Как пользоваться макетной платой для монтажа без пайки. Травильный раствор на основе перекиси водорода и соляной кислоты

Печатная плата – это диэлектрическое основание, на поверхности и в объеме которого нанесены токопроводящие дорожки в соответствии с электрической схемой. Печатная плата предназначена для механического крепления и электрического соединения между собой методом пайки выводов, установленных на нее электронных и электротехнических изделий.

Операции по вырезанию заготовки из стеклотекстолита, сверлению отверстий и травление печатной платы для получения токоведущих дорожек в независимости от способа нанесения рисунка на печатную плату выполняются по одинаковой технологии.

Технология ручного способа нанесения
дорожек печатной платы

Подготовка шаблона

Бумага, на которой рисуется разводка печатной платы обычно тонкая и для более точного сверления отверстий, особенно в случае использования ручной самодельной дрели, чтобы сверло не вело в сторону, требуется сделать ее более плотной. Для этого нужно приклеить рисунок печатной платы на более плотную бумагу или тонкий плотный картон с помощь любого клея, например ПВА или Момент.

Вырезание заготовки

Подбирается заготовка фольгированного стеклотекстолита подходящего размера, шаблон печатной платы прикладывается к заготовке и обрисовывается по периметру маркером, мягким простым карандашом или нанесением риски острым предметом.

Далее стеклотекстолит режется по нанесенным линиям с помощью ножниц по металлу или выпиливается ножовкой по металлу. Ножницами отрезать быстрее, и нет пыли. Но надо учесть, что при резке ножницами стеклотекстолит сильно изгибается, что несколько ухудшает прочность приклейки медной фольги и если потребуется перепайка элементов, то дорожки могут отслоиться. Поэтому если плата большая и с очень тонкими дорожками, то лучше отрезать с помощью ножовки по металлу.

Приклеивается шаблон рисунка печатной платы на вырезанную заготовку с помощью клея Момент, четыре капли которого наносятся по углам заготовки.

Так как клей схватывается всего за несколько минут, то сразу можно приступать к сверлению отверстий под радиодетали.

Сверление отверстий

Сверлить отверстия лучше всего с помощью специального мини сверлильного станка твердосплавным сверлом диаметром 0,7-0,8 мм. Если мини сверлильного станка в наличии нет, то можно просверлить отверстия маломощной дрелью простым сверлом. Но при работе универсальной ручной дрелью количество переломанных сверл будет зависеть от твердости Вашей руки. Одним сверлом точно не обойдетесь.

Если сверло зажать не удается, то можно его хвостовик обернуть несколькими слоями бумаги или одним слоем наждачной шкурки. Можно на хвостовик намотать плотно виток к витку тонкой металлической проволочки.

После окончания сверления проверяется, все ли просверлены отверстия. Это хорошо видно, если посмотреть на печатную плату на просвет. Как видно, пропущенных отверстий нет.

Нанесение топографического рисунка

Для того, чтобы места фольги на стеклотекстолите, которые будут токопроводящими дорожками, защитить при травлении от разрушения, их необходимо покрыть маской, устойчивой к растворению в водном растворе. Для удобства рисования дорожек, их лучше предварительно наметить с помощью мягкого простого карандаша или маркера.

Перед нанесением разметки нужно обязательно удалить следы клея Момент, которым приклеивался шаблон печатной платы. Так как клей не сильно затвердел, то его легко можно удалить, скатав пальцем. Поверхность фольги так же нужно обязательно обезжирить с помощью ветоши любым средством, например ацетоном или уайт-спиртом (так называется очищенный бензин), можно и любым моющим средством для мытья посуды, например Ферри.


После разметки дорожек печатной платы можно приступать к нанесению их рисунка. Для рисования дорожек хорошо подходит любая водостойкая эмаль, например алкидная эмаль серии ПФ, разведенная до подходящей консистенции растворителем уайт-спиртом. Рисовать дорожки можно разными инструментами – стеклянным или металлическим рейсфедером, медицинской иглой и даже зубочисткой. В этой статье я расскажу, как рисовать дорожки печатных плат с помощью чертежного рейсфедера и балеринки, которые предназначены для черчения на бумаге тушью.


Раньше компьютеров не было и все чертежи чертили простыми карандашами на ватмане и затем переводили тушью на кальку, с которой с помощью копировальных аппаратов делали копии.

Нанесение рисунка начинают с контактных площадок, которые рисуют балеринкой. Для этого нужно отрегулировать зазор раздвижных губок рейсфедера балеринки до требуемой ширины линии и для установки диаметра круга выполнить регулировку вторым винтом отодвинув рейсфедер от оси вращения.

Далее рейсфедер балеринки на длину 5-10 мм наполняется с помощью кисточки краской. Для нанесения защитного слоя на печатную плату лучше всего подходит краска марки ПФ или ГФ, так как она медленно высыхает и позволяет спокойно работать. Краску марки НЦ тоже можно применять, но работать с ней сложно, так как она быстро сохнет. Краска должна хорошо ложиться и не растекаться. Перед рисованием красу нужно развести до жидкой консистенции, добавляя в нее понемногу при интенсивном перемешивании подходящий растворитель и пробуя рисовать на обрезках стеклотекстолита. Для работы с краской удобнее всего ее налить во флакон от маникюрного лака, в закрутке которого установлена кисточка, устойчивая к растворителям.

После регулировки рейсфедера балеринки и получения требуемых параметров линий можно приступить к нанесению контактных площадок. Для этого острая часть оси вставляется в отверстие и основание балеринки проворачивается по кругу.


