Системы и технические средства раннего обнаружения пожара. Системы раннего обнаружения пожара

18.03.2017, 12:18

Зайцев Александр Вадимович, научный редактор журнала «Алгоритм безопасности»

О «сверхраннем обнаружении пожара» то тут, то там можно встретить самые разные материалы: от отдельных статей до учебных пособий. В одном случае авторы пытаются доказать, что найден некоторый «философский камень», решающий все проблемы обнаружения пожара на самой ранней стадии, даже когда его еще нет. В другом случае уже другие специалисты начинают прикидывать, как выстроить организационные мероприятия по пожарной безопасности на объектах с учетом такой возможности.

Но по истечении какого-то времени каждый раз выясняется, что те или иные предложенные технические средства далеки от идеального решения. И если они и обладают какими-то дополнительными возможностями, то не являются универсальными, или применение этих технических средств не является экономически оправданным.

Сравнительный анализ применения тех или иных средств для обнаружения пожара в какой-то степени должен помочь избавиться от периодически возникающих мифов.

Сразу хотелось бы отметить, что данный анализ не может быть объективным и окончательным на продолжительный промежуток времени. Все течет, все изменяется. Появляются новые технологии, появляются новые задачи и, соответственно, пути их решения. Задача специалистов будет заключаться в том, чтобы каждый раз при очередном заявлении о возможности «сверхраннего обнаружения» пожара попытаться докопаться до сути, ведь все мы прекрасно знаем, что чудес на свете не бывает.

«СВЕРХРАННЕЕ ОБНАРУЖЕНИЕ» ЧТО И ЗАЧЕМ

Начать, как обычно, хотелось бы с каких-нибудь уже имеющихся определений или терминов, касающихся «сверхраннего обнаружения» или даже просто «раннего обнаружения». Вот только на эту тему еще никаких определений не придумано.

Надо понимать, что появление пожара характеризуется несколькими, подчас не связанными между собой параметрами среды, по которым его можно обнаружить:

■ пламя и искры;

■ тепловой поток и повышенная температура окружающей среды;

■ повышенная концентрация токсичных продуктов горения и термического разложения;

■ снижение видимости в дыму.

В итоге именно через эти косвенные параметры среды и можно с помощью технических средств обнаружить факт пожара. К сожалению любой из косвенных параметров не является в полной мере абсолютным критерием.

Тепло идет и от нагревательных предметов, и при термической обработке продуктов, без которой нам в жизни никак не обойтись.

Мощные осветительные приборы, сварка и прямые солнечные лучи могут имитировать пламя.

Токсичные продукты в газообразном состоянии - один из признаков цивилизации и присутствия человека.

Дым, будучи одним из видов аэрозоли, подчас мало чем отличается от других аэрозолей (пара, пыли и т. п.).

Как только разработчики средств обнаружения пожара начинают говорить о высокой чувствительности своих пожарных извещателей (ИП), так сразу встает вопрос о вероятности ложных срабатываний по причине наличия фоновых величин, не связанных с пожаром. И тут же начинаются работы по защите пожарных извещателей от ложных срабатываний вплоть до снижения чувствительности до разумных значений. Вот это и есть основа спирали развития средств обнаружения пожара.

Самым странным здесь будет то, что это происходит в стране, в которой только пару-тройку лет назад начали оценивать реальную чувствительность из-вещателей к пожару. За это время наши отечественные производители и очень малая часть пользователей в лучшем случае только начали понимать, с какими извещателями им до недавнего времени приходилось иметь дело.

Ни у одного законодателя мод из зарубежных стран, связанного с производством пожарных извещателей, в мыслях нет кому-то что-то запрещать производить или использовать. Соответствует требованиям стандартов - все, он полноправный участник рынка. А тут не надо забывать, что наши стандарты почти на 90% по части извещателей соответствуют европейским, а понятия «сверхранних» извещателей ни в тех, ни в других нет. Вот будет определение, будут разработаны требования и методики оценки, тогда и будет о чем конкретно поговорить. А пока есть смысл разобраться с тем, что есть.

В последние несколько лет, когда в ГОСТ Р 53325-2012 «Технические средства пожарной автоматики» наконец-то были включены огневые испытания для пожарных извещателей, вроде как появилась возможность оценивать или по крайней мере сравнивать те или иные пожарные извещатели по времени срабатывания при проведении стандартизированных тестовых пожаров (ТП). В какой-то степени результаты этих испытаний могут быть коррелированы с временем обнаружения реального пожара.

Пожарный извещатель нельзя причислить к почетной касте «сверхранних» только на основании того, что он по какому-то виду тестовых пожаров оказался впереди планеты всей.

Конечно, кто-то может предложить, что если пожарный извещатель по всем этим тестовым пожарам во всех вариантах без исключения срабатывает, к примеру, в десять раз быстрее других, то его можно и нужно причислить к разряду «сверхранних». Но это будет только повод. А вот в качестве следствия обязательно тут же последует предложение о запрете на использование всех остальных видов и типов пожарных извещателей или, по крайней мере, о получении каких-то преференций в применении. Потом, правда, выяснится, что производители несколько погорячились, не учли побочные эффекты, не оценили экономическую эффективность и т. д.

«СВЕРХРАННЕЕ» ИЛИ СВОЕВРЕМЕННОЕ ОБНАРУЖЕНИЕ

На сегодняшний день нет такой задачи, как организация «сверхраннего обнаружения пожара». Есть требование о своевременности обнаружения, и в каждом конкретном случае оно может иметь различные численные показатели.

В частности, именно о своевременном обнаружении пожара идет речь в статье 83 «Технического регламента о требованиях пожарной безопасности».

Чем определяется своевременность? И на этот вопрос имеется ответ в том же Техническом регламенте в статье 54. Задачей является обнаружить пожар за время, необходимое для включения систем оповещения для организации безопасной эвакуации людей.

Для реализации требований по своевременности обнаружения существуют действующие стандарты и правила в области пожарной безопасности, в них все эти вопросы жестко увязаны между собой в единую систему противопожарной защиты объекта, начиная от архитектурно-планировочных решений и заканчивая противодымной вентиляцией и внутренним пожарным водопроводом.

Экономические показатели «сверхраннего обнаружения» тоже нельзя сбрасывать со счетов, все умеют считать деньги.

И вот скажите, чем плох термин «своевременное обнаружение пожара». Чем он кого-то не устраивает и зачем использовать несуществующие и никем не определенные термины. Зачем постоянно путать технические возможности с маркетинговыми изысками.

СРАВНЕНИЕ НЕКОТОРЫХ СПОСОБОВ ОБНАРУЖЕНИЯ ПОЖАРА

Как тут уже было написано, несколько лет назад у нас в стране появилась реальная возможность провести сравнение способов обнаружения пожара в рамках огневых испытаний с использованием наших отечественных пожарных извещателей. И этим, несомненно, надо было воспользоваться.

