром 3 мм. Индикация питания осуществляется светодиодом L1. Выводы питания «G» — общий провод, «+»– питание +5В.

Потребляемый ток 4,1 мА в ждущем режиме и 5 мА при срабатывании.

На выводе «A0» напряжение изменяется в соответствии уровнем громкости сигналов, принимаемых микрофоном, с повышением громкости показания уменьшаются, в этом можно убедиться с помощью программы AnalogInput2.

На цифровом входе «D0» присутствует низкий логический уровень, при превышении заданного порога низкий уровень меняется на высокий. Порог срабатывания можно регулировать переменным резистором. При этом загорается светодиод L2. При резком громком звуке наблюдается задержка в 1-2 с при обратном переключении.

В целом полезный датчик для организации системы умного дома или сигнализации.

Модуль датчика звука KY-038

С первого взгляда модуль кажется аналогичным предыдущему. Чувствительным элементом модуля является микрофон, следует отметить, что по данному модулю в сети не так уж много информации .

Габариты модуля 40 х 15 х 13 мм, масса 2,8 г., аналогично предыдущему случаю в плате модуля имеется крепежное отверстие диаметром 3 мм. Индикация питания осуществляется светодиодом L1. Выводы питания «G» — общий провод, «+»– питание +5В.

При срабатывании геркона загорается светодиод L2. Потребляемый ток 4,2 мА в ждущем режиме и до 6 мА при срабатывании.

На выводе «A0» при повышении уровня громкости происходит увеличение показаний (использована программа AnalogInput2).

На контакте «D0» присутствует низкий логический уровень, при срабатывании датчика он меняется на высокий. Порог срабатывания настраивается подстроечным резистором (использована программа LED_with_button).

Этот датчик действительно практически не отличается от предыдущего, но взаимозаменяемость их возможна не всегда, т.к. при изменении уровня громкости характер изменения уровня напряжение на аналоговом выходе различается.

Выводы

На этом автор заканчивает обзор большого набора из различных датчиков для аппаратной платформы Arduino. В целом данный набор произвел на автора смешанное впечатление. В набор входят как достаточно сложные датчики, так и совсем простые конструкции. И если в случае наличия на плате модуля токоограничительных резисторов, светодиодных индикаторов и т.п. автор готов признать полезность подобных модулей, то небольшая часть модулей представляет собой одиночный радиоэлемент на плате. Зачем нужны такие модули, остается непонятным (видимо крепление на стандартных платах служит целям унификации). В целом набор является неплохим способом познакомиться с большинством широко распространенных датчиков, применяемых в Arduino проектах.

Полезные ссылки

  1. http://arduino-kit.ru/catalog/id/modul-datchika-kasaniya
  2. http://www.zi-zi.ru/module/module-ky036
  3. http://robocraft.ru/blog/arduino/57.html
  4. http://arduino-kit.ru/catalog/id/modul-datchika-zvuka
  5. http://www.zi-zi.ru/module/module-ky037
  6. http://arduino-kit.ru/catalog/id/modul-datchika-zvuka_
  7. http://smart-boards.ml/module-audiovideo-4.php

Емкостной датчик – это один из типов бесконтактных датчиков, принцип работы которого основан на изменении диэлектрической проницаемости среды между двух обкладок конденсатора. Одной обкладкой служит сенсорный датчик схемы в виде металлической пластины или провода, а второй – электропроводящее вещество, например, металл, вода или тело человека.

При разработке системы автоматического включения подачи воды в унитаз для биде возникла необходимость применения емкостного датчика присутствия и выключателя, обладающих высокой надежностью, устойчивостью к изменению внешней температуры, влажности, пыли и питающему напряжению. Хотелось также исключить необходимость прикосновения человека с органами управления системы. Предъявляемые требования могли обеспечить только схемы сенсорных датчиков, работающих на принципе изменения емкости. Готовой схемы удовлетворяющей необходимым требованиям не нашел, пришлось разработать самостоятельно.

Получился универсальный емкостной сенсорный датчик, который не требует настройки и реагирует на приближающиеся электропроводящие предметы, в том числе и человека, на расстояние до 5 см. Область применения предлагаемого сенсорного датчика не ограничена. Его можно применять, например, для включения освещения, систем охранной сигнализации, определения уровня воды и в многих других случаях.

Электрические принципиальные схемы

Для управления подачей воды в биде унитаза понадобилось два емкостных сенсорных датчика. Один датчик нужно было установить непосредственно на унитазе, он должен был выдавать сигнал логического нуля при присутствии человека, а при отсутствии сигнал логической единицы. Второй емкостной датчик должен был служить включателем воды и находиться в одном из двух логических состояний.