При правильной настройке рейсфедера и нужной консистенции краски вокруг отверстий на печатной плате получаются окружности идеально круглой формы. Когда балеринка начинает плохо рисовать, из зазора рейсфедера тканью удаляются остатки подсохшей краски и рейсфедер заполняется свежей. чтобы обрисовать все отверстия на этой печатной плате окружностями понадобилось всего две заправки рейсфедера и не более двух минут времени.

Когда круглые контактные площадки на плате нарисованы, можно приступать к рисованию токопроводящих дорожек с помощью ручного рейсфедера. Подготовка и регулировка ручного рейсфедера не отличается от подготовки балеринки.

Единственное, что дополнительно понадобится, так это плоская линейка, с приклеенными на одной из ее сторон по краям кусочками резины, толщиной 2,5-3 мм, чтобы линейка при работе не скользила и стеклотекстолит, не касаясь линейки, мог свободно проходить под ней. Лучше всего подходит в качестве линейки деревянный треугольник, он устойчив и одновременно может служить при рисовании печатной платы опорой для руки.

Чтобы печатная плата при рисовании дорожек не скользила, желательно ее разместить на лист наждачной бумаги, представляющий собой два склепных между собой бумажными сторонами наждачных листа.

Если при рисовании дорожек и окружностей они соприкоснулись, то не стоит принимать никаких мер. Нужно дать краске на печатной плате подсохнуть до состояния, когда она не будет пачкать при прикосновении и с помощью острия ножа удалить лишнюю часть рисунка. Чтобы краска быстрее высохла плату нужно расположить в теплом месте, например в зимнее время на батарею отопления. В летнее время года - под лучи солнца.

Когда рисунок на печатной плате полностью нанесен и исправлены все дефекты можно переходить к ее травлению.

Технология нанесения рисунка печатной платы
с помощью лазерного принтера

При печати на лазерном принтере происходит перенос за счет электростатики образованного тонером изображения с фото барабана, на котором лазерный луч нарисовал изображение, на бумажный носитель. Тонер удерживается на бумаге, сохраняя изображение, только за счет электростатики. Для закрепления тонера бумага прокатывается между валиками, один из которых является термопечкой, разогретой до температуры 180-220°C. Тонер расплавляется и проникает в текстуру бумаги. После остывания тонер отвердевает и прочно удерживается на бумаге. Если бумагу опять нагреть до 180-220°C, то тонер опять станет жидким. Это свойство тонера и используется для переноса изображения токоведущих дорожек на печатную плату в домашних условиях.

После того, как файл с рисуночком печатной платы готов, необходимо его распечатать с помощью лазерного принтера на бумажный носитель. Обратите внимание, изображение рисунка печатной платы для данной технологии должно иметь вид со стороны установки деталей! Струйный принтер для этих целей не подходит, так как работает на другом принципе.

Подготовка бумажного шаблона для переноса рисунка на печатную плату

Если напечатать рисунок печатной платы на обыкновенной бумаге для офисной техники, то из-за пористой ее структуры, тонер глубоко проникнет в тело бумаги и при переносе тонера на печатную плату, большая часть его останется в бумаге. В дополнение будут сложности с удалением бумаги с печатной платы. Придется ее долго размачивать в воде. Поэтому для подготовки фотошаблона необходима бумага, не имеющая пористую структуру, например фотобумага, подложка от самоклеящихся пленок и этикеток, калька, страницы от глянцевых журналов.

В качестве бумаги для печати рисунка печатной платы я использую кальку из старых запасов. Калька очень тонкая и печатать шаблон непосредственно на ней невозможно, она в принтере заминается. Для решения этой проблемы, нужно перед печатью на кусок кальки требуемого размера по углам нанести по капельке любого клея и приклеить на лист офисной бумаги А4.

Такой прием позволяет распечатывать рисунок печатной платы даже на самой тонкой бумаге или пленке. Для того, чтобы толщина тонера рисунка была максимальной, перед печатью, нужно выполнить настройку «Свойств принтера», отключив режим экономной печати, а если такая функция не доступна, то выбрать самый грубый тип бумаги, например картон или что то подобное. Вполне возможно с первого раза хороший отпечаток не получится, и придется немного поэкспериментировать, подобрав наилучший режим печати лазерного принтера. В полученном отпечатке рисунка дорожки и контактные площадки печатной платы должны быть плотными без пропусков и смазывания, так как ретушь на данном технологическом этапе бесполезна.

Осталось обрезать кальку по контуру и шаблон для изготовления печатной платы будет готов и можно приступать к следующему шагу, переносу изображения на стеклотекстолит.

Перенос рисунка с бумаги на стеклотекстолит

Перенос рисунка печатной платы является самым ответственным этапом. Суть технологии проста, бумага, стороной напечатанного рисунка дорожек печатной платы прикладывается к медной фольге стеклотекстолита и с большим усилием прижимается. Далее этот бутерброд разогревается до температуры 180-220°C и затем охлаждается до комнатной. Бумага отдирается, а рисунок остается на печатной плате.

Некоторые умельцы предлагают переносить рисунок с бумаги на печатную плату, используя электроутюг. Я пробовал такой способ, но результат получался нестабильным. Сложно обеспечить одновременно нагрев тонера до нужной температуры и равномерный прижим бумаги ко всей поверхности печатной платы при затвердевании тонера. В результате рисунок переносится не полностью и остаются пробелы в рисунке дорожек печатной платы. Возможно, утюг не достаточно нагревался, хотя регулятор был выставлен на максимальный нагрев утюга. Вскрывать утюг и перенастраивать терморегулятор не хотелось. Поэтому я воспользовался другой технологией, менее трудоемкой и обеспечивающей сто процентный результат.