Не хочу в этой статье раскрывать все тайны: кто, где и когда. Какие были конкретные извещатели и от каких производителей, не в моей это компетенции, но могу с полной ответственностью утверждать, что исходные данные, на которые я буду опираться, существуют, и не в одном экземпляре. Может быть, когда придет время, эти данные будут доступны всем, но не сейчас. В данной статье вообще очень не хочется никого ни хвалить, ни ругать. Более того, не все производители используемых образцов даже были в курсе этих испытаний. Единственное что могу отметить, случайных участников не было, были только лучшие.

Прежде чем приступить к рассмотрению каких-либо результатов, следует отметить, что они были получены не при проведении сертификационных испытаний конкретных образцов в соответствии со стандартными методиками, а в рамках проведения неких научно-исследовательских работ. Поэтому, в частности, вместо положенных 4 образцов точечных оптико-электронных дымовых пожарных извещателей одного производителя было использовано несколько аналогичных извещателей разных производителей. Примерно так же поступили и с газовыми пожарными из-вещателями.

Более того, для получения дополнительной информации для последующего анализа помимо стандартных тестовых пожаров были проведены еще примерно такие же испытания с измененными характеристиками испытательной пожарной нагрузки, но их результаты приводить я не считаю необходимым.

И еще, во время проведения тестовых пожаров помимо времени срабатывания должны контролироваться и другие параметры, но поскольку все извещатели во время проводимых тестов одновременно находились в аналогичных условиях, то я с чистой совестью этот вопрос опускаю, главное чтобы параметры не выходили за пределы, предусмотренных стандартом.

В таблице 1 приведено соотношение времени, потребовавшегося для срабатывания пожарных извещателей в процессе тестовых пожаров ТП2 - ТП5, к нормируемому. Если попробовать перевести это на более доступный язык, то процент времени, который был необходим для обнаружения пожара тому или иному типу извещателя, по отношению к нормируемому времени. Например, предельное время срабатывания при ТП3 равняется 750 секунд, а извещатель сработал уже через 190 секунд. Получается всего 25% времени от предельной величины. В четыре раза быстрее, чем требуется, сработал - вот уже можно записать его в касту «сверхранних», но не будем спешить.

Табл. 1. Соотношение времени, необходимого для срабатывания пожарных извещателей при ТП2 - ТП5, по отношению к нормируемому

по ТП2-ТП5

Предельное время срабатывания МП, с

ИПДОТ стандартный нефелометрический

ИПДОТ экспериментальный абсорбционный

ИПДОТ бескамерный

нет данных

ИПДА (класс чувствительности А) импортный

с максимально возможной длиной воздушного трубопровода

нет данных

ИПГ полупроводниковый

ИПГ электрохимический

Поскольку статья не носит научного характера, а является только информационной, то для большей наглядности представленные величины в рассматриваемой таблице носят очень округленный характер без всяких вероятностных зависимостей.

СТАНДАРТНЫЕ ИЗВЕЩАТЕЛИ ПОЖАРНЫЕ ДЫМОВЫЕ ОПТИКО- ЭЛЕКТРОННЫЕ ТОЧЕЧНЫЕ (ИПДОТ)

Вот уж кто всегда вызывал сомнение, так это ИПДОТ. И тут появляется первый и очень неожиданный вывод. Наши отечественные ИПДОТы, которые по возможностям своевременного обнаружения пожара никто в серьез не воспринимает и используют только сообразно их стоимости, имеют, оказывается, очень даже приличный запас по времени обнаружения по отношению к нормируемому. И это должно только радовать. К сожалению, у нас в стране не все таковые, тем более серийные. Но все равно, могут ведь, когда захотят.

А теперь представьте, какими они были бы, если бы в них еще были применены наработки, уже давно используемые в современных зарубежных ИПДОТ .

ЭКСПЕРИМЕНТАЛЬНЫЙ ИПДОТ АБСОРБЦИОННОГО ТИПА

Это очень интересный способ обнаружения дыма. В этом ИП используется не принцип рассеяния света излучателя от частиц дыма в измерительной камере, который называется нефелометрическим способом, а принцип поглощения света (абсорбционный способ), как у линейных пожарных извещателей, только с очень коротким участком контроля. Как способу обнаружения, так и самому используемому в данном анализе извещателю, были посвящены целых две статьи в журнале «Алгоритм безопасности» , поэтому не буду здесь рассматривать подробности устройства этого ИП.

Как ни странно, но именно он больше всех претендует на звание «сверхранний» с четырехкратным обобщенным запасом по всем тестовым пожарам. Конечно, а каким ему еще быть, если у него аэродинамическое сопротивление воздушным потокам сведено до нуля, никаких проблем со статикой корпуса и ему не страшна пролетающая пыль. А ведь что показывает нам вторая журнальная статья

из уже указанных двух. Оказывается работы над повышением чувствительности, а вместе с ней и сокращения времени на обнаружение пожара, еще только начинаются. В процессе сравнительных испытаний, о которых я здесь пишу, были обнаружены очень интересные закономерности. Их реализация может привнести много нового и интересного, и тогда опять будет повод провести сравнительный анализ. А сейчас это только опытные единичные экземпляры, и насколько технико-экономические показатели этих извещателей оправдают наши надежды, пока сказать очень трудно.

ИПДОТ БЕСКАМЕРНЫЙ

У данного типа ИПДОТ нет закрытой корпусом и лабиринтами измерительной зоны. Иногда этот тип ИПДОТ классифицируют как извещатель с виртуальной зоной обнаружения, т. к. она находится вне корпуса извещателя. Естественно, у данного типа извещателя, так же как и ИПДОТ абсорбционного типа, отсутствует аэродинамическое сопротивление воздушным потокам. Следовательно, не требуется время на преодоление статического потенциала корпуса, не требуется дополнительной энергии на преодоление лабиринта к измерительной зоне. Вот и заслуженный результат - трехкратный обобщенный запас по всем тестовым пожарам. При желании его тоже можно отнести к касте «сверхранних».

Это очень перспективное направление развития пожарных извещателей, особенно, если учесть достигнутые результаты в импортных извещателях с аналогичным способом обнаружения дыма . Жаль, что у нас этому направлению практически не уделяют внимание, за рубежом это уже не частный случай (рис. 1).

Рис. 1. Варианты исполнения бескамерных ИПДОТ

АСПИРАЦИОННИК, ОН И ЕСТЬ АСПИРАЦИОННИК

Об особенностях и исключительных возможностях аспирационных пожарных извещателей (ИПДА) знают почти все. Здесь был использован извещатель зарубежного производителя, и то в качестве некоего эталона. В нашей таблице он один из лидеров. Только надо понимать, что не все так однозначно.

Вы где-нибудь, в каком-нибудь продовольственном магазинчике шаговой доступности видели своими глазами ИПДА. Я лично нет. Почему? А это как в трактор лезть с инструментом для лапароскопических операций. Как-то так исторически получилось, что когда этот тип извещателя появился на рынке, мало кто понимал, что это не универсальный извещатель на все случаи жизни. И, несмотря на его известность для специалистов, он использовался в очень ограниченном объеме.