При поднесении к сенсору руки датчик должен был менять логическое состояние на выходе – из исходного единичного состояния переходить в состояние логического нуля, при повторном прикосновении руки из нулевого состояния переходить в состояние логической единицы. И так до бесконечности, пока на сенсорный включатель поступает разрешающий сигнал логического нуля с сенсорного датчика присутствия.

Схема емкостного сенсорного датчика

Основой схемы емкостного сенсорного датчика присутствия является задающий генератор прямоугольных импульсов, выполненный по классической схеме на двух логических элементах микросхемы D1.1 и D1.2. Частота генератора определяется номиналами элементов R1 и C1 и выбрана около 50 кГц. Значение частоты на работу емкостного датчика практически не влияет. Я менял частоту от 20 до 200 кГц и влияния на работу устройства визуально не заметил.

С 4 вывода микросхемы D1.2 сигнал прямоугольной формы через резистор R2 поступает на входы 8, 9 микросхемы D1.3 и через переменный резистор R3 на входы 12,13 D1.4. На вход микросхемы D1.3 сигнал поступает с небольшим изменением наклона фронта импульсов из-за установленного датчика, представляющего собой кусок провода или металлическую пластину. На входе D1.4, из за конденсатора С2, фронт изменяется на время, необходимое для его перезаряда. Благодаря наличию подстроечного резистора R3, есть возможность фронты импульса на входе D1.4, выставить равным фронту импульса на входе D1.3.

Если приблизить к антенне (сенсорному датчику) руку или металлический предмет, то емкость на входе микросхемы DD1.3 увеличится и фронт поступающего импульса задержатся во времени, относительно фронта импульса, поступающего на вход DD1.4. чтобы «уловить» эту задержку про инвертированные импульсы подаются на микросхему DD2.1, представляющую собой D триггер, работающий следующим образом. По положительному фронту импульса, поступающего на вход микросхемы C, на выход триггера передается сигнал, который в тот момент был на входе D. Следовательно, если сигнал на входе D не изменяется, поступающие импульсы на счетный вход C не оказывают влияния на уровень выходного сигнала. Это свойство D триггера и позволило сделать простой емкостной сенсорный датчик.

Когда емкость антенны, из за приближения к ней тела человека, на входе DD1.3 увеличивается, импульс задерживается и это фиксирует D триггер, изменяя свое выходное состояние. Светодиод HL1 служит для индикации наличия питающего напряжения, а HL2 для индикации приближения к сенсорному датчику.

Схема сенсорного включателя

Схему емкостного сенсорного датчика можно использовать и для работы сенсорного включателя, но с небольшой доработкой, так как ему необходимо не только реагировать на приближение тела человека, но и оставаться в установившемся состоянии после удаления руки. Для решения этой задачи пришлось к выходу сенсорного датчика добавить еще один D триггер, DD2.2, включенный по схеме делителя на два.

Схема емкостного датчика была немного доработана. Для исключения ложных срабатываний, так как человек может подносить и удалять руку медленно, из-за наличия помех датчик может выдавать на счетный вход D триггера несколько импульсов, нарушая необходимый алгоритм работы включателя. Поэтому была добавлена RC цепочка из элементов R4 и C5, которая на небольшое время блокировала возможность переключение D триггера.


Триггер DD2.2 работает так же, как и DD2.1, но сигнал на вход D подается не с других элементов, а с инверсного выхода DD2.2. В результате по положительному фронту импульса, приходящего на вход С сигнал на входе D изменяется на противоположный. Например, если в исходном состоянии на выводе 13 был логический ноль, то поднеся руку к сенсору один раз, триггер переключится и на выводе 13 установится логическая единица. При следующем воздействии на сенсор, на выводе 13 опять установится логический ноль.

Для блокировки включателя при отсутствии человека на унитазе, с сенсора на вход R (установка нуля на выходе триггера вне зависимости от сигналов на всех остальных его входах) микросхемы DD2.2 подается логическая единица. На выходе емкостного выключателя устанавливается логический ноль, который по жгуту подается на базу ключевого транзистора включения электромагнитного клапана в Блоке питания и коммутации.

Резистор R6, при отсутствии блокирующего сигнала с емкостного датчика в случае его отказа или обрыва управляющего провода, блокирует триггер по входу R, тем самым исключает возможность самопроизвольной подачи воды в биде. Конденсатор С6 защищает вход R от помех. Светодиод HL3 служит для индикации подачи воды в биде.

Конструкция и детали емкостных сенсорных датчиков

Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации. Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.

Сенсорного датчика присутствия

По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой. Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н. Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.

Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги. Резисторы, конденсаторы и светодиоды подойдут любого типа. Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.

Установлен датчик под площадкой унитаза, на которой установлен сливной бачек в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.


Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.

Для настойки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас. Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть. Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.

Конструкция и детали емкостного сенсорного включателя

Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте. Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.


Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.


Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремневой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.


Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.


Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настойки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении. Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать светиться. При повторном поднесении руки или удалении тела от датчика, светодиод HL3 должен погаснуть, то есть выключить подачу воды в биде.