На вырезанную в размер печатной платы и обезжиренную ацетоном заготовку фольгированного стеклотекстолита приклеил по углам кальку с напечатанным на ней рисунком. На кальку сверху положил, для более равномерного прижима, пяток листиков офисной бумаги. Полученный пакет положил на лист фанеры и сверху накрыл листом такого же размера. Весь этот бутерброд зажал с максимальной силой в струбцинах.


Осталось нагреть сделанный бутерброд до температуры 200°C и остудить. Для нагрева идеально подходит электродуховка с регулятором температуры. Достаточно поместить сотворенную конструкцию в шкаф, дождаться набора заданной температуры и через полчаса извлечь плату для остывания.


Если электродуховки в распоряжении нет, то можно воспользоваться и газовой духовкой, отрегулировав температуру ручкой подачи газа по встроенному термометру. Если термометра нет или он неисправен, то могут помочь женщины, подойдет положение ручки регулятора, при котором пекут пироги.


Так как концы фанеры покоробило, на всякий случай зажал их дополнительными струбцинами. чтобы избежать подобного явления, лучше печатную плату зажимать между металлическими листами толщиной 5-6 мм. Можно просверлить в их углах отверстия и зажимать печатные платы, стягивать пластины с помощью винтов с гайками. М10 будет достаточно.

Через полчаса конструкция остыла достаточно, чтобы тонер затвердел, плату можно извлекать. При первом же взгляде на извлеченную печатную плату становится понятно, что тонер перешел с кальки на плату отлично. Калька плотно и равномерно прилегала по линиям печатных дорожек, кольцам контактных площадок и буквам маркировки.

Калька легко оторвалась практически от всех дорожек печатной платы, остатки кальки были удалены с помощью влажной ткани. Но все, же не обошлось без пробелов в нескольких местах на печатных дорожках. Такое может случиться в результате неравномерности печати принтера или оставшейся грязи или коррозии на фольге стеклотекстолита. Пробелы можно закрасить любой водостойкой краской, маникюрным лаком или заретушировать маркером.

Для проверки пригодности маркера для ретуши печатной платы, нужно нарисовать ним на бумаге линии и бумагу смочить водой. Если линии не расплывутся, значит, маркер для ретуши подходит.


Травить печатную плату в домашних условиях лучше всего в растворе хлорного железа или перекиси водорода с лимонной кислотой. После травления тонер с печатных дорожек легко удаляется тампоном, смоченным в ацетоне.

Затем сверлятся отверстия, лудятся токопроводящие дорожки и контактные площадки, запаиваются радиоэлементы.


Такой вид приняла печатная плата с установленными на ней радиодеталями. Получился блок питания и коммутации для электронной системы, дополняющий обыкновенный унитаз функцией биде .

Травление печатной платы

Для удаления медной фольги с незащищенных участков фольгированного стеклотекстолита при изготовлении печатных плат в домашних условиях радиолюбители обычно используют химический способ. Печатная плата помещается в травильный раствор и за счет химической реакции медь, незащищенная маской, растворяется.

Рецепты травильных растворов

В зависимости от доступности компонентов радиолюбители применяют один из растворов, приведенных в таблице ниже. Травильные растворы расположены в порядке популярности их применения радиолюбителями в домашних условиях.

Наименование раствора Состав Количество Технология приготовления Достоинства Недостатки
Перекись водорода плюс лимонная кислота Перекись водорода (H 2 O 2) 100 мл В 3% растворе перекиси водорода растворить лимонную кислоту и поваренную соль Доступность компонентов, высокая скорость травления, безопасность Не хранится
Лимонная кислота (C 6 H 8 O 7) 30 г
Поваренная соль (NaCl) 5 г
Водный раствор хлорного железа Вода (H 2 O) 300 мл В теплой воде растворить хлорное железо Достаточная скорость травления, повторное использование Невысокая доступность хлорного железа
Хлорное железо (FeCl 3) 100 г
Перекись водорода плюс соляная кислота Перекись водорода (H 2 O 2) 200 мл В 3% раствор перекиси водорода влить 10% соляную кислоту Высокая скорость травления, повторное использование Требуется высокая аккуратность
Соляная кислота (HCl) 200 мл
Водный раствор медного купороса Вода (H 2 O) 500 мл В горячей воде (50-80°С) растворить поваренную соль, а затем медный купорос Доступность компонентов Ядовитость медного купороса и медленное травление, до 4 часов
Медный купорос (CuSO 4) 50 г
Поваренная соль (NaCl) 100 г

Травить печатные платы в металлической посуде не допускается . Для этого нужно использовать емкость из стекла, керамики или пластика. Утилизировать отработанный травильный раствор допускается в канализацию.

Травильный раствор из перекиси водорода и лимонной кислоты

Раствор на основе перекиси водорода с растворенной в ней лимонной кислотой является самым безопасным, доступным и быстро работающим. Из всех перечисленных растворов по всем критериям это лучший.


Перекись водорода можно приобрести в любой аптеке. Продается в виде жидкого 3% раствора или таблеток под названием гидроперит. Для получения жидкого 3% раствора перекиси водорода из гидроперита нужно в 100 мл воды растворить 6 таблеток весом 1,5 грамма.

Лимонная кислота в виде кристаллов продается в любом продуктовом магазине, расфасованная в пакетиках весом 30 или 50 грамм. Поваренная соль найдется в любом доме. 100 мл травильного раствора хватит на удаление медной фольги толщиной 35 мкм с печатной платы площадью 100 см 2 . Отработанный раствор не хранится и повторному использованию не подлежит. Кстати, лимонную кислоту можно заменить уксусной, но из-за ее едкого запаха травить печатную плату придется на открытом воздухе.