Но вот когда производители поняли, что этот тип извещателя необходимо совсем по-другому позиционировать, то телега сдвинулась с места. И ведь действительно оказалось, что в некоторых направлениях противопожарной защиты ему аналогов нет. В последние два-три года на эту тему появилось достаточное количество статей, и все встало на свои места. «Воздатите кесарева кесареви и божия богови».

В ЧЕМ ЖЕ НЕОДНОЗНАЧНОСТЬ СУЖДЕНИЯ ОБ ИПДА

Сам блок обработки ИПДА имеет непревзойденную чувствительность. С этим даже спорить никто не будет. Если с его помощью контролировать небольшой объем, то ИПДА может оказаться в режиме «если очень принюхаться, то провод еще не перегрелся, но уже теплый и даже немного попахивает, и что-то с ним когда-то может произойти, но не сейчас, а несколько позже». Только сразу встанет вопрос, а сколько это будет стоить. Много, но в каких-то случаях и это оправдано.

Можно этот же ИПДА использовать для контроля больших площадей в несколько тысяч квадратных метров, прямо как указано в документации на него. А вот здесь надо будет сразу понять, что в этом случае о сумасшедшей чувствительности к пожару в каждом отдельно взятом помещении придется забыть. Выигрыш будет только за счет времени доставки дымо-воздушной смеси, да и то не такой большой. Но на тех же складах глубокой заморозки или в лифтовых шахтах ничего другого и не поставишь. И есть ли в этом случае смысл лишний раз упоминать о его возможности «сверхраннего обнаружения» пожара. Вряд ли.

ИЗВЕЩАТЕЛЬ ПОЖАРНЫЙ ДЫМОВОЙ ИОНИЗАЦИОННЫЙ (ИПДИ)

Теперь можно перейти к грустному.

ИПДИ - вот по ком постоянно ностальгируют специалисты пожилого возраста. Это же так ими любимый «радиоизотоп-ник». Утверждалось, что если ИПДОТы могут обнаруживать только «светлые дымы», то «радиоизотопный» извещатель любые, хоть светлые, хоть темные, и очень быстро. А проблема только в «зеленых», из-за которых максимально ужесточили утилизацию этих извещателей.

Данный миф сложился еще тогда, когда порог срабатывания ИПДОТ в установке «Дымовой канал» находился в пределах 0,5 дБ/м (ГОСТ 26342-84), а не как сейчас 0,05-0,2 дБ/м. Тем более, сейчас ИПДОТ обязан обнаруживать не только «светлые» дымы, но и все остальные.

За последние 30 лет многое изменилось, только ИПДИ остались прежними. И вот появилась возможность сравнить их с новым поколением пожарных извещателей. И не просто по порогу срабатывания в дымовом канале, нас это уже меньше всего интересует, а при огневых испытаниях.

И что на поверку оказалось - средненько и даже очень. Использовать достаточно средненький извещатель при сегодняшних трудностях в обращении с радиоизотопными материалами мало кому нужно.

А еще необходимо учесть слабое место ИПДИ - для них нет разницы, какие частицы аэрозолей обнаруживать, что дым, что пар, что пыль. Так и способов борьбы с этим у них до сих пор нет.

Может, мы все напрасно столько лет ностальгировали и простим этим «зеленым» их «подлость», вряд ли без них мы начали бы серьезно заниматься альтернативными направлениями.

ОСОБЕННОСТИ ПРИМЕНЕНИЯ ИЗВЕЩАТЕЛЕЙ ПОЖАРНЫХ ГАЗОВЫХ (ИПГ)

Чуть более десяти назад за рубежом прошла волна использования ИПГ для раннего обнаружения пожара.

За основу был принят постулат, что каждому пожару предшествует дым от тления и моноокись углерода (угарный газ). Эта моноокись углерода за счет диффузии мгновенно распространяется по помещениям, намного быстрее, чем дым достигает потолочных дымовых извещателей, на эту диффузию особо не влияют конвекционные воздушные потоки. Такой способ распространения позволяет устанавливать пожарные извещатели практически в любом месте контролируемых помещений.

И вот на основании этих постулатов речь сразу зашла о возможности «сверхраннего обнаружения пожара» с помощью ИПГ (СО). Свято место пусто не бывает, тут же появились производители датчиков для ИПГ (СО), благо у них уже были в промышленной автоматике схожие задачи.

Но в процессе разработки стандартов для ИПГ (СО) столкнулись с тем, что они не могут быть чувствительны ко всем основным тестовым пожарам. Хорошо, оставили в требованиях только ТП2 (тление древесины) и ТП3 (тление хлопка со свечением) и придумали один дополнительный ТП9 (тление хлопка без свечения). Но за кадром осталась вся синтетика и легко воспламеняющиеся жидкости, которые тоже могут выделять дым. Это производители ИПГ (СО) от всех упорно скрывали, но долго шило в штанах не поносишь.

Оказалось, что при тлении синтетики выделяется не моноокись углерода, а хлористый водород, который все эти ИПГ (СО) обнаружить не могут. Так вот, если синтетика нас окружает повсюду, то с хлопком, который должен тлеть для срабатывания ИПГ (СО), в нашей повседневной жизни намного сложнее, его еще надо найти. И может ли тогда ИПГ (СО), имеющий возможность обнаруживать пожар от ограниченного перечня горючих материалов, использоваться как самодостаточный и универсальный пожарный извещатель?

В результате пару лет назад волна ИПГ (СО) за рубежом полностью захлебнулась, о ней уже стали забывать.

И вот когда у нас в стране появилась возможность сравнить все вместе, то оказалось, что идея «сверхраннего обнаружения пожара» с помощью ИПГ (СО) рухнула в момент, так же как несколькими годами раньше за рубежом. И о глубокой диффузии пришлось забыть, как о не подтвердившемся на практике факте, а как следствие, невозможность произвольной установки ИПГ (СО) в помещениях, хоть за шкафом, хоть под шкафом.

А как же там, за рубежом? Они не стали особо переживать по этому поводу и ломать копья. Они от ИПГ (СО) очень плавно перешли к мультикритериальным пожарным извещателям. И вот тут все наработки по ИПГ (СО) очень даже пригодились. Нам же в России еще предстоит все это сначала осмыслить, тем более у нас пока и нет такого класса пожарных извещателей как мультикритериальный.

НЕКОТОРЫЕ ОСОБЕННОСТИ ТЕХНОЛОГИЙ ИПГ

Сразу надо отметить, что датчики угарного газа (СО) бывают двух типов: электрохимические датчики электролитического типа и метал-оксидные полупроводниковые датчики. Первые практически не потребляют электроэнергии, но имеют ограниченный срок службы из-за использования электролита, вторые имеют достаточно большой срок службы, но и высокое энергопотребление.

