Влияние добычи полезных ископаемых на окружающую среду. Влияние горнодобывающего комплекса на окружающую среду

Сланцевая нефть – это синтетическая нетрадиционная нефть, которую получают из горючих сланцев путем термического воздействия. Полученная нефть либо используется в качестве топлива, либо перерабатывается и применяется в тех же сферах, что и традиционная сырая нефть.

Основная часть мировых запасов сланцевой нефти находится на территории США. Это около 24,7 трлн тонн. Достаточно обширные запасы горючих сланцев есть в распоряжении России, Китая. В Америке именно добыча горючих сланцев вывела нефтедобывающую отрасль на новый этап развития. Самое крупное месторождение находится в Северной и Южной Дакоте. Называется оно Баккен. Именно здесь себестоимость сланцевой нефти в США является наиболее низкой, благодаря самой совершенной на данный момент технологии добычи. Помимо месторождения Баккен, есть еще ряд крупных месторождений на территории США, которые находятся в штатах Техас и Нью-Мексико.

На долю России приходится около 7 % от мировых запасов . считается Баженовская свита (Западная Сибирь). В этих местах отложения горючих сланцев занимают огромную территорию, сопоставимую по площади с штатом Техас и Мексиканским заливом, вместе взятыми.

В Китае основные запасы сланцев сосредоточены на территории провинций в северо-восточной части страны и в одном из крупнейших промышленных центров – Фушуне, который находится в непосредственной близости от границы с Кореей.

Также среди стран, успешно занимающихся добычей горючих сланцев, можно выделить следующие:

  • Израиль (который становится главным центром по добыче нефти из сланцев на территории Ближнего Востока),
  • Иордания,
  • Марокко,
  • Австралия,
  • Аргентина,
  • Эстония,
  • Бразилия.

Как добывают сланцевую нефть

  1. Добыча открытым или шахтным способом с дальнейшей переработкой на установках-реакторах, где горючие сланцы подвергают пиролизу без доступа воздуха, что приводит к выделению из породы смолы. Этот способ активно использовался в СССР, применяется в Бразилии, Китае. Главный его недостаток – высокая затратность, что приводит к высокой цене конечной продукции. К тому же при использовании данного варианта добычи нефти возникает проблема выделения большого количества углекислого газа во время извлечения из породы сланцевой смолы. Выпуск в атмосферу больших порций углекислого газа грозит значительным ухудшением экологической ситуации, а вопрос его утилизации до сих пор не решен;
  2. Добыча нефти напрямую из пласта. Происходит это посредством бурения горизонтальных скважин, что приводит к многочисленным гидроразрывам пласта. Часто возникает необходимость проведения термического или химического разогрева пласта. Это приводит к значительному удорожанию добычи данного вида нефти по сравнению с традиционной, независимо от развития и усовершенствования применяемых технологий. Важная проблема, возникающая при использовании данного способа, – это быстрые темпы снижения объемов добываемого продукта (за 400 дней работы объемы могут снизиться на 80 %). Для решения данной проблемы скважины на месторождениях вводят поэтапно.

Технология добычи имеет ряд нюансов, которые необходимо учитывать:

  • месторождение должно находиться поблизости от потребителей, поскольку сланцевый газ не транспортируется по газопроводам высокого давления;
  • возможно проведение разработок сланцевых месторождений в густонаселенных районах;
  • при добыче сланцев не происходит потеря парникового газа, но теряется метан, что в итоге все равно приводит к усилению парникового эффекта;
  • использование способа гидроразрыва подразумевает наличие большого количества воды вблизи месторождений. Чтобы совершить один гидроразрыв, делают смесь из воды, песка и химикатов массой 7500 тонн. После проведения работ вся отработанная грязная вода скапливается в районе месторождений и приносит ощутимый вред экологии;
  • сланцевые скважины имеют небольшой срок эксплуатации;
  • использование химикатов при приготовлении смесей для гидроразрыва несет за собой тяжелые экологические последствия;
  • добыча данного сырья будет рентабельна только в условиях спроса на продукцию, если мировая цена нефти находиться на достаточно высоком уровне.

Отличия от добычи традиционными методами

Традиционная нефть пропитывает породы, которые имеют пористую структуру. Поры и трещины в породах соединены между собой. Иногда этот вид нефти разлит на поверхности земли или же свободно перемещается по своему пласту на глубине. Давление, которое оказывается сверху другой породой на нефтеносный пласт, приводит к выдавливанию нефти на поверхность, когда она свободно перетекает к скважине по пласту. Примерно 20 % запаса нефти извлекается из пласта таким образом. Когда поступление нефти сокращается, начинается применение различных мероприятий, направленных на увеличение добычи. Например, гидроразрыв пласта, когда закачивание воды в скважину приводит к созданию давления на породу вокруг ствола скважины.

Сланцевая нефть располагается в породе, предшествующей нефтеносному пласту. Отсутствие соединения между полостями не дает возможности нефти перемещаться свободно. Пробурив скважину, невозможно сразу получить из нее требуемые объемы нефти. Применение различных технологий и процессов, таких как подогревание пород или использование направленных взрывов, приводит к значительному удорожанию процесса добычи, что отражается на конечной стоимости данной продукции.

К тому же постоянно возникает необходимость бурения все новых скважин, так как скважина отдает только тот объем, на который удалось подействовать проведенными мероприятиями, остальная нефть останется нетронутой, пока не будет пробурена следующая скважина и не проведен все тот же комплекс процедур. Одна скважина работает с хорошей отдачей не более года, при этом с каждым месяцем выход нефти сокращается.

Разработка сланцевых месторождений ведет к ряду экологических проблем:

  1. огромный уровень расхода воды (при добыче одного барреля нефти используется от 2 до 7 баррелей воды). Это является главным минусом для экологии и самым явным недостатком развития данного способа добычи нефти. Так, при выпаривании воды из породы с точки зрения экологии происходит безвозвратная потеря ресурсов;
  2. высокий уровень энергоемкости процесса извлечения горючих сланцев. Эту проблему частично решают введением систем постоянной циркуляции теплоносителя и использованием собственных запасов месторождений;
  3. выброс парниковых газов. Снижение уровня выброса происходит за счет эффективного использования угарных газов в виде теплоносителей и установки сажеуловителей.

Одноклассники

2 Комментария

    Безусловно, сланцевая нефть – неплохо источник дохода, особенно в странах, где добыча традиционных энергоносителей ограничена. Однако прежде, чем выполнять работы по добыче сланца, необходимо позаботиться об экологии планеты и о нашем будущем повсеместно. Достаточно вложить часть доходов в развитие проекта, позволяющего сделать добычу сланца куда более гуманными способами.

    Я в этом способе добычи нефти вижу только недостатки. Высокие затраты воды, загрязнение воздуха и водоемов. Что приводит нашу планету к разрушению. Постепенно будут вымирать рыбы, морские микроорганизмы и наступит парниковый эффект.. К тому же сланцевая нефть стоит гораздо дороже обычной продавать ее на экспорт не получится. Как по мне – стоит вообще отказаться от такого опасного вида добычи полезных минералов.

Недра

Недра - это верхняя часть земной коры, в пределах которой возможна добы-ча полезных ископаемых. Недра содержат минераль­ные ресурсы - основу ведущих отраслей мирового хозяйства.

Совокупность полезных ископаемых, заключенных в недрах составляет поня-тие «минеральные ресурсы», которые являются ос­новой для развития важнейших отраслей промышленности (энер­гетика, черная и цветная металлургия, химическая промышлен­ность, строительство).

На территории России известно несколько тысяч месторожде­ний топливно-энергетического комплекса, нерудного сырья и под­земных вод. Вместе с тем после распада СССР возникла проблема создания собственной сырьевой базы марганце-вых, хромитовых, фосфоритовых руд, каолина, крупные месторождения которых на территории страны практически отсутствуют. При нали­чии сырьевой базы не добы-ваются титан, ртуть. Значительная доля свинцового, цинкового, сурьмяного, ниобиевого, редкоземельного и другого сырья ранее перерабатывалась в бывших союзных рес­публиках. Оттуда в Россию поступали железный концентрат, глино­зем, молибден, фосфатное, серное, калийное сырье, полупродукты некоторых цветных и редких металлов.

Прогнозные ресурсы практически всех видов минерального сы­рья в целом по стране весьма значительны , но реализация их тре­бует систематических инвестиций в геологическое изучение недр.

По оценкам ресурс российских недр, а также то, что на поверхность нашей страны, составляет в денежном выражении 140 трлн. долларов. Для сравне­ния: это более 2000 современных национальных годовых бюджетов. Полезных ископаемых разведано пока на 29 трлн. долларов.