Травильный раствор на основе хлорного железа

Вторым по популярности травильным раствором является водный раствор хлорного железа. Ранее он был самым популярным, так как на любом промышленном предприятии хлорное железо было легко достать.

Травильный раствор не требователен к температуре, травит достаточно быстро, но скорость травления снижается по мере расходования хлорного железа в растворе.


Хлорное железо очень гигроскопично и поэтому из воздуха быстро впитывает воду. В результате на дне банки появляется желтая жидкость. Это не влияет на качество компонента и такое хлорное железо пригодно для приготовления травильного раствора.

Если использованный раствор хлорного железа хранить в герметичной таре, то его можно использовать многократно. Подлежит регенерации, достаточно в раствор насыпать железных гвоздей (они сразу покроются рыхлым слоем меди). При попадании на любые поверхности оставляет трудноудаляемые желтые пятна. В настоящее время раствор хлорного железа для изготовления печатных плат применяют реже в связи с его дороговизной.

Травильный раствор на основе перекиси водорода и соляной кислоты

Отличный травильный раствор, обеспечивает высокую скорость травления. Соляную кислоту при интенсивном помешивании вливают в 3% водный раствор перекиси водорода тоненькой струйкой. Вливать перекись водорода в кислоту недопустимо! Но из-за наличия в травильном растворе соляной кислоты при травлении платы нужно соблюдать большую осторожность, так как раствор разъедает кожу рук и портит все, на что попадает. По этой причине травильный раствор с соляной кислотой в домашних условиях использовать не рекомендуется.

Травильный раствор на основе медного купороса

Метод изготовления печатных плат с применение медного купороса обычно используют в случае невозможности изготовления травильного растворов на основе других компонентов из-за их недоступности. Медный купорос является ядохимикатом и широко применяется для борьбы с вредителями в сельском хозяйстве. В дополнение время травления печатной платы составляет до 4 часов, при этом необходимо поддерживать температуру раствора 50-80°С и обеспечить постоянную смену раствора у стравливаемой поверхности.

Технология травления печатных плат

Для травления платы в любом из вышеперечисленных травильных растворов подойдет стеклянная, керамическая или пластиковая посуда, например от молочных продуктов питания. Если под рукой подходящего размера емкости не оказалось, то можно взять любую коробку из плотной бумаги или картона подходящего размера и выстелить ее внутренность полиэтиленовой пленкой. В емкость наливается травильный раствор и на его поверхность аккуратно рисунком вниз кладется печатная плата. За счет сил поверхностного натяжения жидкости и небольшого веса плата будет плавать.

Для удобства к центру платы клеем момент можно приклеить пробку от пластиковой бутылки. Пробка одновременно будет служить ручкой и поплавком. Но тут есть опасность, что на плате образуются пузырьки воздуха и в этих местах медь не вытравится.


Чтобы обеспечить равномерное вытравливание меди можно положить печатную плату на дно емкости вверх рисунком и периодически покачивать ванночку рукой. Через некоторое время, в зависимости от травильного раствора, начнут появляться участки без меди, а затем медь растворится полностью на всей поверхности печатной платы.


После окончательного растворения меди в травильном растворе печатную плату извлекают из ванночки и тщательно промывают под струей проточной воды. Тонер удаляется с дорожек ветошью, смоченной в ацетоне, а краска хорошо удаляется ветошью, смоченной в растворителе, который добавлялся в краску для получения нужной ее консистенции.

Подготовка печатной платы к монтажу радиодеталей

Следующий шаг, это подготовка печатной платы к монтажу радиоэлементов. После снятия с платы краски, дорожки нужно обработать круговыми движениями мелкой наждачной бумагой. Увлекаться не нужно, потому что медные дорожки тонкие и можно легко их сточить. Достаточно всего нескольких проходов абразивом со слабым прижимом.


Далее токоведущие дорожки и контактные площадки печатной платы покрываются спирто-канифольным флюсом и лудятся мягким припоем эклектическим паяльником. чтобы отверстия на печатной плате, не затягивались припоем, его на жало паяльника нужно брать немного.


После завершения изготовления печатной платы, останется только вставить в предназначенные позиции радиодетали и запаять их выводы к площадкам. Перед пайкой ножки деталей нужно обязательно смочить спирто-канифольным флюсом. Если ножки радиодеталей длинные, то их нужно перед пайкой обрезать бокорезами до длины выступания над поверхностью печатной платы 1-1,5 мм. После окончания монтажа деталей нужно удалить остатки канифоли с помощью любого растворителя - спирта, уайт-спирта или ацетона. Они все успешно растворяю канифоль.

На воплощение этой простой схемы емкостного реле от разводки дорожек для изготовления печатной платы до создания действующего образца ушло не более пяти часов, гораздо меньше, чем на верстку этой страницы.

Задал конкретный вопрос о том, как же быть с деталями? Ясно, что детали ставятся на плату с одной стороны, а все соединения происходят с другой стороны (вроде бы логично, но как?). Для монтажа накруткой есть готовые платы , но они очень дорогие.

В этой статье я покажу свое решение, как макетировать накруткой, на плате, которую я сделал сам буквально за пару часов.

Первые трудные шаги

В конце первой части я рассказывал о практическом применении и проблемах, с которыми столкнулся. Сейчас я разрабатываю проект синтезатора на ПЛИС и нахожусь в процессе постоянных экспериментов, поэтому схемотехника меняется постоянно. Постоянно требуются перекоммутации. Если внутри ПЛИС достаточно перебросить сигналы на другие выводы, то на плате все происходит не так быстро. Именно для того, чтобы повысить скорость изменения схемы, ее надежность и устойчивость к многократным переделкам, я и взялся за монтаж накруткой. Но не все так гладко.