У датчиков электролитического типа срок эксплуатации начинает отсчитываться с момента их извлечения из специального контейнера, в которых они хранятся в складских условиях, для последующего их монтажа в ИПГ. Технические характеристики и цена на сам датчик угарного газа порядка 1-2 тыс. рублей являются определяющими для ИПГ (СО).

На сегодняшний день в мире только один производитель этих датчиков (Nemoto Sensor Engineering Co) может дать гарантию срока службы в 10 лет. Все остальные пока гарантируют не более пяти лет, а еще пару-тройку лет назад было не более трех лет работы.

Ограниченный срок службы датчиков угарного газа не позволяет массово использовать как сами ИПГ, так и их комбинации с тепловыми или дымовыми каналами обнаружения. Практически все производители технических средств пожарной автоматики за исключением ИПГ в своей документации указывают срок

службы не менее 10 лет. На практике срок службы редко когда бывает меньше 15 лет, все-таки это не самое дешевое удовольствие. Ни один зарубежный производитель не позволяет самостоятельно производить замену в извещателях датчиков моноокиси углерода, при этом честно указывая их срок службы в 5 лет.

Вот такое «сверхраннее обнаружение» с помощью ИПГ, и возможности пока призрачные, и трудности объективные.

ТАК БЫТЬ ИЛИ НЕ БЫТЬ «СВЕРХРАННЕМУ ОБНАРУЖЕНИЮ ПОЖАРА»

Этот вопрос должны решать непосредственные заказчики услуг в области пожарной безопасности. Если выполняются все требования нормативных документов, если производитель не производит несоответствующую заявленным характеристикам продукцию, то ничего лишнего может и не понадобиться.

Вдруг кому-то хочется отличиться, то он может у себя в электрощитке рядом со счетчиком электроэнергии поставить ИПДОТ, такой же спрятать за холодильником и за телевизором и со спокойной душой лечь спать. Подобный способ «сверхраннего обнаружения» пожара экономически может быть даже самым эффективным по сравнению с другими. Но кто и на основании чего может заставить его применять?

При особом желании можно в кабинете руководителя той или иной организации по его просьбе и за его деньги поставить аспирационный извещатель, который будет каждый раз срабатывать при жарких спорах с подчиненными. Ну что же, желание заказчика - закон.

Я в данной статье ни разу не упомянул про линейные дымовые извещатели (ИПДЛ). Тоже очень хорошая вещь, просто так получилось, что они не принимали участие в научно-исследовательских испытаниях. Если ИПДЛ использовать с максимальной чувствительностью на коротких расстояниях, то время обнаружения пожара снижается в несколько раз. Чем не «сверхраннее обнаружение». Очень просто, и ничего нового выдумывать не надо, сам проверял. Вот только низкая экономическая эффективность не позволяет идти на такие решения.

Никто ни за рубежом, ни у нас в стране не пойдет на дополнительные требования по обеспечению «сверхраннего обнаружения» пожара. А как следствие, этот термин следует исключить из повседневной практики, не стоит его употреблять по случаю или без и вводить им в заблуждение других. Не нужны нам эти мифы.

ЛИТЕРАТУРА

1. ГОСТР 53325-2012 «Техника пожарная. Технические средства пожарной автоматики. Общие технические требования и методы испытаний».

    В январе 2017 года началась работа над проектом межгосударственного стандарта «Приборы приемно-контрольные пожарные. Приборы управления пожарные. Общие технические требования. Методы испытаний». Следующим этапом стал проект свода правил «Системы пожарной сигнализации и автоматизация систем противопожарной защиты. Нормы и правила проектирования». В проектах новых документов обозначаются стоящие задачи, к ним прикрепляются необходимые требования, направленные на их реализацию. Каждое требование является следствием или причиной других требований. Все вместе они составляют полностью увязанную систему.

  • Для зданий и сооружений, хранящих бесценные коллекции и при этом являющихся объектами с массовым пребыванием людей, ключевым является своевременное и достоверное обнаружение возгорания. Но есть объективные причины, в силу которых традиционные системы пожарной сигнализации остаются либо неприемлемыми, либо недостаточно надежны ми для объектов культурного наследия. Лучшее решение аспирационный извещатель. Именно поэтому продукцией компании WAGNER оснащен целый список объектов культуры во всем мире.

    Современное развитие микропроцессорной электроники и информационных технологий позволили подойти к задаче обнаружения пожара принципиально новым путем: от анализа совокупности отдельно взятых сенсорных элементов, непрерывно измеряющих параметры атмосферы в окрестностях извещателя (концентрация твердых частиц и угарного газа, температура воздуха), к способности распознавания в измеренных значениях «достаточность» условий, соответствующих пожару, за минимальное время. Технология непрерывного анализа семи параметров окружающей от Bosch, способствует повышению достоверности обнаружения системы пожарной сигнализации и существенному сокращению вероятности ложных срабатываний даже в сложных условиях эксплуатации.

    Для надежного обнаружения пожара на объектах с особыми условиями эксплуатации, такими как наличие коррозийных газов, большой влажности, высоких температур и загрязненности воздуха, компания Securiton предлагает систему на основе термочувствительного кабеля MHD635 LIST. Это система высокого уровня безопасности, простая в установке и монтаже и не требующая обслуживания. Термочувс твительный кабель Securiton MHD635 применяется на объектах: авто- и железнодорожные тоннели; тоннели и станции метро, путевое хозяйство; конвейерные системы и автоматические линии; кабельные тоннели и лотки; складское хозяйство и стеллажи; производственные печи; морозильные камеры глубокой заморозки; устройства охлаждения и нагрева; объекты пищевой промышленности; парковки, шагающие экскаваторы, судовые механизмы.

    Термодифференциальный линейный детектор SecuriSens ADW 535, компании Securiton сочетает проверенный принцип работы и последние достижения сенсорных и процессорных технологий. Благодаря крайне стойкой сенсорной трубке SecuriSens ADW 535 может применяться там, где невозможно использовать традиционные пожарные датчики. Долговечность и конструкция, не нуждающаяся в обслуживании, делают ADW 535 идеальным решением. SecuriSens ADW 535 полностью отвечает требованиям, предъявляемым к современным линейным термодетекторам, таким как: полный автоматический мониторинг больших пространств, стойкость к агрессивным средам, экстремальной влажности и высоким температурам, способность отличать реальные опасности от ложных. SecuriSens ADW 535 - это интеллектуальное устройство отлично работает даже в самых сложных условиях.

  • На 2019-й год запланирована разработка нового национального стандарта «Системы пожарной сигнализации. Руководство по проектированию, монтажу, техническому обслуживанию и ремонту. Методы испытаний на работоспособность». В статье рассмотрены вопросы по техническому обслуживанию и ремонту. Важно, чтобы из-за неполных или некорректных формулировок обслуживающие организации не оказались в итоге крайними и не были бы вынуждены устранять недоработки, допущенные ими еще на этапе проектирования. Обязательно нужно на объектах при плановых ТО проводить тестирование всех систем в комплексе для проверки их функционирования по заданным проектом алгоритмам.