Сокращение ассигнований на геолого-разведочные рабо­ты в последние годы привело практически к прекращению поисков отсутствующих в России полезных ископаемых, а также работ по компенсации погашенных запасов, расширению и улучшению минерально-сырьевой базы страны. В результате прирост запасов практически по всем видам полезных копаемых оказался ниже, чем было необходимо для компенсации поглощенных запасов, даже при уменьшившейся добыче.

Распределение месторождений на территории России весьма равномерно. Наибольшим валовым минерально-сырьевым потенциалом обладают Дальний Восток и Приморье (месторождения цветных, редких, благородных металлов, бора). Несмотря на относительно низкую долю разведанных запасов от общего потенциала (минеральных ресурсов (3%), в регионе добывается практически все: олово, сурьма, алмазы, бор, более половины золота, свинца, пла­викового шпата, треть вольфрама от всей добычи по России.

Важную роль в общероссийском балансе добычи играют мес­торождения железных руд Курской магнитной аномалии, нефти Поволжья, вольфрама и молибдена Северного Кавказа.



Считается, что бедны ми­неральными ресурсами Центральный и Волго-Вятский районы. Однако это не означает отсутствия достаточного количества полезных ископаемых, они просто могут находится в глубоких горизонтах.

В Печенгском районе близ города Никель, где сосредоточены большие запасы никелевых руд. До этого здесь было пробурено свыше миллиона метров разве­дочных скважин, но на большую глубину они не уходили. Счита­лось, что месторождения никелевых руд располагаются недалеко от поверхности - на глубине 100 м. Кольская скважина 12262 м на глубине 1600-1800 м вскрыла рудное тело с промышленным содержанием меди и никеля. Одно это оправдало все затраты на ее создание. При Дальнейшем бурении получены новые данные. На глубине 10-10,25 км на Кольской сверхглубокой вскрыты новые элементы гранитного слоя, где есть никель, медь, золото, причем с промышленным со­держанием. С 1998 г. скважина работает в режиме геологической лаборатории мирового класса.

Вся сырьевая минеральная база охватывает глубины до 4 км. Эти запасы быстро истощаются. Глубокое бурение позволяет следить за глубинами Земли и лучше понять, как образуются запасы полезных ископаемых.

Вторжение в недра может оказывать иногда весьма ощутимое воздействие на природу. В ряде случаев выводятся из пользования сельскохозяйственные угодья, причиняется вред лесам, меняются гидрогеологический режим районов, рельеф местности и движе­ние воздушных потоков, загрязняются отходами производства поверхность земли, воздушный и водный бассейны.

На месте открытых разработок уничтожаются растительность животные, почва, переворачиваются, на глу­бину сотен метров многовековые геологические напластования Породы, вынесенные из глубин на поверхность, могут оказаться не только биологически стерильными, но и токсичными для рас­тений и животных. Большие территории превращаются в безжизненные пространства - ин­дустриальные пустыни. Подобные земли, выбывая из хозяйствен­ного использования, становятся опасными очагами загрязнения.

Существенные изменения, вносимые в природные ландшафты промышленностью, часто не могут быть восстановлены самой приро­дой в обозримо короткие сроки , особенно на территориях с экстремаль­ными условиями (районы вечной мерзлоты и засушливые области).

При переработке полезных ископаемых подавляющая часть до­бываемой горной массы идет в отвалы.

На протяжении многих лет на высоком уровне сохраняются потери в недрах при подземном способе добычи угля (23,5%), в том числе и коксующегося (20,9%), хромовой руды (27,7%), ка­лийных солей (62,5%).

Значительный ущерб несет государство от потерь ценных ком­понентов и некомплексной переработки уже добытого минераль­ного сырья. Так, в процессе обогащения руд теряется более трети олова и около четверти железа, вольфрама, молибдена, окислов калия, пятиокиси фосфора из фосфоритной руды.

Неудовлетворительно используется при добыче нефтяной газ, которого в России (в основном в Тюменской области) только в 1991 г. сожжено в факелах более 10 млрд. м 3).

В настоящее время горнопромышленный комплекс превратил­ся в один из самых крупных источников нарушения и загрязнения окружающей среды. Спектр влияния загрязнителей, образующихся в результате деятельности предприятий горнодобывающей промышленности на биосферу, настолько широк, что в ряде районов вызывает непредсказуемые эффекты, губительно влияющие на состояние растительного и животного мира.

Вo многих случаях добытое минеральное сырье используется некомплексно, не подвергается глубокой переработке . Особенно это касается ценных попутных компонентов, запасы которых по­гашаются из недр пропорционально добыче запасов основных по­лезных ископаемых, но извлечение их из недр руд значительно отстает от добычи основных полезных ископаемых. Потери проис­ходят в основном на стадии обогащения руд и металлургического передела из-за несовершенства применяемых или отсутствия не­обходимых технологий .

Под влиянием горных разработок происходят существенные из­менения природных ландшафтов. В районах добычи полезных иско­паемых образуется специфический рельеф , представленный ка­рьерами, терриконами, отвалами , хвостохранилищами и другими техногенными образованиями. При подземном способе добычи про­исходит снижение массива горных пород в сторону вырабатываемо­го пространства, образуются трещины, разрывы, провалы, воронки и оседания земной поверхности, на больших глубинах в горных вы­работках проявляются горные удары, выбросы и лучения пород, выделение метана, сероводорода и других токсичных газов, внезап­ные прорывы подземных вод, особенно опасные в карстовых райо­нах и в зонах крупных разломов . При открытом способе отработки месторождений полезных ископаемых развиваются оползни, осы­пи, обвалы, сели и другие экзогенные геологические процессы.

Отходы горнодобывающих предприятий загрязняют почву, под­земные поверхностные воды, атмосферу, отрицательно влияют на растительный и животный мир, исключают значительные площа­ди земель из сельскохозяйственного оборота, строительства и дру­гих видов хозяйственной деятельности. Вместе с тем значительная часть отходов горнодобывающих производств содержит ценные ком­поненты в концентрациях, достаточных для промышленного из­влечения, и служит хорошим сырьем для производства разнооб­разных строительных материалов. Однако их использование с этой целью не превышает 6-7%. Повышение использования отходов гор­нодобывающих и металлургических производств, может дать большой экономический эффект.

При горнодобывающих работах изменяется гидрогеологический режим территории. В большинстве случаев снижается уровень грун­товых вод, происходит иссушение не только мест проведения гор­ных работ, но и прилегающих к ним территорий. Образуется так называемая «депрессионная» воронка осушения , диаметр которой в несколько раз превышает размеры участка горных работ. В отдельных случаях (при перекрытии поверхностных водостоков или оседании поверхности земли после подработки) возможно и заболачивание и (подтопление) территории. Иссушение районов проведения работ вызывает обмеление и даже исчезновение малых рек.

Ежегодно в реки сбрасываются сотни миллионов кубометров недостаточно очищенных или совсем неочищенных вод из шахт обогатительных фабрик и карьеров, не говоря уже о других промышленных предприятиях. Эти воды несут миллионы тонн твер­дых взвешенных частиц. В результате многие реки превращаются , в сущности, в сточные коллекторы , в которых течет уже не вода, а углистая суспензия .

Прямым следствием подземных горных работ становится усыхание лесов в подработанных шахтами местах. Старые деревья не могут перестроиться на более сухой режим водного питания. К тому же происходящие при осадке кровли смещения грунтовой толщи приводят к разрыву корней.

Загрязнение атмосферного и водного бассейнов в угледобывающих районах частично также связано с нарушениями и нерекультивируемыми землями, хотя основными источниками загрязнения яв­ляются технологические процессы добычи и обогащения угля, хи­мические препараты.

Атмосфера загрязняется пылью при буровзрывных, вскрышных, транспортно-погрузочных работах, от ветровой эрозии отва­лов горной породы. Достаточно сказать, что только при одном сред­нем по мощности взрыве в воздух выбрасываются сотни кубометров пылегазового облака, содержащего десятки тонн пыли. С незакреп­ленных растительностью породных отвалов ветром сдувается в не­которых случаях до 200 т пыли с 1 га.

Горнодобывающие работы вызывают настоящую «цепную ре­акцию» негативных изменений в окружающей среде. Разрушается почвенный покров, исчезает растительный и животный мир, на­рушается гидрологический и температурный режим не только в местах добычи, но и на прилегающих территориях, происходит загрязнение вод продуктами эрозии, а воздушного бассейна пылью и газами. Это существенно ухудшает экологические усло­вия окружающей среды или применительно к человеку - сани­тарно-гигиенические условия жизни.

Специфические изменения окружающей среды происходят при хозяйственном освоении северных районов. Нарушение условий теплообмена приводит к развитию криогенных физико-геологических процессов, таких, как термокарст, криогенное пучение, термоэро­зия и др.