Мой проект состоит из двух плат: плата, на которой расположена микросхема ПЛИС и плата расширения для нее - синтезатор. Соединяются платы через 40 штырьковый разъем с помощью шлейфа. Дальше всю схему на плате расширения я делал поверхностным монтажом. То есть провода припаивались прямо к штырькам разъема. А для того, чтобы перейти на монтаж накруткой, мне нужно вывести эти 40 линий на сторону платы, где будут штыри. Туда же, для примера, я вывожу, допустим 8 резисторов по 10 КОм. Делаю так, как и решил ранее. Вставляю стойки в плату. Сверху к стойкам припаиваю радиоэлементы. В случае с разъемом пришлось паять провода. Получилось все очень плохо: долго, не надежно, не удобно, не красиво. К тому же стойки очень плохо лудились и паять к ним было очень сложно.

Сверху штырьки для перехода на Wire Wrap. Под ними разьем. И 20 бубликов - провод. Ниже 8 резисторов, припаяных к стойкам

То же - с другой стороны: верхний ряд - стойки разьема, ниже - два ряда стойки к которым припаяны резисторы


Потратив 3 часа и сделав только половину работы всего лишь по разьему, и кое как припаяв 8 резисторов, с грустными мыслями я пошел спать.

Мыслей было две:
1) я не правильно провожу монтаж элементов
2) нужно что-то решить с тем, что стойки плохо лудятся

И перед сном на меня снизошло озарение!

Концепт платы

Готовые платы Wire Wrap обычно сделаны по такому принципу.

С одной стороны устанавливаются элементы


А с другой стороны это все выходит штырьками


Длинными штырьками. И кроме штырьков на той стороне вообще ничего нет.


И почему же я так не делаю? Зачем я продеваю стойки, никак их не закрепляю, а радиоэлементы припаиваю на стойки?



Это же бред! Радиоэлементы надо паять как раз на макетную плату как обычно, а штыри выводить на другую сторону, где нет медных проводников!

Осталось только решить проблему с лужением. Вопрос решился с помощью флюса Ф38Н. Я вообще не понимаю, как я жил раньше без него!

Делаем!

Берем кривые китайские платы:



Паяльник (у меня автомобильный 12 вольтовый с ЗУ от туда же), третья рука, мой любимый припой - ПОС-61 1.5мм метра два, и открытие этой осени - Ф38Н, еще там тонкая трубочка, в которую я набирал кислоту и наносил ее на стойки.


Отпиливаем с платы лишнее, шкурим, обезжириваем. Лудим стойки. Устанавливаем на плату и пропаиваем. Благодаря флюсу и ПОС-61 в катушке, паять было одно удовольствие! Быстро и красиво.

С торца платы я делаю из стоек две полосы по 20. Это разъем для соединения с платой ПЛИС. Там же два провода - питание.


Весь остальной монтаж на плате служит исключительно для прототипирования нужной мне схемы.

Со стороны печатного монтажа будем припаивать дискретные элементы: микросхемы, резисторы, конденсаторы и там же соединять их с одной из стоек. А еще лучше припаять панельки и все элемнты оперативно вставлять в них


А с другой стороны уже соединять элементы накруткой (справа две линии - это питание).

ВАЖНЫЙ МОМЕНТ!

При переходе на монтаж накруткой нужно немного переключить свое мышление и начать делать именно монтаж накруткой. Уходить от поверхностного монтажа и по возможности от пайки. Мне это сделать с первого раза не получилось. И сейчас, когда я сделал новую плату, я чуть опять не начал допускать те же ошибки. Вот пример: нужно из входа-разъема перенести все 40 линий на первую линию стоек. Что я собрался делать? Конечно! Припаять провод от разъема к первой линии. Но это ошибка. Так делать не нужно. Вообще не нужно перебрасывать все 40 линий. Нужно только те, что потребуются в данной схеме (1) . И вместо пайки мы можем применить монтаж накруткой. Стойки большие, после установки шлейфа под ним достаточно место, чтобы накрутить провод(2).

(Несколько дней спустя).


Так сейчас выглядит плата. За эти дни она несколько раз поменялась, но все изменения давались легко и быстро.
Вид со стороны монтажа накруткой:


Вид со стороны монтажа элементов (извините, что так пёстро):


Вывод. Такой способ макетирования мне подходит и я буду использовать его в дальнейшем. Попробуйте!

Все люди в мире от мала до велика знают, что перед тем, как создать что-либо, надо сначала создать макет этого «что-либо», будь это макет здания, стадиона или даже небольшого сельского туалета. В электротехнике это называют прототипом. Прототип — это работающая модель устройства. Поэтому опытные электронщики, перед тем собрать устройство по схеме в интернете, выложенной не пойми кем и не пойми зачем, должны убедиться, что эта схема реально заработает. Поэтому, схему надо быстренько тяп-наляп собрать и убедиться в ее работоспособности, то есть собрать макет. Ну а для того, чтобы его собрать нам то как раз и понадобится макетная плата.

Виды макетных плат

Толстый картон

Давным-давно, когда еще вас не было даже и в планах, наши дедушки, а может быть и бабушки, мало ли:-), использовали толстый картон. Это самый быстрый и дешевый способ проверки схем. В картоне прорезались дырочки под выводы радиоэлементов и с другой стороны они соединялись с помощью проводов и других элементов, если те не влезали на лицевую сторону. Выглядело это примерно как-то так:

А — типа лицевая сторона, В — обратная сторона.