  • Цель данного материала – рассмотреть основные аспекты законодательного регулирования осуществления федерального государственного контроля (надзора) за деятельностью юридических лиц и индивидуальных предпринимателей, и особенно за деятельностью юридических лиц с особыми уставными задачами и подразделений ведомственной охраны.

(световые, тепловые, дымовые) способны только на сообщение: «Горим! Пора тушить очаг возгорания!» Но другого и быть не может, поскольку работа их датчиков основана на таких физических принципах, как детектирование света, тепловыделения или задымленности. Получить сообщение «Внимание! Здесь возможно возгорание!» можно только установив постоянный контроль над газодинамическим составом воздушной среды помещений. Такой контроль позволит принять адекватные меры по предупреждению пожара и его ликвидации в зародыше. Этим и интересен разработанный специалистами НПП «Гамма» способ раннего обнаружения пожара с использованием полупроводниковых химических сенсоров, который был отмечен дипломами и золотыми медалями на международных выставках «Брюссель-Эврика 2000» и «Женева 2001».

Так, достоверный способ предупреждения пожара на ранней стадии, предшествующей возгоранию,— это контроль химического состава воздуха, который резко изменяется из-за термического разложения перегретых или начинающих тлеть горючих материалов. На этой стадии еще эффективны превентивные меры. Например, в случае перегрева электроприборов (утюга или электрокамина) они могут быть вовремя автоматически отключены по сигналу с газового датчика.

Состав выделяющихся при горении газов

Ряд газов, выделяющихся на начальной стадии горения (тления), определяются составом именно тех материалов, которые участвуют в этом процессе. Однако в большинстве случаев можно уверенно выделить и основные характерные газовые компоненты. Подобные исследования проводились в Институте пожарной безопасности (г.Балашиха Московской обл.) с использованием стандартной камеры объемом 60 м 3 для имитации пожара. Состав выделяющихся при горении газов определялся при помощи хроматографии. Эксперименты дали следующие результаты.

Водород (Н 2) — основной компонент выделяемых газов на стадии тления в результате пиролиза материалов, используемых в строительстве, таких как древесина, текстиль, синтетические материалы. На начальной стадии пожара, в процессе тления, концентрация водорода составляет 0,001-0,002%. В дальнейшем происходит рост содержания ароматических углеводородов на фоне присутствия недоокисленного углерода — оксида углерода (СО) — 0,002-0,008%. При появлении пламени растет концентрация диоксида углерода (СО 2) до уровня 0,1%, что соответствует сгоранию 40-50 г древесины или бумаги в закрытом помещении объемом 60 м 3 и эквивалентно 10 выкуренным сигаретам. Такой уровень СО2 достигается также в результате присутствия в помещении двух человек в течение 1 ч.

Эксперименты показали, что порог обнаружения системы раннего предупреждения пожара в атмосферном воздухе при нормальных условиях должен находиться для большинства газов, в том числе водорода и оксида углерода, на уровне 0,002%. Желательно, чтобы быстродействие системы было не хуже 10 с. Такой вывод можно рассматривать как основополагающий для разработок целого ряда предупреждающих пожарных газовых сигнализаторов.

Существующие средства газоанализа экологической направленности (в том числе на электрохимических, термокаталитических и других сенсорах) слишком дороги для такого использования. Внедрение в производство пожарных извещателей на основе полупроводниковых химических сенсоров, изготавливаемых по групповой технологии, позволит резко снизить стоимость газовых сенсоров.

Полупроводниковые газовые датчики

Принцип действия полупроводниковых газовых сенсоров основан на изменении электропроводности полупроводникового газочувствительного слоя при химической адсорбции газов на его поверхности. Это обстоятельство позволяет эффективно использовать их в приборах пожарной сигнализации как альтернативные устройства традиционным оптическим, тепловым и дымовым сигнализаторам, в том числе содержащим радиоактивный плутоний. А высокую чувствительность (для водорода — от 0,000001%!), селективность, быстродействие и дешевизну полупроводниковых газовых датчиков следует рассматривать как основные их преимущества перед другими типами пожарных извещателей. Используемые в них физико-химические принципы детектирования сигналов сочетаются с современными микроэлектронными технологиями, что обусловливает низкую стоимость изделий при массовом производстве и высокие технические и энергосберегающие характеристики.

Для того, чтобы физико-химические процессы протекали на поверхности чувствительного слоя достаточно быстро, обеспечивая быстродействие на уровне нескольких секунд, сенсор периодически разогревается до температуры 450-500°С, что активизирует его поверхность. В качестве чувствительных полупроводниковых слоев обычно используют мелкодисперсные оксиды металлов (SnO 2 , ZnO, In 2 O 3 и др.) с легирующими добавками Pl, Pd и др. Благодаря структурной пористости формируемых материалов, достигаемой с помощью некоторых технологических приемов, их удельная поверхность — около 30 м 2 /г. Нагревателем служит резистивный слой, выполненный из инертных материалов (Pl, RuO 2 , Au и др.) и электрически изолированный от полупроводникового слоя.

При кажущейся простоте такие методы формирования сконцентрировали в себе все последние достижения материаловедения и микроэлектронной технологии. Это обусловило высокую конкурентоспособность сенсора, который может работать несколько лет, периодически находясь в «стрессовом» состоянии при разогреве до 500°С, сохраняет при этом высокие эксплутационные характеристики, чувствительность, стабильность, селективность и потребляет низкую мощность (в среднем несколько десятков милливатт). Промышленное производство полупроводниковых сенсоров широко развито во всем мире, но основная доля мирового рынка приходится на японские компании. Признанный лидер в этой области — фирма Figaro с годовым объемом производства сенсоров около 5 млн. шт. и масштабным производством приборов на их основе, включая элементную базу и схемотехнические решения с программируемыми устройствами.

Однако ряд особенностей производства полупроводниковых сенсоров затрудняют его совместимость с традиционной кремниевой технологией в рамках замкнутого цикла. Объясняется это тем, что сенсоры — не столь массовое изделие, как микросхемы, и имеют больший разброс параметров из-за специфики условий работы (зачастую в агрессивной среде). Их производство требует очень специфичного ноу-хау в области физической химии, материаловедения и т.д. Поэтому успех здесь сопутствует крупным специализированным фирмам (например, Microchemical Instrument — европейский филиал Motorola), которые не спешат делиться своими разработками в области высоких технологий. К сожалению, в России и СНГ эта отрасль никогда не была хорошо развита, несмотря на достаточное число исследовательских групп — РНЦ «Курчатовский институт», МГУ, ЛГУ, Воронежский государственный университет, ИОНХ РАН, НИФХИ им. Карпова, Саратовский университет, Новгородский университет и т. д.