На недра криолитозоны приходится большая часть (более 60%) наших запасов углеводородного сырья. Они сконцентрированы в нескольких гигантских месторождениях, среди которых выделяся Медвежье, Уренгойское, Ямбургское, Заполярное, а также месторождения полуострова Ямал и др.

Техногенному воздействию при строительстве и эксплуатации объектов газовой промышленности подвергается весь комплекс природных условий: мерзлотный ландшафт, толщи пород, почвенный слой, снежный покров, подземные воды, атмосферный воз­дух, а также флора и фауна.

Наиболее ощутимый ущерб испытывает геологическая среда и, прежде всего, верхний горизонт криолитозоны. Нарушения ра­стительности, почвенного и снежного покрова на большой пло­щади создают благоприятные условия для интенсивного развития эрозионных процессов.

Активизация хозяйственной деятельности человека в Западно-Сибирской тундре приводит к ускорению естественного процесса отступления северной границы лесов в результате заболачивания ровных участков. Вследствие этого увеличиваются тундроподобные территории, климат становится более суровым. При строительстве дорог, линий электропередачи и других объектов возле жилых по­селков вырубаются леса.

Большой ущерб природной среде наносит применение в теплый период тяжелого гусеничного транспорта . Гусеницы тракторов и вез­деходов разрывают дернину, что ведет к протаиванию многолетнемерзлого слоя, развитию эрозии и термокарста. В отдельных рай­онах тундры достаточно расчистить грунтовую площадку, чтобы через несколько лет она превратилась в озеро . Поэтому для работы в условиях Крайнего Севера применяют новые типы транспорт­ных средств с низким удельным давлением на грунт, высокой про­ходимостью и грузоподъемностью, не нарушающих почвенно-растительный покров. Известно, что следы тяжелой техники сохраняют­ся в тундре в течение 30-40 лет.

Интенсивное освоение нефтяных и газовых месторождений тю­менского севера оказывает значительное воздействие на природную среду региона. Добыча нефти и газа приводит к заметному нарушению экологического равновесия, загрязнению окружающей среды. Это относится к воздушному и водному бассейнам, недрам, растительному и животному миру.

Особенно легко нарушается природное равновесие в условиях Крайнего Севера. Уничтоженный автомашиной ягель восстанавли­вается лишь через несколько десятилетий , тракторный след на веч­ной мерзлоте постепенно превращается в глубокий овраг. Освоение богатейшего газоконденсатного месторождения, разведка новых залежей углеводородов, строительство трубо­проводов, появление вахтовых и трассовых поселков превратили полуостров Ямал в район интенсивной индустриализации.

Горнопромышленный комплекс - один из крупнейших ис­точников нарушенных земель и загрязнения окружающей среды в России. В 7 из 15 районов с крайне неблагополучной экологичес­кой обстановкой концентрируется крупное добывающее производ­ство, а в 5 - добыча совмещена с переработкой минерального сырья. В некоторых районах Урала и Кузбасса высокая загрязнен­ность и деградация природной среды достигли критических значе­ний. Причинами нарушения экологического равновесия на полови­не изъятых для промышленного использования площадей стали добыча и отчасти геологоразведочные работы. Под них отчужда­ются обширные площади пахотных земель и экологически уязви­мых тундровых и таежных угодий . Возникновение карьерных впа­дин, провалов и депрессий в районах подземных разработок, а также отвалов и отстойников приводит к необратимым ландшаф­тным изменениям, а нарушение гидрогеологического режима - к образованию депрессионных воронок в окрестностях крупных карьеров, рудников и шахт.

В общем технологии добычи полезных ископаемых обусловливают такие виды нарушений окружающей среды:

геомеханические - растрескивание пород в результате проведения взрывов, изменение рельефа местности, вырубка лесов, деформация земной поверхности;

гидрологические - изменение запасов, режима движения, качества и уровня грунтовых вод, вынос в водоемы вредных веществ с поверхности и недр земли;

химические - изменение состава и свойств атмосферы и гидросферы (подкисление, засоление, загрязнение воды и воздуха);

физико-механические - загрязнение окружающей среды пылью, изменение свойств почвенного покрова и прочее;

Шумовое загрязнение и вибрация почвы.

Причинами гидрологических нарушений являются:

Зарегулирования, как форма нарушения проявляются в виде водоемов и водоканалов. Вызвано необходимостью осушения поверхности над месторождением,

Заболачивание наблюдается вокруг отвалов с площадью более 200 га,

Затопление характерно для случаев, когда производство имеет избыток воды и полностью ее в водооборота не использует. Воды сбрасываются на землю, в водотоки и водоемы, происходит затопление дополнительных площадей земли. В другом месте в связи с этим может возникнуть истощение,

Осушение - происходит через дренаж грунтовых подземных вод выработками и скважинами. У каждого карьеру депрессионная воронка грунтовых вод достигает диаметра 35 - 50 км,

Заводнения возникает в случае захоронения жидких отходов производства.

Влияние добычи полезных ископаемых открытым способом

В местах открытых разработок происходит вырубка лесов, нарушение растительности и вывод из пользования больших площадей сельскохозяйственных угодий в результате проведения вскрышных работ и складирования пород на поверхности земли. Так, объем вскрышных работ (снятие пород покрывающих и вмещающих тело полезного ископаемого) на карьерах угольной промышленности составляет 848 млн.м3 / год, железорудных - 380, стройматериалов - 450 Глубина рудных карьеров достигла 450 -500 м, угольных 550 - 600 м (на Криворожском железорудном месторождении - 800 м). Влияние открытых горных разработок на окружающую среду запечатлен на рис.4.4.

Рис. 4.4. Влияние открытых горных разработок на окружающую среду

Карьеры часто достигают глубины 400 - 600 м, и соответственно большое количество горных пород вывозится на поверхность. Площади, занятые отвалами, в несколько раз превышают площадь карьеру. Глубинные, в основном токсичные, слои породы выгружаются на поверхность отвалов. Это препятствует росту растений, а после дождей воды, которые стекают с отвалов, отравил реки и почвы. Ориентировочно можно считать, что для открытой добычи 1 млн. Т / год полезных ископаемых требуется около 100 га земельных угодий. Например, на земельных отводах 5 ГОК Кривбасса общей площадью более 20 тыс. Га ежегодно складируется почти 84 млн. М3 вскрышных пород и более 70 млн. Тонн хвостов обогатительных фабрик. Происходят не только нарушение почвенно-растительного покрова на обширных территориях, но и нарушается поверхность земли как горными выработками, так и отвалами. В Украине наибольшие нарушения природной среды произошли на Криворожье, здесь загублено более 18 тыс. Га земли (рис. 4.5).

Рис. 4.5. Космический снимок Криворожский железорудный карьеров

Изменения, обусловленные нарушением поверхности, негативно сказываются на ее биологических, эрозионных и эстетических характеристиках. Именно на открытых разработках месторождений всего проявляется геотоксикологические влияние горного производства на человека. Снижается продуктивность сельскохозяйственных угодий. Так в районе Курской магнитной аномалии вблизи карьеров в радиусе 1,5-2 км урожайность полей снизилась на 30-50% вследствие ощелачивания почв к pH = 8, рост в них вредных примесей металлов и сокращение питания водой.

В процессе разработки месторождений открытым способом к основным источникам загрязнения относится проведение массовых взрывов, эксплуатация горнодобывающей техники и автомобилей. Массовые взрывы на карьере относятся к периодическим источников загрязнений, так как проводятся обычно раз в 2 недели. Заряд взрыва достигает 800 - 1200т, а количество взорванной им горной массы - 6 млн.т. В атмосферу выбрасывается около 200 - 400 т пыли. Считается 1 т. Взорванной взрывчатого вещества дает 40м3 СО2, кроме этого выделяются оксиды азота.

Практически все горные работы сопровождаются пылеобразованием. Так, в процессе перемещения породы экскаватором интенсивность пылевыделения составляет 6,9 г / с, в процессе погрузки угля роторным экскаватором - 8,5 г / с. Постоянно действующими источниками пылеобразования являются автомобильные дороги. В некоторых карьерах на их долю приходится 70 - 90% всей пыли. Значительные количества пыли поступают в атмосферу в процессе погрузочно-разгрузочных работ. Интенсивность пылевыделения в процессе выемки угля экскаватором составляет 11,65 г / с, в процессе погрузки в железнодорожные вагоны - 1,15 г / с. Из-за использования большого количества транспортных средств, больших территорий под разрезами, а также мощных массовых взрывов загрязнения атмосферы при условии открытой добычи значительно больше, чем при подземного способа.

