Защита электродвигателя от перегрузки: принцип действия, особенности и виды. Защита электродвигателей от аварийных и ненормальных режимов Механический аварийный режим асинхронного двигателя

»

Практически нет в эксплуатации техники, где не использовался бы электрический . Этот вид электромеханических приводов самой разной конфигурации применяется повсеместно. С конструктивной точки зрения, электромотор – оборудование несложное, вполне понятное и простое. Однако работа электродвигателя сопровождается значительными нагрузками разного характера. Именно поэтому на практике применяются реле защиты двигателя, функциональность которых также носит разносторонний характер. Степень эффективности, на которую рассчитана защита электрического двигателя, как правило, определяется схемными решениями внедрения реле и датчиков контроля.

Применительно к малозначимым сервисным моторам, для автоматического отключения используется мгновенное реле с обратно-зависимым временем реагирования на фазные перегрузки по току.


Схема защиты двигателя от перегрузки по току и замыканий на землю: 1, 2, 3 — трансформаторы тока; 4, 5, 6 — устройства отсечки по току; Ф1, Ф2, Ф3 — линейные фазы; 7 — земля

Реле чередования фаз обычно настраиваются на 3,5-4 кратное превышение рабочего тока двигателя, с учётом достаточной задержки по времени, чтобы исключить срабатывание в моменты запуска мотора.

Для сервисных двигателей высокой значимости реле тока с обратно-зависимым временем срабатывания, как правило, не используются. Причиной тому является задействованный автоматический выключатель непосредственно в цепи двигателя.

Перегрев статорных обмоток

Критичное состояние, в основном обусловленное непрерывной перегрузкой, торможением ротора или дисбалансом тока статора. Для полной защиты, в данном случае, трёхфазный двигатель необходимо оснастить элементами контроля перегрузки на каждой фазе.

Здесь для защиты малозначимых сервисных двигателей обычно используется защита от перегрузки либо прямое срабатывание на отключение от источника питания в случае перегрузки.

Если номинальная мощность двигателя превышает 1000 кВт, вместо одиночного реле с резистивным датчиком температуры, как правило, используется реле обратно-зависимого времени срабатывания по току.


Термисторы предельной температуры для статора двигателя: 1 — залуженная часть проводника 7-10 мм; 2 — размер длины 510 — 530 мм; 3 — длина термистора 12 мм; 4 — диаметр термистора 3 мм; Дуговые соединения длиной 200 мм

Для значимых моторов автоматическое отключение применяют по желанию. В качестве главного защитника от перегрева статорных обмоток используется тепловое реле.

Фактор перегрева ротора (фазного)

Защита от перегрева ротора часто встречается в двигателях с раневым (фазным) ротором. Увеличение тока ротора отражается на токе статора, что требует включения защиты от превышения тока статора.

Настройка реле защиты статора по току в целом составляет величину, равную току полной нагрузки, увеличенному в 1,6 раза. Этого значения вполне достаточно, чтобы определить перегрев фазного ротора и включить блокировку.

Защита от пониженного напряжения

Электродвигатель потребляет чрезмерный ток при работе под напряжением ниже установленной нормы. Поэтому защита от недостатка напряжения или перенапряжения должна обеспечиваться датчиками перегрузки или чувствительными температурными элементами.

Чтобы избежать перегрева, двигатель необходимо обесточить на 40-50 минут даже в случае небольших перегрузок, превышающих 10 — 15% норматива.


Классический вариант термального контроля статорной обмотки: Т — датчики температуры, встроенные непосредственно среди обмоточных проводников

Защитное реле следует использовать для контроля нагрева ротора двигателя из-за токов обратной последовательности, возникающих в статоре по причине дисбаланса напряжения питания.

Дисбаланс и пофазный сбой

Несбалансированное трехфазное питание также вызывает протекание тока обратной последовательности в обмотках статора двигателя. Подобное состояние вызывает перегрев обмотки статора и ротора (фазного).

Несбалансированное состояние, кратковременно передаваемое двигателю, необходимо контролировать и поддерживать на таком уровне, чтобы избежать появления непрерывного состояния дисбаланса.

Предпочтительно реле контроля межфазного замыкания питать от положительной фазы, а для защиты от замыканий на землю использовать дифференциальное реле мгновенной отсечки, подключенное в цепь контура трансформатора тока.