Отечественные разработки полупроводниковых сенсоров

Наиболее развитая технология производства полупроводниковых сенсоров предложена в РНЦ «Курчатовский институт». Здесь разработаны малогабаритные полупроводниковые сенсоры для анализа химического состава газов и жидкостей. Они изготавливаются по микроэлектронной технологии и сочетают в себе достоинства микроэлектронных устройств — низкую стоимость при массовом производстве, миниатюрность, низкую потребляемую мощность — с возможностью измерения концентрации газов и жидкостей в широких пределах и с достаточно высокой точностью. Разработанные приборы делятся на две группы: металлооксидные и структурные полупроводниковые сенсоры.

Металлооксидные сенсоры. Изготавливаются по толстопленочной технологии. В качестве подложки в них использован поликристаллический оксид алюминия, на который с двух сторон нанесены нагреватель и металлооксидный газочувствительный слой. Чувствительный элемент помещен в газопроницаемый корпус, удовлетворяющий требованиям взрывопожаробезопасности.

Сенсоры способны определять концентрацию горючих газов (метана, пропана, бутана, водорода и т.д.) в воздухе в интервале от 0,001% до единиц процентов, а также токсичных газов (угарного газа, арсина, фосфина, сероводорода и т.д.) на уровне предельно допустимой концентрации (ПДК). Они могут быть также использованы для одновременного и селективного определения концентрации кислорода и водорода в инертных газах, например для ракетной техники. Для нагрева эти приборы требуют рекордно низкую для своего класса электрическую мощность — менее 150 мВт. Металлооксидные сенсоры предназначены для применения в сигнализаторах утечки газов и системах пожарной сигнализации (как стационарных, так и карманных).

Структурные полупроводниковые сенсоры. Это сенсоры на основе кремниевых структур металл-диэлектрик-полупроводник (МДП), металл-твердый электролит-полупроводник и диоды Шотки.

МДП-структуры с затвором из палладия или платины используются для определения концентрации водорода в воздухе или инертных газах. Порог обнаружения водорода — порядка 0,00001%. Сенсоры успешно применялись для определения концентрации водорода в теплоносителе ядерных реакторов с целью поддержания их безопасности. Структуры с твердым электролитом (трифторид лантана, проводящий по ионам фтора) предназначены для определения концентрации фтора и фторидов (прежде всего фтористого водорода) в воздухе. Работают при комнатной температуре, позволяют определять концентрацию фтора и фтористого водорода на уровне 0,000003%, что составляет примерно 0,1 ПДК. Измерение утечек фтористого водорода особенно важно для определения экологической обстановки в регионах с крупным производством алюминия, полимеров, ядерного топлива.

Подобные структуры, выполненные на основе карбида кремния и работающие при температуре около 500 °С, могут использоваться для измерения концентрации фреонов.

Индикатор оксида углерода и водорода СО-12

Отмеченный на международных выставках способ раннего обнаружения пожара обеспечивает одновременный контроль относительных концентраций в воздухе двух или более газов, таких как ароматические углеводороды, водород, оксид и диоксид углерода. Полученные значения сравниваются с заданными, и в случае их совпадения формируется сигнал тревоги. Контроль и сравнение относительных концентраций газовых компонент проводятся с заданной периодичностью. Возможность ложных срабатываний измерительного устройства при повышении концентрации одного из газов исключена, если нет возгорания.

В качестве измерительного устройства предложен индикатор СО-12, предназначенный для обнаружения в воздушной атмосфере газообразного оксида углерода и водорода в диапазоне их концентраций от 0,001 до 0,01%. Прибор представляет собой девятиуровневый пропорциональный индикатор в виде линейки светодиодов трех цветов — зеленого (диапазон малых концентраций), желтого (средний уровень) и красного (высокий уровень). Каждому диапазону соответствуют три светодиода. При загорании красных светодиодов включается звуковой сигнал, предостерегающий людей об опасности отравления.

Принцип работы индикатора основан на регистрации изменения сопротивления (R) полупроводникового газочувствительного сенсора, температура которого стабилизируется на уровне 120 °С в процессе измерений.

При этом нагревательный элемент включен в обратную связь операционного усилителя — терморегулятора — и периодически, каждые 6 с, отжигается в течение 0,5 с при температуре 450 °С. Далее следует изотермическая релаксация сопротивления R при взаимодействии с угарным газом. Измерение R осуществляется перед следующим отжигом (рис. 3, точка C, далее следует отжиг — О). Процессом измерения и выводом на индикатор данных управляет программируемое устройство.

Его основные технические характеристики:

Индикатор можно эффективно использовать в качестве пожарного сигнального устройства как в жилых помещениях, так и на промышленных объектах. Дачные домики, коттеджи, бани, сауны, гаражи и котельные, предприятия с производством, основанном на использовании открытого огня и термообработки, предприятия горнодобывающей, металлургической и нефтегазоперерабатывающей промышленности и, наконец, автомобильный транспорт — вот далеко не полный список объектов, где индикатор СО-12 может быть полезен.

Подобные пожарные извещатели раннего обнаружения, объединенные в единую сеть и контролирующие газовыделение при тлении материалов перед их возгоранием, при размещении на промышленных объектах позволяют предупредить аварийные ситуации не только на наземных объектах пожарной охраны, но и в подземных сооружениях, угольных разрезах, где в результате перегрева оборудования, транспортирующего уголь, может произойти возгорание угольной пыли. Каждый датчик, имеющий световой и звуковой сигналы оповещения, способен не только информировать о степени загазованности территории, но и предупредить об опасности персонал, находящийся в непосредственной близости к экстремальному месту. Стационарные пожарные датчики, установленные в жилых помещениях, могут предотвратить взрыв бытового газа, отравление угарным газом и возникновение пожара из-за неисправности бытовой техники или грубого нарушения условий ее эксплуатации путем автоматического отключения от сети.

Электроника №4, 2001

Стоимость ущерба от пожара даже в отдельно взятом помещении может достигать внушительных сумм. Например, когда в помещениях находится оборудование, цена которого значительно превышает расходы на устройство пожарной защиты. Традиционные способы тушения огня в этом случае непригодны, поскольку их использование грозит не меньшим ущербом, чем сам пожар.

Именно поэтому растет потребность в системах раннего обнаружения возгорания, которые смогут выявить признаки огня в зачаточной стадии и принять оперативные меры по его предотвращению. Аппаратура раннего обнаружения пожара выполняет свои функции за счет сверхчувствительных датчиков. Это датчики температуры, дыма, а также химические, спектральные (реагирующие на пламя) и оптические. Все они являются частью единой системы, направленной на раннее обнаружение и сверхоперативную локализацию возгорания.

Важнейшую роль здесь играет свойство устройств раннего обнаружения пожара по постоянному мониторингу химического состава воздуха. При горении пластмассы, оргстекла, полимерных материалов состав воздуха резко изменяется, что и должна зафиксировать электроника. Для подобных целей широко применяются полупроводниковые газочувствительные сенсоры, материал которых способен изменять электрическое сопротивление от химического воздействия.