Гидромеханизированные разработки полезных ископаемых вызывают значительные масштабы загрязнения гидросферы, поскольку все гидромеханизированные технологии связаны с использованием воды, ее загрязнением и возвращением воды в загрязненном состоянии в общую гидрологическую сеть. В результате наблюдается загрязнение рек и водоемов мутными водами, которые образуются в процессе гидромеханизированных разработок полезных ископаемых, рыба оставляет водохранилища и значительные площади водоемов исключаются из нерестилищ, а пойма теряется. Потерянные площади восстанавливаются для нереста примерно через 10 - 15 лет после окончания разработок. Но учитывая то, что подавляющее большинство месторождений отрабатывается в течение 25 - 50 лет, площади загрязненного водосбора исключаются из воспроизводства рыбных запасов на 45 - 70 лет. Для ведения горных работ и промывки песков и других пород используют разное количество воды и загрязняется она в неодинаковой степени, что в разной степени влияет на величину разбавления и потери полезных ископаемых, особенно в случае разбавления их породами, содержащими тонкодисперсную глину, которую трудно выделить и осадить с мутной воды, сбрасываемой из промывных установок.

Е.И.Панфилов, проф., д.т.н., главный научный сотрудник ИПКОН РАН

Неуклонный рост численности населения на планете обуславливает увеличение потребления природных ресурсов, среди которых ведущая роль принадлежит минерально-сырьевым. Россия обладает значительными запасами полезных ископаемых, за счет добычи которых формируется более половины доходной части государственного бюджета. Планируемое ее сокращение за счет интенсивного инновационного развития других отраслей промышленности в ближайшие 10-15 лет не приведет к снижению масштабов и темпов освоения минерально-сырьевой базы страны. При этом добыча твердых полезных ископаемых сопровождается извлечением из недр миллионов тонн горной массы, размещаемой в виде вскрышных пород и отходов на поверхности Земли, что влечет за собой крайне негативные последствия не только для окружающей среды и человека, но и для самих недр.

Оценка воздействий на недра зачастую отождествляется или смешивается с последствиями этих воздействий на окружающую среду, включая инфраструктуру и человека, особенно при определении возникающих и наносимых им ущербов. В действительности, эти процессы имеют существенные различия, хотя и тесно взаимосвязаны. Например, опускание поверхности на калийном месторождении в Березняках, приведшее к значительному экологическому, экономическому и социальному ущербам региону и стране явилось следствием ущерба, нанесенного техногене-зом геологической среде, т.е. имеем дело с различными, по сути, явлениями. Поскольку они могут оказать, и уже оказывают, существенное влияние на всю нашу жизнедеятельность, возникает необходимость более углубленного и всестороннего изучения, определения и оценки происходящих процессов. В работе не рассматриваются воздействия на недра, обусловленные стихийными явлениями, катастрофами и другими негативными природными явлениями, причастность к которым человеческой деятельности не доказана.

Первое понятие касается последствий, возникающих в результате техногенных воздействий на геологическую среду, которую с некоторой долей условности допустимо отождествить с понятием «недра». Сами возникающие последствия обозначим термином «геологический ущерб», т.е. ущерб, наносимый геологической среде (ГС) деятельностью человека.

Другое понятие включает совокупность последствий, обусловленных реакцией ГС (недр) на воздействия техногенеза, поэтому их можно назвать «геотехногенными последствиями». Если они имеют негативный характер, что, как правило, и происходит на практике, то их правомерно считать «геотехногенным ущербом». Его составными частями являются экологические, экономические, социальные и иные последствия, оказывающие отрицательное влияние на жизнедеятельность человека и среду его обитания, в т.ч. природную.

К наиболее востребованной сфере горнопромышленной деятельности относится разработка месторождений, главной целью которой является изъятие из недр полезной для общества части вещества недр - минеральных образований. В этом случае недрам наносится геологический ущерб (ГУ),
возникающий на различных стадиях и этапах разработки месторождений полезных ископаемых.

При этом возможные воздействия на ГС, используя основные положения системы ОВОС, можно подразделить на 4 группы по объективному классификационному признаку, отражающему характер (отличительное свойство, особенность) производимого воздействия на недра:

I группа. Отделение (изъятие) вещества недр, ведущее к уменьшению его количества.

II группа. Преобразование или нарушение геологической среды. Оно может проявляться в виде создания подземных полостей, карьеров, котлованов, выемок, траншей, углублений; перераспределения полей напряжений в горном массиве в зоне ведения горных разработок; нарушения циркулирующих в недрах водоносных, газовых, флюидных, энергетических и иных потоков; изменения горногеологических, структурных характеристик и свойств геологической среды, вмещающей минеральные образования; изменения ландшафта территории, занятой под геологическими и горными отводами, и т.д.

III группа. Загрязнение геологической среды (геомеханическое, гидрогеологическое, геохимическое, радиационное, геотермическое, геобактериологическое).

IVгруппа. Комплексное (синэнергетическое) воздействие на недра, проявляющееся при различном сочетании воздействий трех вышеприведенных групп.

В соответствии с существующей практикой эксплуатации месторождений полезных ископаемых возможные воздействия на ГС рассматриваем по трем основным стадиям:

1 стадия - Изучение геологической среды, в т.ч. их составной части - минеральных образований (месторождений полезных ископаемых).

2 стадия - Освоение (эксплуатация) месторождений полезных ископаемых.

3 стадия - Завершение освоения (разработки) месторождений полезных ископаемых - ликвидация (консервация) горнодобывающих объектов.

На стадии изучения недр, проводимых с целью обнаружения (поиска) минеральных образований, воздействия на геологическую среду, с некоторой долей условности, можно разделить по объективному признаку - степени физической целостности ГС - на две группы: воздействия без существенного нарушения целостности ГС (1-я группа) и воздействия с нарушением целостности и свойств ГС.

К 1-й группе воздействий можно отнести поисковые и сей-сморазведочные работы, которые практически не влияют на состояние горного массива.

2-я группа воздействий обусловлена геолого-разведочными работами (ГРР), осуществляемыми с помощью скважин, горных выработок и иных работ, ведущих к изменению физической целостности ГС. В этом случае возможны все 4 вышеуказанных вида воздействий на ГС - изъятие вещества недр (при проходке геологоразведочных выработок и в меньшей степени - при выбуривании скважин); нарушение геологической среды (при проходке горных выработок с использованием взрывчатых веществ); загрязнение (имеет место лишь в отдельных случаях - при бурении нефтяных, газовых и иных разведочных скважин, при пересечении подземных термальных, минерализованных вод) и комплексное воздействие (встречается редко - например, при пересечении геологоразведочной выработкой минерализованного водного, газоносного горизонтов, флюидных потоков).

Таким образом, можно констатировать, что на стадии изучения недр воздействия на ГС проявляются незначительно, главным образом при разведке и доразведке месторождений полезных ископаемых, производимых с использованием горных выработок и, частично, при бурении разведочных скважин на жидкие и газообразные углеводороды.

На стадии освоения разведанного месторождения полезного ископаемого определяющую роль в воздействиях на ГС играет применяемый способ (технология) его разработки, точнее метод (техническое средство) изъятия из геологической среды ее части - минерального образования, который принимается в качестве главного классификационного признака систематизации возможных воздействий.

В соответствии с этим признаком воздействия подразделяются на четыре группы:

1 группа - Механический способ. Характерен при добыче преимущественно твердых полезных ископаемых и осуществляется известными техническими средствами (угольные комбайны, драги, отбойные молотки, пилы, экскаваторы-мех-лопаты и драглайны, и т.д.).

2 группа - Взрывной способ. Наиболее типичен для разработки твердых полезных ископаемых в случае наличия пород, не поддающихся механическому воздействию.

3 группа - Гидродинамический способ, когда в качестве технического средства отделения полезного ископаемого от массива используются гидромониторы.

4 группа - Скважинная геотехнология в различных ее модификациях. Это основной способ извлечения из недр жидких, газообразных полезных ископаемых, их смесей. Он включает также методы подземного выщелачивания, получающие все более широкое применение.

В каждой из названных групп выделяются подгруппы, классы, виды, подвиды и другие более мелкие подразделения.

Анализируя указанные методы изъятия из ГС минеральных образований с позиции определения возможных воздействий, следует отметить, что помимо главной цели, ради которой они созданы и постоянно совершенствуются, т.е. добычи полезного ископаемого, этим способам присущи все другие виды воздействий, проявляющиеся в разных масштабах, мощности и интенсивности. Они имеют свои специфические особенности, в соответствии с которыми целесообразно осуществлять дифференциацию групп.

На завершающей стадии разработки месторождения, т.е. при ликвидации или консервации горнодобывающего пред-
приятия, когда процесс добычи (изъятия из недр) полезного ископаемого закончен, прямых, непосредственных воздействий на ГС не происходит, однако в этот период более активно и широко могут проявиться последствия предыдущих стадий освоения месторождения, причем, не сразу, а по истечении времени - порой значительному (месяцы, годы).