Непредусмотренный реверс фазы

В некоторых случаях реверс фазы видится опасным явлением для мотора. Например, такое состояние может негативно отражаться на работе лифтового оборудования, кранов, подъемников, некоторых видов общественного транспорта.

Здесь обязательно следует предусматривать защиту от реверса фаз – специализированное реле. Работа реле реверса фазы основана на электромагнитном принципе. Прибор содержит дисковый двигатель, приводимый в движение магнитной системой.


Плата и схема устройства реверса фазы: 1 — автоматический выключатель или плавкая вставка; 2 — защита от перегрузки; 3 — фаза текущая; 4 — реверс фазы; 5 — электродвигатель

Если отмечается правильная последовательность фаз, диск формирует крутящий момент в положительном направлении. Следовательно, вспомогательный контакт удерживается в закрытом положении.

Когда фиксируется реверс фазы, крутящий момент диска изменяется на противоположное направление. Следовательно, вспомогательный контакт переключается в открытое положение.

Эта система коммутации используется для защиты, в частности – для управления автоматическим выключателем.

Для того чтобы избежать непредвиденных сбоев, дорогостоящего ремонта и последующих потерь из-за простоя электродвигателя, очень важно оборудовать двигатель защитным устройством.


Защита двигателя имеет три уровня:


Внешняя защита от короткого замыкания установки . Устройства внешней защиты, как правило, являются предохранителями разных видов или реле защиты от короткого замыкания. Защитные устройства данного типа обязательны и официально утверждены, они устанавливаются в соответствии с правилами безопасности.


Внешняя защита от перегрузок , т.е. защита от перегрузок двигателя насоса, а, следовательно, предотвращение повреждений и сбоев в работе электродвигателя. Это защита по току.


Встроенная защита двигателя с защитой от перегрева , чтобы избежать повреждений и сбоев в работе электродвигателя. Для встроенного устройства защиты всегда требуется внешний выключатель, а для некоторых типов встроенной защиты двигателя требуется даже реле перегрузки.



Возможные условия отказа двигателя


Во время эксплуатации могут возникать различные неисправности. Поэтому очень важно заранее предусмотреть возможность сбоя и его причины и как можно лучше защитить двигатель. Далее приведён перечень условий отказа, при которых можно избежать повреждений электродвигателя:


Низкое качество электроснабжения:


Высокое напряжение


Пониженное напряжение


Несбалансированное напряжение/ ток (скачки)


Изменение частоты


Неверный монтаж, нарушение условий хранения или неисправность самого электродвигателя


Постепенное повышение температуры и выход её за допустимый предел:


Недостаточное охлаждение


Высокая температура окружающей среды


Пониженное атмосферное давление (работа на большой высоте над уровнем моря)


Высокая температура рабочей жидкости


Слишком большая вязкость рабочей жидкости


Частые включения/отключения электродвигателя


Слишком большой момент инерции нагрузки (свой для каждого насоса)


Резкое повышение температуры:


Блокировка ротора


Обрыв фазы


Для защиты сети от перегрузок и короткого замыкания при возникновении каких-либо из перечисленных выше условий отказа необходимо определить, какое устройство защиты сети будет использоваться. Оно должно автоматически отключать питание от сети. Плавкий предохранитель является простейшим устройством, выполняющим две функции. Как правило, плавкие предохранители соединяются между собой при помощи аварийного выключателя, который может отключить двигатель от сети питания. На следующих страницах мы рассмотрим три типа плавких предохранителей с точки зрения их принципа действия и вариантов применения: плавкий предохранительный выключатель, быстродействующие плавкие предохранители и предохранители с задержкой срабатывания.






Плавкий предохранительный выключатель - это аварийный выключатель и плавкий предохранитель, объединённые в едином корпусе. С помощью выключателя можно размыкать и замыкать цепь вручную, в то время как плавкий предохранитель защищает двигатель от перегрузок по току. Выключатели, как правило, используются в связи с выполнением сервисного обслуживания, когда необходимо прервать подачу тока.


Аварийный выключатель имеет отдельный кожух. Этот кожух защищает персонал от случайного контакта с электрическими клеммами, а также защищает выключатель от окисления. Некоторые аварийные выключатели оборудованы встроенными плавкими предохранителями, другие аварийные выключатели поставляются без встроенных плавких предохранителей и оснащены только выключателем.