Все бы хорошо, но приходилось паять выводы, смотреть, чтобы ничего нигде не замкнуло, да и пока «лепишь» эту схемку можно даже ненароком растеряться:-). Да и не красиво как-то.

Самодельные макетные платы

Эти времена я еще застал на радиокружке. Тогда мы делали макетные платы сами. Брали острый резец и нарезали квадратики на фольгированном текстолите. Далее покрывали их припоем.


Если надо где-то было соединить дорожки, мы просто делали перемычки между квадратиками каплей припоя. Получалось качественно и красиво. Если было лень перепаивать радиоэлементы на нормально-разведенную плату с дорожками, просто оставляли как есть и пользовались устройством.

Одноразовые макетные платы

Производители все-таки это дело «чухнули», или как говорится в экономике, спрос рождает предложение. Стали появляться готовые макетные платки односторонние и даже двухсторонние на любой размер и вкус.



Кстати, их можно найти на Али сразу целым набором .

Отверстия очень удобно подобраны по размерам выводов микросхем, а также других радиоэлементов. Поэтому очень удобно на таких макетных платах собирать и проверять радиоэлектронное устройство. Да и стоят они недорого.


Обратная сторона таких макетных плат уже с готовыми устройствами будет выглядеть приблизительно вот так:


В чем же минусы этих макетных плат? Лучше все-таки их использовать единожды, так как при многоразовом использовании у них могут отлетать пятачки, что приведет к ее непригодности.

Беспаечные макетные платы

Прогресс шагает своим уверенным шагом по нашему миру, и вот на рынке появились беспаечные макетные платы.


Стоят они чуть подороже, чем простые одноразовые макетные платы, но честно говоря, оно того стоит.

Они очень удобны в плане установки деталей, а также их связи между собой. В такие макетные платы можно вставлять провода не более, чем 0,7 мм и не менее, чем 0,4 мм в диаметре. Чтобы узнать, какие отверстия и дорожки между собой звонятся, проверяем все это дело . Для конструирования больших схем (вдруг вы будете разрабатывать какой-нибудь блок управления адронным коллайдером) можно добавлять такие же макетные платы впритык. Для этого есть специальные ушки. Одно движение, и макетная плата станет чуток больше.



Ну какая же макетная плата может быть без соединительных проводов? Соединительные провода, или джамперы (от английского — прыгать), нужны для соединения радиодеталей на самой макетной плате.


Чуть позже с Алиэкспресса я купил вот такие джамперы. Они намного удобнее, чем проволочные:


Здесь все просто, берем джампер и вставляем его легким движением руки



Давайте соберем простейшую схемку включения светодиода через кнопочку на макетной плате


Вот так она будет выглядеть


Выставляем на Блоке питания 5 Вольт и нажимаем на кнопочку. Светодиод загорается ярко-зеленым цветом. Значит схема работоспособная, и мы ее можем использовать по своему усмотрению.


Заключение

Беспаечные макетные платы завоевывают мир. Любую схему на них можно собрать и разобрать за считанные минуты. После сборки и проверки схемы на макетной плате, можно смело приступать к ее сборке в чистом виде. Думаю, у каждого уважаемого себя электронщика должна быть такая макетная. Но имейте ввиду, схемы с большим током в цепи лучше все таки на ней не проверять, так как контакты макетные платки могут просто-напросто выгореть — закон Джоуля-Ленца . Удачи вам в разработке и конструировании радиоэлектронных устройств!

Где купить макетную плату

Макетную плату с гибкими джамперами и даже с готовым блоком питания 5 Вольт можно сразу купить набором на Алиэкспрессе. Выбирайте на ваш вкус и цвет!


Если же не хотите , то проще всего будет купить одноразовую макетную плату и собрать на ней готовое устройство:

Прогресс, как известно, не стоит на месте. Особенно в электронике.
В наши времена, когда на квадратном сантиметре платы легко можно разместить полкомпьютера, а специальные проги позволяют виртуально «обкатать» разработанное устройство ни разу не взяв в руки паяльник и тестер, данная статья может показаться безнадёжно устаревшей.
Но как знать - может и пригодится кому из начинающих.

Ну, а опытные пусть воспринимают этот текст как ещё одну байку о том, как живут уцелевшие радиогубители в глухих глухоманях (Дальний Восток, очень дальний), куда цивилизация, думаю дотянется ещё ох как не скоро.

Ты помнишь, как всё начиналось…

Надеюсь, что многие из уважаемых датагорцев, помнят свои первые шаги в электронику. Помнят как выглядели их первые приёмники, усилители или там генераторы, до того, как были полностью проверены, настроены, собраны на печатных платах и помещены в корпуса.

В наших краях в 80-е дело обстояло так (в других, думаю, также): схемы попроще представляли из себя «паутину» из проводов и деталей, на которую иногда и дышать страшно.

Для схем посложнее брался отрезок доски. Из жести вырезались контактные площадки и рядами прибивались к той самой доске на гвоздики.
Возможно, где-то в сарае у моих родителей до сих пор хранится такое изделие. Именно на таких макетных платах радиолюбители в наших, да и не только в наших краях, собирали и настраивали свои первые конструкции. Измеряли и подгоняли режимы транзисторов, добивались требуемых параметров или хотя бы просто работы, до того, как изделие попадало (или не попадало) на нормальную плату, затем в корпус и радовало своего создателя.

Действительно - быстро, дёшево и сердито. Про недостатки такого «испытательного стенда» говорить не буду. Все, кто его когда-либо использовал и так знают. Иногда в журналах вроде «Радио» или «МК» встречались советы по изготовлению макетных плат из фольгированного гетинакса или текстолита. Пример из «МК»:

Щаззз! Его и на простые печатные платы не всегда наскрести удавалось. Большинство из них делалось упомянутым в моей позапрошлой статье «непечатным монтажом». Да и не видел смысла городить изделие, которое прослужит «полтора раза» в результате лишившись всех площадок.