Количественное определение и оценка воздействий тех-ногенеза на геологическую среду, следовательно геологического ущерба, представляет весьма сложную, в большинстве случаев трудно и порой просто неразрешимую задачу. Одна из основных причин заключается в том, что до настоящего времени не выработано единого подхода к критериям оценки техногенных воздействий на ГС, точнее к критериям восприятия геологической средой наших воздействий.

Например, если из недр изъято минеральное образование, то его количество определить просто, однако установить в количественном выражении последствия такого изъятия очень трудно, т.к. достоверно представить, как поведет себя ГС иногда возможно, но в данный момент, на данном локальном участке, при достоверно установленных исходных показателях. Однако спрогнозировать реакцию ГС на длительный период и пространственно масштабно имеющимися методами и средствами практически невозможно.

Задача становится еще более сложной, когда мы имеем дело с нарушением естественных процессов, происходящих в недрах, например, при пересечении горными выработками водоносных или флюидных потоков. Так, в результате проведенных с 1974 по 1987 годах ядерных взрывов в Лено-Тун-гусской и Хатангско-Вилюйской провинциях на глубинах от 100 до 1560 м в донных отложениях рек, в почве, растениях и в животных обнаружены плутоний, цезий, стронций (в дозах, превышающих нормативы в десятки и сотни раз (!)) .

Или в результате ликвидации шахт в Подмосковном угольном бассейне произошло обводнение и заболачивание некоторых территорий. Еще один пример. На планете по оценкам разных специалистов на сегодняшний день имело место порядка 70 землетрясений с силой более 5 баллов по шкале Рихтера, инициированных деятельностью человека в недрах. Приведенные примеры подтверждают наш тезис о том, что в настоящее время не только оценить, но и количественно определить геологический ущерб, т.е. ущерб, наносимый недрам человеческой деятельностью практически невозможно. Такое утверждение объясняется не столько сложностью выявления причинно-следственных взаимосвязей между тех-ногенезом и недрами, сколько наличием огромных воздействий на планету Земля окружающей ее космической среды. Однако, последствия геологического ущерба, имеющие негативный характер, т.е. «геотехногенный ущерб» предвидеть,
определить и оценить - вполне разрешимая задача.

При этом «геотехногенный ущерб» может быть подразделен на следующие классы:

I. Природно-экологический.

II. Экономический.

III. Социальный.

Природно-экологический ущерб


Условно данный класс можно разделить на три группы: Группа 1. Ущерб, обусловленный в сравнении с установленными граничными параметрами (нормативами) неполнотой изъятия (извлечения) полезного ископаемого из недр, приводящий к сокращению запасов месторождения (невоз-обновимого георесурса), к преждевременной (в сравнении с проектом) ликвидации, в лучшем случае, консервации горного производства, необходимости изыскания новых источников пополнения минерально-сырьевой базы со всеми другими негативными последствиями.

Деление группы на виды и т.д. возможно осуществить, используя классификационный признак - конкретный источник (причина) допущенного ущерба. В числе таких причин:

Представленная для лицензирования недостаточная полнота, достоверность и надежность горно-геологической информации о запасах полезных ископаемых, количественных и качественных характеристиках и свойствах участков недр и минеральных образований. Несвоевременное ее получение и предоставление, в т.ч. при пересчете запасов;

Отсутствие оперативного (экспрессного) и постоянного (на стационарных устройствах и установках) количественного и качественного учета и контроля извлекаемых (в т.ч. отправляемых на склады и в отвалы), а также оставляемых в недрах запасов основных и совместно с ними залегающих полезных ископаемых и содержащихся в них полезных компонентов;

Превышение (в сравнении с установленными нормативами) объема извлекаемых запасов полезных ископаемых из лучших по качеству или условиям эксплуатации выемочных участков и времени их выемки;

Нарушение установленных схем, порядка, операций и сроков разработки отдельных выемочных участков месторождений;

Необоснованное изменение технологий и технологических схем разработки месторождений и их участков, предусматривающее снижение показателей полноты и качества извлечения из недр основных и совместно с ними залегающих полезных ископаемых при добыче и попутных компонентов при первичной переработке (обогащении);

Нарушение установленных проектом или нормативно-правовыми актами схем, порядка и своевременности консервации и ликвидации горного предприятия и связанного с ним горного имущества;

Самовольная застройка площадей залегания полезных ископаемых и/или несоблюдение принятого порядка и сроков использования этих площадей в других целях;

Размещение и накопление промышленных и других отходов на площадях водосбора и в местах залегания подземных вод, используемых для питьевого и промышленного водоснабжения;

Отсутствие узаконенных соглашений или несогласованность действий недропользователей, осуществляющих эксплуатацию месторождений на одних и тех же или сопряженных лицензионных участках недр.

Группа 2. Ущерб, наносимый окружающей природной среде, связанный с преобразованием (нарушением) части земной поверхности, горного или геологического отводов, ландшафта и находящихся на этой территории природных ресурсов, которые могут оказаться непригодными для использования, уничтоженными либо нарушенными. При выделении видов в группе целесообразно использовать в качестве основного признака - экосистемы, входящие в состав залицензированного участка недр. Группа 3. Ущерб окружающей природной среде и человеку, обусловленный загрязняющими веществами (ущерб загрязнения), образующимися при освоении и использовании полезных ископаемых и поступающими в атмосферу, водные объекты, почву, флору, фауну, т.е. воздействующих на био, фито и зооценоз. Выделение видов (подвидов) ущербов этой группы зависит от климатически-географических особенностей отдельных регионов и характера воздействий, образующихся при недропользовании. В общем случае можно воспользоваться критериями и показателями ОВОС (сейчас это IS019011).

Группа 4. Совокупный (синергетический) ущерб природной среде и человеку. Он представляет собой сочетание вышеприведенных трех групп, исходя из конкретных условий эксплуатации отдельно взятого месторождения или совокупности родственных по горногеологическим и технологическим условиям разработки участков месторождений.

В качестве возможного и конкретного методического подхода по комплексной оценке природно-экологического ущерба, как составной части геотехногенного, целесообразно использовать методологию, предложенную д.т.н. В.И. Па-пичевым . В ней автор рассматривает большинство видов природных ресурсов, которые могут подвергнуться техногенным воздействиям горного производства, исходя из степени прямого (непосредственно) и косвенного (опосредованного) изъятия природных ресурсов, и предлагает считать количественным показателем воздействия производства на каждый природный ресурс «... отклонения фактических значений количества ресурса от его исходных (естественных) значений, которые могут явиться результатом как непосредственного, так и опосредованного потребления ресурса».

Разработанная В.И. Папичевым методика позволяет рассчитать нагрузку на основные компоненты природной среды за тот или иной временной интервал воздействия, в т.ч. нагрузку на недра. В частности, предложено выражение для расчета нагрузки на основные компоненты природной среды :

Выполненными расчетами на конкретных примерах автор доказал возможность и целесообразность использования предложенной им методологии .

Экономический ущерб


Экономический ущерб складывается в основном из убытков и упущенной выгоды, в соответствии с которыми этот класс ущербов подразделяется на 2 группы: Группа 1. Убытки.

Видами убытков могут быть:
- дополнительные расходы, вызванные недостаточной или недостоверной горно-геологической информацией о лицензируемом месторождении или его части (свойствах, характеристиках и т.д.);

Сверхнормативные потери запасов полезных ископаемых, в т.ч. списанных или переведенных в категорию забалансовых (нерентабельных) запасов, сформировавшихся из-за нерациональной выборочной выемки лучших по качеству или условиям эксплуатации участков месторождений;

Утрата или повреждение горного имущества;

Непредвиденные расходы, связанные с необходимостью сохранения нарушенной горными работами геологической среды в состоянии, пригодном для дальнейшего использования;

Расходы средств и ресурсов, необходимых для устранения экологического ущерба во всех его проявлениях.

Группа 2. Упущенная выгода (недополученные доходы).

Упущенная выгода рассматриваются с 2-х позиций: государства, как собственника недр, и недропользователя, причем, как правило, эти позиции не совпадают, т.е. недополученная выгода государством может оцениваться как необоснованное обогащение недропользователей, что, например, имеет место при нерациональной выборочной выемке запасов, а также когда государство предоставило недропользователю недостаточно полную и качественную геологическую информацию о выставленном на тендер месторождении или его части. Следовательно, группа может быть представлена двумя видами ущерба: государства и недропользователя.

Социальный ущерб


Источники социального ущерба от недропользования при наличии государственных, частных и смешанных горнодобывающих компаний имеют различную природу происхождения. Сам ущерб определяется в основном четырьмя вышеприведенными классами техногенного ущерба, поэтому выделение в отдельный класс условное.