Универсальная печатная плата

Представленные выше емкостные датчики собраны на печатных платах, несколько отличающихся от печатной платы приведенной ниже на фотографии. Это связано с объединением обеих печатных плат в одну универсальную. Если собирать сенсорный включатель, то необходимо только перерезать дорожку под номером 2. Если собирать сенсорный датчик присутствия, то удаляется дорожка номер 1 и не все элементы устанавливаются.


Не устанавливаются элементы, необходимые для работы сенсорного включателя, но мешающие работе датчика присутствия, R4, С5, R6, С6, HL2 и R4. Вместо R4 и С6 запаиваются проволочные перемычки. Цепочку R4, С5 можно оставить. Она не будет влиять на работу.

Ниже приведен рисунок печатной платы для накатки при использовании термического метода нанесения на фольгу дорожек.

Достаточно распечатать рисунок на глянцевой бумаге или кальке и шаблон готов для изготовления печатной платы.

Безотказная работа емкостных датчиков для сенсорной системы управления подачи воды в биде подтверждена на практике в течении трех лет постоянной эксплуатации. Сбоев в работе не зафиксировано.

Однако хочу заметить, что схема чувствительна к мощным импульсным помехам. Мне приходило письмо о помощи в настройке. Оказалось, что во время отладки схемы рядом находился паяльник с тиристорным регулятором температуры. После выключения паяльника схема заработала.

Еще был такой случай. Емкостной датчик был установлен в светильник, который подключался в одну розетку с холодильником. При его включении свет включался и при повторном выключался. Вопрос был решен подключением светильника в другую розетку.

Приходило письмо об успешном применении описанной схемы емкостного датчика для регулировки уровня воды в накопительном баке из пластика. В нижней и верхней части было приклеено силиконом по датчику, которые управляли включением и выключением электрического насоса.

Электор 2008 №7-8

Работа ёмкостных датчиков прикосновения основана на электрической ёмкости человеческого тела. Например, когда близко к датчику подносят палец, то это создаёт ёмкость между датчиком и землёй, лежащую в диапазоне 30...100 пФ. Этот эффект может быть использован в датчиках приближения и переключателях, управляемых прикосновением.

Сенсорные ёмкостные датчики имеют очевидные преимущества по сравнению с другими датчиками (например, срабатывающими от наводок частотой 50/60 Гц или измеряющими сопротивление), но они более трудоёмки в реализации. Производители микросхем, такие как Microchip в прошлом создали специальные ИС для этих целей. Однако и сейчас можно создать надёжный ёмкостный детектор и/или переключатель, используя только небольшое число стандартных компонентов.

В этой схеме мы детектируем изменения ширины импульсов сигнала, возникающие при касании контакта. На рисунке 1 можно рассмотреть следующие узлы (слева направо):

Рис. 1. IC1 - 561ТЛ1

Генератор прямоугольных импульсов, выполненный на триггере Шмитта (ИС CD4093);
RC цепь с гасящим диодом, за которыми идёт триггер Шмитта/контактная пластина с изолирующим конденсатором ёмкостью 470 пФ;
- Интегрирующая RC цепь, преобразующая изменения ширины импульсов в напряжение. Это напряжение лежит в районе 2,9...3,2 вольт, когда до пластины дотрагиваются, и 2,6 вольт в другом случае.
- Компаратор LM 339 используется для сравнения напряжения в точке C с образцовым напряжением в точке D. Последнее составляет около 2,8 В и устанавливается делителем напряжения.

Как только произойдёт касание сенсорной пластины, выход схемы станет активным. Для пояснения работы схемы на рисунке 2 приведены осциллограммы сигналов в разных точках. Пунктирная линия показывает состояние при касании пластины датчика, сплошная линия - при отсутствии касания.

Рис. 2. Осциллограммы сигналов а разных точках.

Образцовое напряжение в точке D настраивается один раз с помощью делителя R4/R5 (изменяя значение R4). Величина этого напряжения сильно зависит от площади поверхности пластины-датчика (обычно несколько квадратных сантиметров). Большая площадь поверхности пластины увеличивает ёмкость и напряжение в точке C тем не менее будет больше, по сравнению с тем напряжением, когда пластины не касались. Образцовое напряжение в точке D должно быть установлено ближе к значению 3,4 В. Датчик прикосновения может так же работать с пластинами большой площади (например, можно использовать в качестве сенсора весь корпус).

Выходной сигнал может быть использован для включения различных нагрузок. Во многих случаях рекомендуется добавить на выход один триггер Шмитта, особенно если выход соединён с цифровым входом.

Вим Абуйс


Рис. 4. Расположение компонентов на печатной плате.


Рис. 5. Печатная плата.


Рис. 6. Печатная плата (зеркальный вид).