Системы с использованием полупроводников все время совершенствуются, рынок полупроводников постоянно растет, о чем свидетельствуют показатели финансовых рынков. Современные полупроводниковые сенсоры способны уловить минимальные концентрации веществ, выделяемых при горении. В первую очередь это водород, оксид и диоксид углерода, ароматические углеводороды.

На обнаружении первых признаков пожара работа систем пожаротушения только начинается. Аппаратура обнаружения действует четко и быстро, заменяя собой нескольких человек и исключая человеческий фактор при тушении огня. Эти устройства в идеальном случае связаны со всеми инженерными системами здания, которые могут ускорить или замедлить распространение пожара. Система раннего обнаружения при необходимости полностью отключит вентиляцию помещения, в необходимом количестве - элементы электроснабжения, включит тревогу, обеспечит своевременную эвакуацию людей. И самое главное - запустит комплекс пожаротушения.

На самых ранних стадиях потушить огонь намного легче, чем на последующих, и на это может уйти всего несколько минут. Тушение пожара на зачаточных стадиях может производиться с помощью методов, исключающих физическое разрушение объектов, находящихся в помещении. Таким методом является, например, тушение с помощью замены кислорода на негорючий газ. В этом случае сжиженный газ при переходе в летучее состояние понижает температуру в помещении или на конкретном участке, а также подавляет реакцию горения.

Противопожарные двери - неотъемлемая часть любой системы пожарной безопасности. Это - элемент конструкции, препятствующий распространению пожара в соседние помещения в течение определенного времени.

Устройства раннего обнаружения возгорания обязательны в первую очередь для обеспечения безопасности людей. Необходимость их доказана многочисленным и горьким опытом. Пожар - одно из самых непредсказуемых стихийных бедствий, о чем говорит вся история человеческой цивилизации. В наше время этот фактор не стал менее актуальным. Напротив, сегодня даже локальное возгорание может нанести катастрофические убытки, связанные с выходом из строя дорогостояшего оборудования и техники. Именно поэтому выгодно вложить деньги в такую систему раннего обнаружения.

УДК 614.842.4

СОВРЕМЕННЫЕ СИСТЕМЫ РАННЕГО ОБНАРУЖЕНИЯ ПОЖАРА

М. В. Савин, В. Л. Здор

Всероссийский научно-исследовательский институт противопожарной обороны МЧС России

Дается краткая характеристика различных типов пожарных извещателей, их положительных качеств и недостатков. Подробно рассматриваются устройство и преимущества аспи-рационных пожарных извещателей.

Одним из самых важных элементов системы пожарной сигнализации являются пожарные из-вещатели. Они подразделяются в зависимости от того типа физического фактора пожара, на который реагируют, и, соответственно, классифицируются на тепловые, дымовые, газовые, извещатели пламени, комбинированные. Кроме того, в зависимости от конфигурации измерительной зоны различают пожарные извещатели точечные, многоточечные и линейные. Точечный пожарный извещатель реагирует на фактор пожара, контролируемый вблизи его компактного чувствительного элемента. Многоточечный пожарный извещатель характеризует дискретное расположение точечных чувствительных элементов в измерительной линии. Линейный пожарный извещатель-это извещатель, геометрическая форма зоны контроля которого имеет протяженный участок, то есть контроль окружающей среды проводится на протяжении некоторой линии. У каждого типа пожарных извещателей есть свои преимущества и недостатки. Совокупность этих свойств и определяет область их применения. Но все же для всех этих извещателей характерен один общий недостаток - это так называемое "пассивное" сканирование защищаемой площади. Ведь они фактически ждут, пока факторы, сопровождающие пожар (дым, повышенная температура), сами окажутся в поле обнаружения извещателя. В частности, дымовой пожарный извещатель только тогда выдаст тревожное извещение, когда дым попадет в камеру извещателя, что существенно зависит от наличия воздушных потоков в защищаемом помещении.

В настоящее время на нашем рынке стали активно внедряться аспирационные пожарные извещате-ли. Они представляют собой собственно извеща-тель, состоящий из чувствительного элемента и схемы обработки сигналов, который может быть расположен как внутри, так и вне защищаемого помещения, и систему заборных трубопроводов, по которым транспортируются пробы воздуха из за-

щищаемого помещения к чувствительному элементу аспирационного пожарного извещателя.

Аспирационные пожарные извещатели имеют несколько основных преимуществ перед традиционными системами обнаружения дыма. В первую очередь, обеспечение доставки проб воздуха к чувствительному элементу независимо от наличия принудительных и естественных воздушных потоков в защищаемом помещении.

Аспирационные пожарные извещатели обеспечивают так называемое кумулятивное обнаружение. Когда дым распространяется и рассеивается по всему помещению, его концентрация уменьшается и становится все труднее обнаружить его традиционными средствами. Кумулятивное обнаружение относится к способности забирать воздух из многих точек в пределах защищаемой зоны в один изве-щатель. Аспирационные пожарные извещатели непрерывно отбирают небольшие количества проб воздуха по всей защищаемой зоне и переносят их к чувствительному элементу аспирационного пожарного извещателя.

Одной из сервисных функций современных ас-пирационных пожарных извещателей является способность непрерывно следить за общим фоном запыленности воздуха, прогнозируя и подстраивая свою работу в соответствии с реалиями защищаемого объекта. Это еще одно из возможных применений данного изделия - мониторинг чистоты воздуха в помещении. Кроме этого, большинство извещателей постоянно анализируют возможные неисправности в своей работе (загрязнение в трубках, засорение дымовсасывающих отверстий и т.д.).

По существу аспирационные пожарные извеща-тели - это интеллектуальные пожарные микростанции. Они так же, как и обычные системы пожарной сигнализации, имеют в своем составе стационарное и периферийное оборудование. В качестве периферийного оборудования выступают как система заборных трубопроводов с дымовсасы-вающими капиллярными трубками, так и различ-

ПОЖАРОВЗРЫВОБЕЗОПАСНОСТЬ 6"2003

ные модули (рис. 1), предназначенные для выполнения таких функций, как обеспечение визуальной индикации состояния аспирационного извещателя в отдельных зонах, настройка, проверка и сервисное обслуживание, а также программирование какого-либо отдельного извещателя и всей сети в целом.

В качестве чувствительного элемента аспира-ционных пожарных извещателей могут использоваться как обычные пожарные извещатели (дымовые или газовые) (рис. 2), так и интеллектуальные системы обнаружения дыма по методу сканирующей лазерной технологии (рис. 3).

Разберем принцип действия аспирационных пожарных извещателей на примере извещателей серии VESDA фирмы "Vision Fire & Security". Воздух из защищаемого помещения непрерывно всасывается в извещатель при помощи высокоэффективного вентилятора (аспиратора) через систему заборных трубопроводов (рис. 4). Проба этого воздуха пропускается через фильтры. Сначала удаляется пыль и загрязнение до того, как проба поступает в оптическую камеру обнаружения дыма. Затем, на второй ступени очистки (если она имеется), обеспечивается дополнительная подача порции чистого

воздуха для предотвращения загрязнения оптических поверхностей и обеспечения стабильности калибровки и длительного срока службы аспирационного извещателя. После фильтра проба воздуха поступает в измерительную камеру, в которой происходит распознавание наличия дыма. Затем сигнал обрабатывается и индицируется посредством линейного шкального индикатора, пороговых индикаторов сигнала тревоги или графического дисплея (в зависимости от модификации извещателя). Далее аспирационные извещатели через реле или интерфейс могут передавать эту информацию на приборы приемно-контрольный пожарный, пожарный управления, на пульт централизованного наблюдения или другие внешние устройства.