Основным признаком его дифференциации целесообразно считать состояние здоровья человека, учитывая моральную составляющую. Деление социального ущерба на группы, виды и более мелкие сегменты представляет достаточно сложную, многофакторную проблему, решение которой является предметом специального исследования. В первом приближении дифференциация класса «социальный ущерб» может быть выполнена на базе основных факторов, влияющих на физиолого-психическое состояние человека, его групп, общностей. Например, можно выделить группы, характеризующиеся: качеством окружающей природной среды (Кузбасс, Курская магнитная аномалия, Урал и другие горные провинции, районы и промышленные узлы), инфраструктурой, подразумевая под ней транспорт, связь (районы Крайнего Севера, Дальнего Востока, других малообжитых территорий), социально-бытовыми, национальными, культурными и иными условиями проживания, концентрацией населения, другими значимыми факторами.

Сложность выделения социального ущерба от недропользования объясняется тем обстоятельством, что не всегда и не везде горное производство является главным в местах проживания людей. Трудность оценок значительно возрастает в районах с развитой промышленностью, инфраструктурой, где добыча полезных ископаемых не играет ведущую роль в социально-экономическом развитии, либо когда социально-экономическое значение минерально-сырьевого комплекса сопоставимо с другими производствами, функционирующими на рассматриваемой территории или выделенной экосистеме. Поэтому установление и оценка социального ущерба от недропользования должны производиться отдельно в каждом конкретном случае на основе глубоких исследований. Это положение справедливо и для общей (суммарной) оценки возникающих ущербов, как по отдельным объектам горнодобывающей промышленности, так и по регионам и различным административным образованиям.

В качестве примера, иллюстрирующего конкретный подход к определению и оценке ущербов при недропользовании можно привести Республику Татарстан, Министерство экологии и природных ресурсов которой утвердило «Порядок расчета ущерба при правонарушениях в области недропользования в республике Татарстан» (Приказ от 9 апреля 2002 г. №322).

Согласно этому приказу общая сумма ущерба государству при нарушении законодательства в области недропользования складывается из следующих составляющих:

Ущерб, причиненный недрам невосполнимой потерей запасов полезных ископаемых;

Убыток бюджетов разных уровней вследствие невнесения налогов (платежей) за пользование недрами;

Ущерб, причиненный земельным и растительным ресурсам в результате уничтожения (деградации) почвенного слоя и растительности на участке самовольного пользования недрами на прилегающей территории;

Затраты на проведение работ по оценке размеров вреда недрам и вредного воздействия на окружающую природную среду (в том числе, исчислению убытков и оформлению соответствующих документов).

В вышеназванном документе приводится порядок определения ущерба при нарушении законодательства, дается оценка общей суммы ущерба с примерами расчета конкретной величины ущерба, причиненного недрам и бюджетам разных уровней, применительно к разработке общераспространенных полезных ископаемых. Так, например, ущерб, причиненный недрам (Ун) невосполнимой потерей запасов полезных ископаемых, определяется произведением количества добытого полезного ископаемого (V) на норматив стоимости полезного ископаемого (Nn), на стоимость единицы добытого полезного ископаемого (S) и на коэффициент достоверности запасов по категориям (D).

Нормативы стоимости полезного ископаемого, установленные в Республике Татарстан, представлены в таблице.

Основные положения используемого в республике методического подхода могут быть учтены при освоении других видов полезных ископаемых.

Суммарный геотехногенный ущерб оценивается в каждом конкретном случае по отдельным объектам, в нашем случае, месторождениям полезных ископаемых, изучаемым и осваиваемым как индивидуальными предпринимателями, так и юридическими лицами (их группой) в зависимости от зоны влияния разрабатываемого месторождения (его части) на окружающую среду, включая инфраструктуру и население. Определение зоны влияния представляет самостоятельную проблему исследований. При ее выполнении важно учитывать степень восприимчивости геологической и окружающей среды к возможным воздействиям.

Познание источников и причин геологических и геотехногенных ущербов позволяет изыскивать рациональные мероприятия по их предупреждению или ликвидации негативных последствий, исходя из тезиса о том, что любой геологический ущерб вызывает геотехногенный ущерб, т.е. техногенное воздействие на ГС порождает одновременно как геологический, так и геотехногенный ущербы. Из этого тезиса следует вывод о том, что прежде чем определять, оценивать и разрабатывать какие-либо мероприятия, направленные на устранение геотехногенного ущерба, следует изучить, выявить источники и принять меры к недопущению геологического ущерба.


При этом важно, чтобы осуществляемые или предполагаемые мероприятия носили системный характер, означающий:

Организацию специального государственного органа по контролю и надзору в сфере недропользования;

Взаимосвязанность и взаимообусловленность любых проектов, программ, нормативно-правовых актов, планов и решений;

Иерархическое ранжирование (по вертикали и горизонтали) по уровням их выполнения;

Логически выстроенное и последовательное исполнение намеченных мероприятий с введением персональной ответственности, прежде всего представителей государственных органов исполнительной власти за своевременную реализацию этих мероприятий;

Принятие единого узаконенного на уровне Федерации методического подхода к разработке и реализации методов, средств и мероприятий по контролю и надзору за рациональным недропользованием.

В значительной степени, хотя и в декларативной форме, возможные мероприятия по недопущению или минимизации указанных ущербов изложены в Федеральном законе «О недрах» (гл. 23) и более конкретно в «Правилах охраны недр» ПБ-07-601-03.М. Однако, реальное и результативное использование даже этих, далеко не идеальных нормативных документов, серьезно и заметно сдерживается действующим контрольно-надзорным аппаратом государственного управления, функции которого «растащены» по различным министерствам, службам и агентствам, связанным с функционированием минерально-промышленного комплекса страны.

Полагаем, что изложенные соображения, раскрывающие сущность техногенеза на недра при разработке месторождений полезных ископаемых, будут полезны специалистам, занимающимся проблемами рационального освоения георесурсов и сохранения недр.

ЛИТЕРАТУРА:

1. Панфилов Е.И. «Российское горное законодательство: состояние и пути его развития». М. Изд. ИПКОН РАН. 2004. c.35.

2. Папичев В.И. Методология комплексной оценки техногенного воздействия горного производства на окружающую среду (автореферат докторской диссертации). М. Изд. ИПКОН РАН. 2004. c.41.

Введение

Сланцевый газ (shale gas) - это вид топлива, альтернативный природному газу. Добывается из месторождений с низкой насыщенностью углеводородами, расположенных в сланцевых осадочных породах земной коры.

Одни считают сланцевый газ могильщиком нефтегазового сектора российской экономики, а другие - грандиозной аферой планетарного масштаба.

По своим физическим свойствам очищенный сланцевый газ принципиально ничем не отличается от традиционного природного газа. Однако технология его добычи и очистки подразумевает гораздо большие по сравнению с традиционным газом затраты.

Сланцевые газ и нефть - это, грубо говоря, недоделанные нефть и газ. При помощи «гидроразрыва» человек может извлечь топливо из земли до того, как оно соберётся в нормальные месторождения. Такие газ и нефть содержат огромное количество примесей, которые не только повышают стоимость добычи, но и усложняют процесс обработки. То есть сжимать и сжижать сланцевый газ дороже, чем добытый традиционными методами. Сланцевые породы могут содержать от 30% до 70% метана. Кроме того, сланцевая нефть отличается повышенной взрывоопасностью.

Выгодность разработки месторождений характеризуется показателем EROEI, который показывает, сколько энергии надо затратить, чтобы получить единицу топлива. На заре нефтяной эры в начале 20 века EROEI для нефти составлял 100:1. Это означало, что для добычи ста баррелей нефти надо было сжечь один баррель. К настоящему времени показатель EROEI опустился до значения 18:1.

По всему миру происходит освоение все менее выгодных месторождений. Раньше, если нефть не била фонтаном, то такое месторождение никому было не интересно, сейчас все чаще приходится извлекать нефть на поверхность при помощи насосов.


1. История


Первая коммерческая газовая скважина в сланцевых пластах была пробурена в США в 1821 году Уильямом Хартом (англ. William Hart) во Фредонии, Нью-Йорк, который считается в США «отцом природного газа». Инициаторами масштабного производства сланцевого газа в США являются Джордж Митчелл и Том Уорд

Масштабное промышленное производство сланцевого газа было начато компанией Devon Energy в США в начале 2000-х, которая на месторождении Барнетт (англ.) русск. в Техасе в 2002 году впервые применила комбинацию горизонтального бурения и многостадийного гидроразрыва пласта. Благодаря резкому росту его добычи, названному в СМИ «газовой революцией, в 2009 году США стали мировым лидером добычи газа (745,3 млрд куб. м), причём более 40% приходилось на нетрадиционные источники (метан угольных пластов и сланцевый газ).