Устройство защиты от перегрузок по току (плавкий предохранитель) должно различать перегрузки по току и короткое замыкание. Например, незначительные кратковременные перегрузки по току вполне допустимы. Но при дальнейшем увеличении тока устройство защиты должно срабатывать немедленно. Очень важно сразу предотвращать короткие замыкания. Выключатель с предохранителем - пример устройства, используемого для защиты от перегрузок по току. Правильно подобранные плавкие предохранители в выключателе размыкают цепь при токовых перегрузках.


Плавкие предохранители быстрого срабатывания


Быстродействующие плавкие предохранители обеспечивают отличную защиту от короткого замыкания. Однако кратковременные перегрузки, такие как пусковой ток электродвигателя, могут вызвать поломку плавких предохранителей такого вида. Поэтому быстродействующие плавкие предохранители лучше всего использовать в сетях, которые не подвержены действию значительных переходных токов. Обычно такие предохранители выдерживают около 500% своего номинального тока в течение одной четвёртой секунды. По истечении этого времени вставка предохранителя плавится и цепь размыкается. Таким образом, в цепях, где пусковой ток часто превышает 500% номинального тока предохранителя, быстродействующие плавкие предохранители использовать не рекомендуется.


Плавкие предохранители с задержкой срабатывания


Данный тип плавких предохранителей обеспечивает защиту и от перегрузки, и от короткого замыкания. Как правило, они допускают 5-кратное увеличение номинального тока на 10 секунд, и даже более высокие значения тока на более короткое время. Обычно этого достаточно, чтобы электродвигатель был запущен и плавкий предохранитель не открылся. С другой стороны, если возникают перегрузки, которые продолжаются больше, чем время плавления плавкого элемента, цепь также разомкнётся.



Время срабатывания плавкого предохранителя - это время плавления плавкого элемента (проволоки), которое требуется для того, чтобы цепь разомкнулась. У плавких предохранителей время срабатывания обратно пропорционально значению тока - это означает, что чем больше перегрузки по току, тем меньше период времени для отключения цепи.





В общем, можно сказать, что у электродвигателей насосов очень короткое время разгона: меньше 1 секунды. В этой связи для электродвигателей подойдут предохранители с задержкой времени срабатывания с номинальным током, соответствующим току полной нагрузки электродвигателя.


Иллюстрация справа демонстрирует принцип формирования характеристики времени срабатывания плавкого предохранителя. Ось абсцисс показывает соотношение между фактическим током и током полной нагрузки: если электродвигатель потребляет ток полной нагрузки или меньше, плавкий предохранитель не размыкается. Но при величине тока, в 10 раз превышающей ток полной нагрузки, плавкий предохранитель разомкнётся практически мгновенно (0,01 с). На оси ординат отложено время срабатывания.


Во время пуска через индукционный электродвигатель проходит достаточно большой ток. В очень редких случаях это приводит к выключению посредством реле или плавких предохранителей. Для уменьшения пускового тока используются различные методы пуска электродвигателя.

Что такое автоматический токовый выключатель и как он работает?

Автоматический токовый выключатель является устройством защиты от перегрузок по току. Он автоматически размыкает и замыкает цепь при заданном значении перегрузки по току. Если токовый выключатель применяется в диапазоне своих рабочих параметров, размыкание и замыкание не наносит ему никакого ущерба. Сразу же после возникновения перегрузки можно легко возобновить работу автоматического выключателя - он просто устанавливается в исходное положение.




Различают два вида автоматических выключателей: тепловые и магнитные.


Тепловые автоматические выключатели


Тепловые автоматические выключатели - это самый надёжный и экономичный тип защитных устройств, которые подходят для электродвигателей. Они могут выдержать большие амплитуды тока, которые возникают при пуске электродвигателя, и защищают электродвигатель от сбоев, таких как блокировка ротора.


Магнитные автоматические выключатели


Магнитные автоматические выключатели являются точными, надёжными и экономичными. Магнитный автоматический выключатель устойчив к изменениям температуры, т.е. изменения температуры окружающей среды не влияют на его предел срабатывания. По сравнению с тепловыми автоматическими выключателями, магнитные автоматические выключатели имеют более точно определённое время срабатывания. В таблице приведены характеристики двух типов автоматических выключателей.





Рабочий диапазон автоматического выключателя


Автоматические выключатели различаются между собой уровнем тока срабатывания. Это значит, что всегда следует выбирать такой автоматический выключатель, который может выдержать самый высокий ток короткого замыкания, который может возникнуть в данной системе.

Функции реле перегрузки

Реле перегрузки:


При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.


Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.


Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.


IEC и NEMA стандартизуют классы срабатывания реле перегрузки.



Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 - в течение 30 секунд и менее.




Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 - самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.


Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.



Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.


На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.




Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания.

Современные наружные реле защиты двигателя

Усовершенствованные наружные системы защиты двигателя также обеспечивают защиту от перенапряжения, перекоса фаз, ограничивают число включений/выключений, устраняют вибрации. Кроме того, они позволяют контролировать температуру статора и подшипников через датчик температуры (PT100), измерять сопротивление изоляции и регистрировать температуру окружающей среды. В дополнение к этому усовершенствованные наружные системы защиты двигателя могут принимать и обрабатывать сигнал от встроенной тепловой защиты. Далее в этой главе мы рассмотрим устройство тепловой защиты.




Наружные реле защиты двигателя предназначены для защиты трёхфазных электродвигателей при угрозе повреждения двигателя за короткий или более длительный период работы. Кроме защиты двигателя, наружное реле защиты имеет ряд особенностей, которые обеспечивают защиту электродвигателя в различных ситуациях:


Подаёт сигнал прежде, чем возникает неисправность в результате всего процесса


Диагностирует возникшие неисправности


Позволяет выполнять проверку работы реле во время техобслуживания


Контролирует температуру и наличие вибрации в подшипниках


Можно подключить реле перегрузки к центральной системе управления зданием для постоянного контроля и оперативной диагностики неисправностей. Если в реле перегрузки установлено наружное реле защиты, сокращается период вынужденного простоя из-за прерывания технологического процесса в результате поломки. Это достигается благодаря быстрому обнаружению неисправности и недопущению повреждений электродвигателя.


Например, электродвигатель может быть защищён от:


Перегрузки


Блокировки ротора


Заклинивания


Частых повторных пусков


Разомкнутой фазы


Замыкания на массу


Перегрева (с помощью сигнала, поступающего от электродвигателя через датчик PT100 или терморезисторы)


Малого тока


Предупреждающего сигнала о перегрузке

Настройка наружного реле перегрузки

Ток полной нагрузки при определённом напряжении, указанном в фирменной табличке, является нормативом для настройки реле перегрузки. Так как в сетях разных стран присутствует различное напряжение, электродвигатели для насосов могут использоваться как при 50 Гц, так и при 60 Гц в широком диапазоне напряжений. В связи с этим в фирменной табличке электродвигателя указывается диапазон тока. Если нам известно напряжение, мы можем вычислить точную допустимую нагрузку по току.


Пример вычисления


Зная точную величину напряжения для установки, можно рассчитать ток полной нагрузки при 254 / 440 Y B, 60 Гц.




Данные отображаются в фирменной табличке, какпоказано в иллюстрации.




Вычисления для 60 Гц





Коэффициент усиления напряжения определяется следующими уравнениями:




Расчет фактического тока полной нагрузки (I):




(Значения тока для подключения по схеме «треугольник» и «звезда» при минимальных значениях напряжения)




(Значения тока для подключения по схеме «треугольник» и «звезда» при максимальных значениях напряжения)


Теперь с помощью первой формулы можно рассчитать ток полной нагрузки:


I для «треугольника»:



I для «звезды»:



Величины для тока полной нагрузки соответствуют допустимому значению тока полной нагрузки электродвигателя при 254 Δ/440 Y В, 60 Гц.





Внимание : наружное реле перегрузки электродвигателя всегда устанавливается на номинальное значение тока, указанное в фирменной табличке.


Однако если электродвигатели сконструированы с учётом коэффициента нагрузки, который затем указывается в фирменной табличке, напр., 1.15, заданное значение тока для реле перегрузки может быть увеличено на 15% по сравнению с током полной нагрузки или коэффициентом нагрузки в амперах (SFA - service factor amps), который, как правило, указывается в фирменной табличке.





Для чего нужна встроенная защита двигателя, если электродвигатель уже оснащён реле перегрузки и плавкими предохранителями? В некоторых случаях реле перегрузки не регистрирует перегрузку электродвигателя. Например, в ситуациях:


Когда электродвигатель закрыт (недостаточно охлаждается) и медленно нагревается до опасной температуры.


При высокой температуре окружающей среды.


Когда наружная защита двигателя настроена на слишком высокий ток срабатывания или установлена неправильно.


Когда электродвигатель перезапускается несколько раз в течение короткого периода времени и пусковой ток нагревает электродвигатель, что в конечном счёте, может его повредить.