Возникающие загорания проходят обычно четыре стадии: тление, видимый дым, пламя и пожар. На рис. 5 показано, как протекает развитие загорания во времени. Обратите внимание на то, что продолжительность первой стадии - тления - обеспечивает больше времени для обнаружения потенциального пожара и, соответственно, борьбы с его распространением, прежде чем он причинит значительный ущерб и разрушения. Традиционные дымовые пожарные извещатели зачастую обнаруживают дым, когда пожар уже начался, что приводит к

t-я стадия: 2-я стадия:

Тлеющий пожар Видимый

1 Традиционные

3-я стадия Пламя

4-я стадия! Пожар I

VESDA Пожар 2 (Включается система пожаротушения)

значительному материальному ущербу. Ряд аспира-ционных пожарных извещателей благодаря своим особенностям позволяет обнаружить пожар на стадии тления и распознать процесс его распространения.

Область применения аспирационных пожарных извещателей достаточно широка:

На складах;

В универсамах широкого профиля, которые содержат различные объемы товарно-материальных запасов: от сырьевых производственных материалов и оптовых товаров до розничных предметов потребления и готовой продукции;

В узлах электронной обработки данных, таких как центры обработки данных Internet, управления сетью и подобные системы, которые представляют значительную опасность пожара из-за их большой потребности в электроэнергии и плотности электронных схем;

На участках с чистыми производственными помещениями, например такими, как установки по производству полупроводников, научно-исследовательские и опытно-конструкторские организации, фармацевтические производственные мощности, представляющие значительную опасность пожара из-за постоянного снабжения воспламеняющимися материалами;

В энергетической промышленности, которая использует для выработки электроэнергии различные типы топлива.

Аспирационные пожарные извещатели с системой фильтрации воздуха имеют низкую вероят-

ность подачи ложных сигналов тревоги, что позволяет уменьшить значительный материальный ущерб, который мог бы возникнуть при ложном пуске систем пожаротушения, остановке технологического процесса и т.п.

В то же время аспирационные пожарные извещатели можно использовать в зданиях и помещениях с повышенными требованиями к эстетике - это современные офисы, зрительные, репетиционные, лекционные, читальные и конференц-залы, комнаты заседаний, кулуарные, фойе, холлы, коридоры, гардеробные, а также исторические здания, соборы, музеи, выставки, галереи искусств, книгохранилища, архивы.

Аспирационные пожарные извещатели возможно использовать:

В экстремальных условиях: при низких температурах, механических перегрузках и жестких условиях эксплуатации, так как система заборного трубопровода и непосредственно чувствительный элемент извещателя могут быть установлены в разных помещениях;

Они могут работать как самостоятельно в качестве индивидуальных средств, так и в составе автоматических систем сбора и обработки информации об обстановке и передачи сигналов на внешние устройства различным способом (по проводам, радиоканалу и др.);

В качестве эффективных средств формирования стартового сигнала для запуска систем пожаротушения благодаря наличию нескольких уровней сигналов тревоги и настраиваемому диапазону чувствительности. При этом для осуществления алгоритма пуска средств пожаротушения предполагается наличие двух отдельных точек детектирования, которые необходимы для срабатывания системы, то есть наличие двух отдельных аспирационных пожарных извещателей. Таким образом, дымовые пожарные извещатели

аспирационного типа являются серьезным дополнением в комплексе мер по обеспечению безопасности помещений наряду с традиционными пожарными извещателями, ни в коем случае не уменьшая значимости и возможностей последних.

ПOЖAPOBЗPЫBOБEЗOПACHOCTЬ 6"2003

Компания-производитель "Vision Fire & Security" "Securiton-Hekatron" "ESSER"

Характеристика Наименование аспирационного пожарного извещателя

VESDA Laser VESDA Laser PLUS SCANNER VESDA Laser COMPACT RAS ASD 515-1 RAS ASD XL ARS 70 LRS-S 700

Питание, В 18...30 18.30 18.30 20.28 18.38 24.30 18.30

Температура эксплуатации, °С -20...+60 -20...+60 -20...+60 0...+60 0...+52 0...+50 -10.+60

Чувствительность, % 0,005.20 0,005.20 0,005.20 Определяется пожарным извещателем 0,005.1 Определяется пожарным извещателем 0,005.20

Технология определения дыма Лазерная Лазерная Лазерная Оптический дымовой пожарный изве-щатель Лазерная Оптический дымовой пожарный изве-щатель Лазерная

Максимальная длина трубы в луче, м 200 200 50 60 60 80 200

Диаметр трубы, мм 25 25 25 25/40 25/40 25 25

Диаметр отверстия, мм 2.6 2.6 2.6 3.4 3.4 2.6 2.6

Максимальная защищаемая площадь, м2 2000 2000 500 800 800 1200 1600

Количество фильтров, шт. 2 2 2 Нет Нет 1 2

Количество уровней пожарной опасности, шт. 4 4 2 1 4 1 4

Габариты, мм 350 х 225 х 125 350 х 225 х 125 225 х 225 х 85 285 х 360 х 126 317 х 225 х 105 285 х 360 х 126 225 х 225 х 95

Вес, кг 4,0 4,0 1,9 2,7 3,4 2,7 3,5

Работа в сети VESDANet (99 устройств) VESDANet (99 устройств) VESDANet (99 устройств) Нет LaserNet (127 устройств) Нет VESDANet (99 устройств)

Режим автокомпенсации AutoLearntm программируется AutoLearntm программируется AutoLearntm программируется Нет Есть Нет Программируется

На российском рынке в настоящее время сертифицированы аспирационные пожарные извещате-ли следующих ведущих западных компаний:

"Vision Fire & Security" (Австралия) - извеща-тели пожарные дымовые аспирационные серии VESDA Laser PLUS (рис. 6), VESDA Laser SCANNER (рис. 7), VESDA Laser COMPACT (рис. 8);

"Schrack Seconet AG" (Австрия) - извещатели пожарные дымовые аспирационные RAS ASD

515-1 (FG030140), производство "Securiton-Hekatron", Германия (рис. 9);

"Fittich AG" (Швейцария) - извещатели пожарные дымовые аспирационные RAS ASD 515-1, производство "Securiton-Hekatron", Германия;

"MINIMAX GmbH" (Германия) - извещатели пожарные аспирационные АМХ 4002.

В таблице представлены сравнительные характеристики некоторых типов аспирационных пожарных извещателей.