В первом полугодии 2010 года крупнейшие мировые топливные компании потратили $21 млрд на активы, которые связаны с добычей сланцевого газа. На тот момент некоторые комментаторы высказывали мнение, что ажиотаж вокруг сланцевого газа, именуемый сланцевой революцией, - результат рекламной кампании, вдохновлённой рядом энергетических компаний, вложивших значительные средства в проекты по добыче сланцевого газа и нуждающихся в притоке дополнительных сумм. Как бы то ни было, после появления сланцевого газа на мировом рынке цены на газ стали падать.

К началу 2012 года цены на природный газ в США упали до уровня значительно ниже себестоимости добычи сланцевого газа, в результате чего крупнейший игрок на рынке сланцевого газа - компания Chesapeake Energy - объявила о сокращении производства на 8%, а капитальных вложений в бурение - на 70%. В первом полугодии 2012 года газ в США, где наблюдалось его перепроизводство, стоил дешевле, чем в России, которая обладает крупнейшими в мире разведанными запасами газа. Низкие цены вынудили ведущие газодобывающие компании сократить добычу, после чего цены на газ пошли вверх. К середине 2012 года ряд крупных компаний, стали испытывать финансовые трудности, а Chesapeake Energy оказалась на грани банкротства.


2. Проблемы с добычей сланцевого газа 70-80-х годов и факторы роста промышленности, разработки месторождений в США 90-х годов


Нефтегазовая отрасль считается одной из самых капиталоемких. Высокая конкуренция вынуждает активных игроков на рынке вкладывать огромные суммы в исследовательскую работу, а крупные инвестиционные компании - содержать штат аналитиков, специализирующихся на прогнозах, связанных с нефтью и газом. Казалось бы, все здесь так хорошо изучено, что у нас почти нет шансов прозевать хоть что-то мало-мальски значительное. Тем не менее, никто из аналитиков не сумел предсказать резкий рост добычи сланцевого газа в Америке - настоящий экономико-технологический феномен, который в 2009-м году вывел США в лидеры по объемам добываемого газа, кардинально изменил политику газоснабжения США, превратил внутренний рынок газа из дефицитного в самодостаточный и может самым серьезным образом повлиять на расстановку сил в мировой энергетике.

Интересно, что феномен промышленной добычи сланцевого газа лишь с очень большой натяжкой можно назвать технологической революцией или научным прорывом: ученые знают о залежах газа в сланцах с начала XIX века, первая коммерческая скважина в сланцевых пластах была пробурена в США в 1821 году, задолго до первого в мире нефтяного бурения, а применяющиеся сегодня технологии обкатываются специалистами уже несколько десятилетий. Однако до недавнего времени промышленная разработка гигантских запасов сланцевого газа считалась экономически нецелесообразной.

Главное отличие и главная сложность при добыче сланцевого газа - это низкая проницаемость газосодержащих сланцевых пластов (измельченного песка, превратившегося в окаменевшую глину): углеводород практически не просачивается сквозь плотную и очень твердую породу, поэтому дебет традиционной вертикальной скважины оказывается очень небольшим и разработка месторождения становится экономически невыгодной.

В 70-е годы прошлого века геологоразведка выявила на территории США четыре огромные сланцевые структуры, содержащие громадные запасы газа (Barnett, Haynesville, Fayetteville и Marcellus), но промышленная добыча была признана нерентабельной, а изыскания в области создания соответствующих технологий прервались после падения ценна нефть в 80-х.

Природный газ в пластовых условиях (условиях залегания в земных недрах) находится в газообразном состоянии - в виде отдельных скоплений (газовые залежи) или в виде газовой шапки нефтегазовых месторождений, либо в растворенном состоянии в нефти или воде

К идее извлечения газа из сланцевых пластов в США вернулись только в 90-х годах на фоне роста потребления газа и растущих цен на энергоносители. Вместо многочисленных малорентабельных вертикальных скважин исследователи применили так называемое горизонтальное бурение: на подходе к газоносному пласту бур отклоняется от вертикали на 90 градусов и проходит сотни метров вдоль пласта, увеличивая зону контакта с породой. Чаще всего искривление ствола скважины достигается применением гибкой бурильной колонны или специальных компоновок, обеспечивающих отклоняющую силу на долоте и асимметричное разрушение забоя.

Для повышения продуктивности скважины используется технология множественных гидроразрывов пласта: в горизонтальную скважину под большим (до 70 МПа, то есть примерно 700 атмосфер) давлением закачивается смесь воды, песка и специальных химических реактивов, которая разрывает пласт, разрушает плотную породу и перегородки газовых карманов и объединяет запасы газа. Давление воды вызывает появление трещин, а песчинки, которые загоняет в эти трещины поток жидкости, мешают последующему «схлопыванию» породы и делают сланцевый пласт проницаемым для газа.

Промышленная разработка сланцевого газа в США стала рентабельной благодаря нескольким дополнительным факторам. Первый - это наличие сверхсовременного оборудования, материалов с высочайшей износостойкостью и технологий, позволяющих очень точно позиционировать стволы и трещины гидроразрывов. Такие технологии стали доступны даже мелким и средним газодобывающим компаниям после инновационного бума, связанного с ростом цен на энергоносители и повышению спроса (и, следовательно, цен) на оборудование для нефтегазовой промышленности.

Второй фактор - относительная малонаселенность территорий, прилегающих к месторождениям сланцевого газа: добытчики могут бурить многочисленные скважины на громадных участках без непрерывных согласований с властями близлежащих населенных пунктов.

Третий, самый важный фактор - открытый доступ к развитой газопроводной системе США. Этот доступ регламентируется законодательством, и даже мелкие и средние компании, добывшие газ, на прозрачных условиях могут получить доступ к трубе и довести газ до конечного потребителя по разумной цене.


3. Технология добычи сланцевого газа и влияние на экологию


Добыча сланцевого газа предполагает горизонтальное бурение и гидроразрыв пласта. Горизонтальная скважина прокладывается через слой газоносного сланца. Затем внутрь скважины под давлением закачиваются десятки тысяч кубометров воды, песка и химикатов. В результате разрыва пласта газ по трещинам поступает в скважину и далее на поверхность.

Данная технология наносит колоссальный вред окружающей среде. Независимые экологи подсчитали, что специальный буровой раствор содержит 596 наименований химикатов: ингибиторы коррозии, загустители, кислоты, биоциды, ингибиторы для контроля сланца, гелеобразователи. Для каждого бурения нужно до 26 тыс. кубометров раствора. Назначение некоторых химикатов:

соляная кислота помогает растворять минералы;

этиленгликоль борется с появлением отложений на стенках труб;

изопропиловый спирт используется для увеличения вязкости жидкости;

глютаральдегид борется с коррозией;

легкие фракции нефти используются для минимизации трения;

гуаровая камедь увеличивает вязкость раствора;

пероксодисульфат аммония препятствует распаду гуаровой камеди;

формамид препятствует коррозии;

борная кислота поддерживает вязкость жидкости при высоких температурах;

лимонная кислота используется для предотвращения осаждения металла

хлорид калия препятствует прохождению химических реакций между грунтом и жидкостью;

карбонат натрия или калия используется для поддержания баланса кислот.

Десятки тонн раствора из сотен наименований химикатов смешиваются с грунтовыми водами и вызывают широчайший спектр непрогнозируемых негативных последствий. При этом разные нефтяные компании используют различные составы раствора. Опасность представляет не только раствор сам по себе, но и соединения, которые поднимаются из-под земли в результате гидроразрыва. В местах добычи наблюдается мор животных, птиц, рыбы, кипящие ручьи с метаном. Домашние животные болеют, теряют шерсть, умирают. Ядовитые продукты попадают в питьевую воду и воздух. У американцев, которым не посчастливилось жить поблизости от буровых вышек, наблюдаются головные боли, потери сознания, нейропатии, астма, отравления, раковые заболевания и многие другие болезни.

Отравленная питьевая вода становится непригодной для питья и может иметь цвет от обычного до черного. В США появилась новая забава поджигать питьевую воду, текущую из-под крана.

Это скорее исключение, чем правило. Большинству в такой ситуации реально страшно. Природный газ не имеет запаха. Тот запах, который мы чувствуем, издают одоранты, специально подмешиваемые для выявления утечек. Перспектива создать искру в доме, полном метана, заставляет перекрыть водопровод наглухо в такой ситуации. Бурение новых скважин для воды становится опасным. Можно нарваться на метан, который ищет выход на поверхность после гидроразрыва. Например, так произошло с этим фермером, который решил сделать себе новый колодец вместо отравленного. Фонтан метана бил три дня. По подсчетам специалистов в атмосферу ушло 84 тысячи кубометров газа.