Примерно в те времена и была придумана конструкция о которой будет рассказано ниже. Хотя «придумана» - это слишком громко сказано. Скорее сделана на основе похожих публикаций в тех же «Радио», «МК» и «ЮТ», с учётом местных условий.

Вот пример из приложения к «Юному технику» за 1985 г.

Если не ошибаюсь туда он перекочевал из журнала «Радио» 70-х, вместе со всеми недостатками, вроде свободного вращения контактных площадок в отверстиях и из-за этого огромных (даже по меркам 80-х) расстояний между ними. Эта конструкция и была взята за основу. Правда при изготовлении пришлось отказаться от «наворотов» и по возможности избавиться от недостатков «прототипа».

К сожалению в то время, когда такая макетная плата изготовлялась крайний раз (примерно год назад), под рукой не было фотоаппарата. Поэтому придётся ограничиться криво сделанными мной рисунками и пояснениями.

Без единого гвоздя

1. Берётся подходящий по размерам кусок гетинакса или текстолита.


Естественно, нефольгированного. В противом случае можно было бы сделать намного быстрее. И получилось бы красивее, но в долговечности такого изделия сильно сомневаюсь. Фольга имеет дурную привычку отслаиваться от основы при нагревании.
Размеры определяются «требованиями заказчика» и имеющимися в наличии кусками материала. Когда-то у меня был «монстр» примерно 20×40 см. Жаль потерял. Это сейчас маленькие делал. На большие масштабы пока не замахиваюсь. Спаять блок на паре-тройке транзисторов можно. Или даже что-нибудь звуковое на микросхеме, благо у них сейчас выводов не так много, да и обвески тоже.

2. Шилом, ножом, или ещё каким подходящим инструментом на поверхности материала «процарапывается» разметка под будущие контактные площадки. Указанные на рисунке размеры срисовал со своего изделия. Если кому нужно - могут сделать другие.

3. По разметке, на месте будущих контактных площадок сверлятся отверстия диаметром 2 - 3 мм (для площадок шириной 5 мм, как в моём случае).

4. А потом отверстиям на плате придаётся вот такая форма.

Для этой цели мне пришлось изготовить инструмент из обломка ножовочного полотна по металлу. Обломок был обточен на наждаке примерно так.


Вместо такого самопального «лобзика» вполне можно воспользоваться треугольным надфилем. Форма отверстий будет малость не такая, но свою задачу (препятствовать вращению лепестков) они выполнят так же. Только не было надфилей под рукой в то время. Да и сверло нашлось только на 1,5 мм. Поэтому получились абсолютно ровные сквозные пазы.

6 А потом из подходящей жести вырезаются полосы шириной 5 мм. В моём случае это была знаменитая жесть от банок из под сгущёнки.

7. Полосы режутся на куски длиной примерно 24 мм (для площадок 8×5 мм.). Заготовки сгибаются примерно так:

Полученные изделия вставляются в вышеописанные отверстия:

И фиксируются.

В результате получается что-то вот такое.

Теперь можно спокойно паять свою конструкцию (если она не превышает размеры платы или не собирается на сверхминиатюрных компонентах). Замерять и гонять режимы, вносить в схему изменения. А когда заработает как надо - разрабатывать печатку, корпус и т. д.

Из-за торчащих с обратной стороны платы жестянок работать нужно, естесственно на диэлектрической поверхности. Ну и не допускать попадания под плату металла. В этом смысле доска с жестянками выгодно отличается, если гвозди не слишком длинные: smile:
Для большей гарантии можно прикрепить к плате снизу кусок текстолита (гетинакса) такого же размера. Или ножки приспособить как на картинке из «ЮТ», если плата достаточно большая.

Согласен, что всё можно сделать слегка проще. Например «конструкцию» контактных площадок. (Сам когда-то делал вариант где жестяная заготовка просто сгибалась пополам.)
Да и саму плату можно делать хоть из картона, если что-то новое делается не так уж часто и нет риска перегреть его во время работы. В нём и пазы под площадки режутся куда легче. (Когда-то и его использовал, правда для несколько других целей.)

А можно и вообще не делать. Но, возможно пригодится кому-нибудь. Мало ли.

И в завершении - фото платы «в деле». То есть во время проверки блока для очередного изделия.

Дело было вдали от цивилизации, нормальных приборов инструментов и радиодеталей. Так что сильно не удивляйтесь «музейным экспонатам» из которых всё собрано. Делалось всё только для подбора катушки, так что тип остальных элементов роли не играл. К тому же, поблизости у знакомых водился осциллограф, позволяющий контролировать сигнал на радиочастотах, который для меня до сих пор остаётся в планах и мечтах.
Стоящий на заднем плане приёмник в данном случае выполняет роль частотомера.

На данный момент сделано две такие платы. Надеюсь, что пригодятся для подготовки следующих статей.