Американские нефтегазовые компании применяют к местному населению следующую примерную схему действий.

Первый шаг: «Независимые» экологи делают экспертизу, согласно которой с питьевой водой все в порядке. На этом все заканчивается, если пострадавшие не подают в суд.

Второй шаг: Суд может обязать нефтяную компанию пожизненно снабжать жителей привозной питьевой водой, либо поставить очистное оборудование. Как показывает практика, очистное оборудование не всегда спасает. Например, этиленгликоль проходит сквозь фильтры.

Третий шаг: Нефтяные компании выплачивают компенсации пострадавшим. Размеры компенсаций измеряются десятками тысяч долларов.

Четвёртый шаг: С получившими компенсацию пострадавшими обязательно подписывается договор о конфиденциальности, чтобы правда не выплыла наружу.

Не весь ядовитый раствор смешивается с грунтовыми водами. Примерно, половина «утилизируется» нефтяными компаниями. Химикаты сливают в котлованы, а для увеличения скорости испарения включают фонтаны.


4. Запасы сланцевого газа по миру


Важный вопрос: не угрожает ли массовая промышленная добыча сланцевого газа в США экономической безопасности России? Да, ажиотаж вокруг сланцевого газа изменил соотношение сил на газовом рынке, но, в основном, это касается спотовых, то есть биржевых, сиюминутных цен на газ. Основные игроки на этом рынке - производители и поставщики сжиженного газа, в то время как крупные российские производители тяготеют к рынку долгосрочных контрактов, который в ближайшее время не должен потерять стабильность.

По оценке информационно-консалтинговой компании IHS CERA, к 2018 году мировая добыча сланцевого газа может составить 180 млрд. кубометров в год.

Пока налаженная и надежная система так называемого «трубопроводного ценообразования», по которой работает Газпром (гигантские резервы традиционного газа - транспортная система - крупный потребитель) для Западной Европы предпочтительнее, чем рискованная и недешевая разработка собственных месторождений сланцевого газа. Но именно себестоимость добычи сланцевого газа в Европе (его запасы оцениваются в 12-15 триллионов кубометров) и будет определять европейские цены на газ в ближайшие 10-15 лет

5. Проблемы при добыче сланцевых нефти и газа


Добыча сланцевых нефти и газа сталкивается с рядом проблем, которые в самом ближайшем будущем могут начать оказывать на эту отрасль существенное влияние.

Во-первых, добыча рентабельна только при том условии, что добывается одновременно и газ, и нефть. То есть добыча только сланцевого газа - слишком дорогое удовольствие. Легче добывать его из океана по японской технологии.

Во-вторых, если учесть стоимость газа на внутренних рынках США, можно заключить, что добыча сланцевых ископаемых находится на дотациях. При этом надо помнить, что в других странах, добыча сланцевого газа будет ещё менее рентабельна, чем в США.

В-третьих, уж слишком часто мелькает на фоне всей истерии про сланцевый газ имя Дика Чейни, бывшего вице-президент США. Дик Чейни стоял у истоков всех американских войн первого десятилетия XXI века на Ближнем Востоке, которые и привели к росту цен на энергоносители. Это наводит некоторых экспертов на мысль о том, что эти два процесса были тесно взаимосвязаны.

В-четвертых, добыча сланцевого газа и нефти может вызвать очень серьезные экологические проблемы в регионе добычи. Влияние может оказываться не только на грунтовые воды, но и на сейсмическую активность. Немалое число стран и даже штатов США ввели мораторий на добычу сланцевых нефти и газа на своей территории. В апреле 2014 года американская семья из Техаса выиграла первое в истории США дело о негативных последствиях добычи сланцевого газа методом гидроразрыва пласта. Семья получит 2,92 миллиона долларов от нефтяной компании Aruba Petroleum в качестве компенсации за загрязнение их участка (включая скважину с водою, которая сделалась непригодной для питья) и нанесение вреда здоровью. В октябре 2014 года выяснилось, что подземные воды по всей Калифорнии заражены в результате попадания в них миллиардов литров опасных для человека отходов при добыче сланцевого газа (из письма, которое официальные лица штата отправили в агентство по охране окружающей среды США).

В связи с возможным ущербом для окружающей среды добыча сланцевого газа запрещена во Франции и Болгарии. Добыча сланцевого сырья запрещена или приостановлена также в Германии, Нидерландах, ряде штатов США.

Рентабельность промышленной добычи сланцевого газа имеет ярко выраженную привязку к экономике того региона, где он добывается. Месторождения сланцевого газа обнаружены не только в Северной Америке, но и в Европе (в том числе и Восточной), Австралии, Индии, Китае. Однако промышленная разработка этих месторождений может оказаться затруднена из-за густонаселенности (Индия, Китай), отсутствия транспортной инфраструктуры (Австралия) и строгих норм экологической безопасности (Европа). Есть разведанные месторождения сланцев и в России, самым крупным из которых является Ленинградское - часть масштабного Прибалтийского бассейна, но себестоимость газовых разработок заметно превышает стоимость добычи «традиционного» газа.


6. Прогнозы


Пока еще рано судить о том, насколько большое влияние может оказать разработка сланцевых газа и нефти. По самым оптимистичным оценкам, она незначительно опустит цены на нефть и газ - до уровня нулевой рентабельности добычи сланцевого газа. По другим оценкам, держащаяся на дотациях разработка сланцевого газа скоро окончится совсем.

В 2014 году разразился скандал в Калифорнии - выяснилось, что запасы сланцевой нефти месторождения Монтерей были серьёзно переоценены, и что реальные запасы примерно в 25 раз ниже, чем предсказывалось ранее. Это привело к снижению общей оценки запасов нефти в США на 39%. Данный инцидент может вызвать массовую переоценку сланцевых запасов по всему миру.

В сентябре 2014 года японская компания Sumitomo была вынуждена полностью свернуть масштабный проект по добыче сланцевой нефти в Техасе, рекордные убытки составили 1,6 млрд долл. «Задача извлечения нефти и газа оказалась очень сложной», сообщают представители компании.

Залежи сланца, из которого можно добывать сланцевый газ, весьма велики и находятся в ряде стран: Австралия, Индия, Китай, Канада.

Китай планирует в 2015 году добыть 6,5 млрд кубометров сланцевого газа. Общий объём производства природного газа в стране вырастет на 6% с текущего уровня. К 2020 году Китай планирует выйти на уровень добычи в диапазоне от 60 млрд до 100 млрд кубометров сланцевого газа ежегодно.В 2010 году Украина выдала лицензии на разведку сланцевого газа для Exxon Mobil и Shell.

В мае 2012 года стали известны победители конкурса по разработке Юзовской (Донецкая область) и Олесской (Львовская) газовых площадей. Ими стали Shell и Chevron, соответственно. Ожидается, что промышленная добыча на этих участках начнётся в 2018-2019 годах. 25 октября 2012 Shell начала бурение первой поисковой скважины газа уплотнённых песчаников в Харьковской области. Соглашение между компанией Shell и «Надра Юзовская» о разделе продукции от добычи сланцевого газа на Юзовском участке в Харьковской и Донецкой областях было подписано 24 января 2013 года, в Давосе (Швейцария) при участии президента Украины.

Практически немедленно после этого в Харьковской и Донецкой областях начались акции и пикеты экологов, коммунистов и ряда других активистов, направленные против разработки сланцевого газа и, в частности, против предоставления такой возможности зарубежным компаниям. Ректор Приазовского технического университета, профессор Вячеслав Волошин, заведующий кафедрой охраны труда и окружающей среды, не разделяет их радикальных настроений, указывая, что добыча может быть произведена и без ущерба для окружающей среды, но необходимы дополнительные исследования предлагаемой технологии добычи.


Заключение

сланцевый газ месторождение экология

В этом реферате мы рассмотрели способы добычи, историю и влияние на экологию сланцевого газа. Сланцевый газ - это альтернативный вид топлива. Этот энергоресурс совмещает в себе качество ископаемого топлива и возобновляемого источника и встречается во всем мире, таким образом, практически любая энергозависимая страна может себя обеспечить данным энергоресурсом. Однако его добыча связана с большими экологическими проблемами и катастрофами. Лично я считаю, что добыча сланцевого газа - это слишком опасный метод добычи топлива на данный день. И пока, на нашем уровне технологического прогресса, человек неспособен сохранить баланс экосистемы добывая данный вид топлива столь радикальным методом.


Список использованных источников


1. Сланцевый газ [Электронный ресурс]. - Режим доступа: #"justify">. Сланцевый газ - революция не состоялась [Электронный ресурс]. - Режим доступа: #"justify">. Сланцевыйгаз [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Сланцевый_газ#cite_note-72

Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.