P.S. Немного воспоминаний, не совсем в тему

В далёкие школьные и студенческие времена, «идея» заложенная в описанную в статье макетную плату сильно пригодилась в условиях недостатка фольгированных материалов.
Изрядно подустав крутить проволочки, стал собирать не очень сложные схемы, припаивая детали на устаноленных в нужных местах платы жестяных площадках и дорожках, в общем делал нечто среднее между печатным и навесным монтажом. Конечно способ не без недостатков, но обслуживание изделия, замену неисправных деталей, и внесение изменений в схему делать быстрей и удобней чем на стандартной «печатке».
До сих пор сохранилось несколько артефактов изготовленных этим экзотическим способом: 16 октября 2014 в 03:15

Монтаж накруткой. Самодельная макетная плата

  • DIY или Сделай сам

В прошлой статье мы рассмотрели технологию монтажа накруткой. Но практика - критерий истины. К тому же задал конкретный вопрос о том, как же быть с деталями? Ясно, что детали ставятся на плату с одной стороны, а все соединения происходят с другой стороны (вроде бы логично, но как?). Для монтажа накруткой есть готовые платы , но они очень дорогие.

В этой статье я покажу свое решение, как макетировать накруткой, на плате, которую я сделал сам буквально за пару часов.

Первые трудные шаги

В конце первой части я рассказывал о практическом применении и проблемах, с которыми столкнулся. Сейчас я разрабатываю проект синтезатора на ПЛИС и нахожусь в процессе постоянных экспериментов, поэтому схемотехника меняется постоянно. Постоянно требуются перекоммутации. Если внутри ПЛИС достаточно перебросить сигналы на другие выводы, то на плате все происходит не так быстро. Именно для того, чтобы повысить скорость изменения схемы, ее надежность и устойчивость к многократным переделкам, я и взялся за монтаж накруткой. Но не все так гладко.

Мой проект состоит из двух плат: плата, на которой расположена микросхема ПЛИС и плата расширения для нее - синтезатор. Соединяются платы через 40 штырьковый разъем с помощью шлейфа. Дальше всю схему на плате расширения я делал поверхностным монтажом. То есть провода припаивались прямо к штырькам разъема. А для того, чтобы перейти на монтаж накруткой, мне нужно вывести эти 40 линий на сторону платы, где будут штыри. Туда же, для примера, я вывожу, допустим 8 резисторов по 10 КОм. Делаю так, как и решил ранее. Вставляю стойки в плату. Сверху к стойкам припаиваю радиоэлементы. В случае с разъемом пришлось паять провода. Получилось все очень плохо: долго, не надежно, не удобно, не красиво. К тому же стойки очень плохо лудились и паять к ним было очень сложно.

Сверху штырьки для перехода на Wire Wrap. Под ними разьем. И 20 бубликов - провод. Ниже 8 резисторов, припаяных к стойкам

То же - с другой стороны: верхний ряд - стойки разьема, ниже - два ряда стойки к которым припаяны резисторы

Потратив 3 часа и сделав только половину работы всего лишь по разьему, и кое как припаяв 8 резисторов, с грустными мыслями я пошел спать.

Мыслей было две:
1) я не правильно провожу монтаж элементов
2) нужно что-то решить с тем, что стойки плохо лудятся

И перед сном на меня снизошло озарение!

Концепт платы

Готовые платы Wire Wrap обычно сделаны по такому принципу.

С одной стороны устанавливаются элементы

А с другой стороны это все выходит штырьками

Длинными штырьками. И кроме штырьков на той стороне вообще ничего нет.

И почему же я так не делаю? Зачем я продеваю стойки, никак их не закрепляю, а радиоэлементы припаиваю на стойки?

Это же бред! Радиоэлементы надо паять как раз на макетную плату как обычно, а штыри выводить на другую сторону, где нет медных проводников!

Осталось только решить проблему с лужением. Вопрос решился с помощью флюса Ф38Н. Я вообще не понимаю, как я жил раньше без него!

Делаем!

Берем кривые китайские платы:

Паяльник (у меня автомобильный 12 вольтовый с ЗУ от туда же), третья рука, мой любимый припой - ПОС-61 1.5мм метра два, и открытие этой осени - Ф38Н, еще там тонкая трубочка, в которую я набирал кислоту и наносил ее на стойки.

Отпиливаем с платы лишнее, шкурим, обезжириваем. Лудим стойки. Устанавливаем на плату и пропаиваем. Благодаря флюсу и ПОС-61 в катушке, паять было одно удовольствие! Быстро и красиво.

С торца платы я делаю из стоек две полосы по 20. Это разъем для соединения с платой ПЛИС. Там же два провода - питание.

Весь остальной монтаж на плате служит исключительно для прототипирования нужной мне схемы.

Со стороны печатного монтажа будем припаивать дискретные элементы: микросхемы, резисторы, конденсаторы и там же соединять их с одной из стоек. А еще лучше припаять панельки и все элемнты оперативно вставлять в них

А с другой стороны уже соединять элементы накруткой (справа две линии - это питание).

ВАЖНЫЙ МОМЕНТ!

При переходе на монтаж накруткой нужно немного переключить свое мышление и начать делать именно монтаж накруткой. Уходить от поверхностного монтажа и по возможности от пайки. Мне это сделать с первого раза не получилось. И сейчас, когда я сделал новую плату, я чуть опять не начал допускать те же ошибки. Вот пример: нужно из входа-разъема перенести все 40 линий на первую линию стоек. Что я собрался делать? Конечно! Припаять провод от разъема к первой линии. Но это ошибка. Так делать не нужно. Вообще не нужно перебрасывать все 40 линий. Нужно только те, что потребуются в данной схеме (1) . И вместо пайки мы можем применить монтаж накруткой. Стойки большие, после установки шлейфа под ним достаточно место, чтобы накрутить провод(2).

(Несколько дней спустя).

Так сейчас выглядит плата. За эти дни она несколько раз поменялась, но все изменения давались легко и быстро.
Вид со стороны монтажа накруткой:

Вид со стороны монтажа элементов (извините, что так пёстро):

Вывод. Такой способ макетирования мне подходит и я буду использовать его в дальнейшем. Попробуйте!