Уровень защиты, который может обеспечить внутренняя защита, указывается в стандарте IEC 60034-11.


Обозначение TP


TP - аббревиатура «thermal protection» - тепловая защита. Существуют различные типы тепловой защиты, которые обозначаются кодом TP (TPxxx). Код включает в себя:


Тип тепловой перегрузки, для которой была разработана тепловая защита (1-я цифра)


Число уровней и тип действия (2-я цифра)



В электродвигателях насосов, самыми распространёнными обозначениями TP являются:


TP 111: Защита от постепенной перегрузки


TP 211: Защита как от быстрой, так и от постепенной перегрузки.



Обозначение

Техническая егрузка и ее варианты (1-я цифра)

Количество уровней и функциональная область (2-я цифра)

ТР 111

Только медленно (постоянная перегрузка)

1 уровень при отключении

ТР 112

ТР 121

ТР 122

ТР 211

Медленно и быстро (постоянная перегрузка, блокировка)

1 уровень при отключении

ТР 212

ТР 221 ТР 222

2 уровня при аварийном сигнале и отключении

ТР 311 ТР 321

Только быстро (блокировка)

1 уровень при отключении


Изображение допустимого температурного уровня при воздействии на электродвигатель высокой температуры. Категория 2 допускает более высокие температуры, чем категория 1.


Все однофазные электродвигатели Grundfos оснащены защитой двигателя по току и температуре в соответствии с IEC 60034-11. Тип защиты двигателя TP 211 означает, что она реагирует как на постепенное, так и на быстрое повышение температуры.

Сброс данных в устройстве и возврат в начальное положение осуществляется автоматически. Трёхфазные электродвигатели Grundfos MG мощностью от 3.0 кВт стандартно оборудованы датчиком температуры PTC.





Эти электродвигатели были испытаны и одобрены как электродвигатели TP 211, которые реагируют и на медленное, и на быстрое повышение температуры. Другие электродвигатели, используемые для насосов Grundfos (MMG модели D и E, Siemens, и т.п.), могут быть классифицированы как TP 211, но, как правило, они имеют тип защиты TP 111.





Необходимо всегда учитывать данные, указанные на фирменной табличке. Информацию о типе защиты конкретного электродвигателя можно найти на фирменной табличке - маркировка с буквенным обозначением TP (тепловая защита) согласно IEC 60034-11. Как правило, внутренняя защита может быть организована при помощи двух типов устройств защиты: Устройств тепловой защиты или терморезисторов.





Устройства тепловой защиты, встраиваемые в клеммную коробку


В устройствах тепловой защиты, или термостатах, используется биметаллический автоматический выключатель дискового типа мгновенного действия для размыкания и замыкания цепи при достижении определённой температуры. Устройства тепловой защиты называют также «кликсонами» (по названию торговой марки от Texas Instruments). Как только биметаллический диск достигает заданной температуры, он размыкает или замыкает группу контактов в подключённой схеме управления. Термостаты оснащены контактами для нормально разомкнутого или нормально замкнутого режима работы, но одно и то же устройство не может использоваться для двух режимов. Термостаты предварительно откалиброваны производителем, и их установки менять нельзя. Диски герметично изолированы и располагаются на контактной колодке.


Через термостат может подаваться напряжение в цепи аварийной сигнализации - если он нормально разомкнут, или термостат может обесточивать электродвигатель - если он нормально замкнут и последовательно соединён с контактором. Так как термостаты находятся на наружной поверхности концов катушки, то они реагируют на температуру в месте расположения. Применительно к трёхфазным электродвигателям термостаты считаются нестабильной защитой в условиях торможения или в других условиях быстрого изменения температуры. В однофазных электродвигателях термостаты служат для защиты при блокировке ротора.





Тепловой автоматический выключатель, встраиваемый в обмотки


Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.





Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик - примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).





Внутренняя установка


В однофазных электродвигателях используется один одинарный тепловой автоматический выключатель. В трёхфазных электродвигателях - два последовательно соединённых выключателя, расположенных между фазами электродвигателя. Таким образом, все три фазы контактируют с тепловым выключателем. Тепловые автоматические выключатели можно установить на конце обмоток, однако это приводит к увеличению времени реагирования. Выключатели должны быть подключены к внешней системе управления. Таким образом электродвигатель защищается от постепенной перегрузки. Для тепловых автоматических выключателей реле - усилителя не требуется.


Тепловые выключатели НЕ ЗАЩИЩАЮТ двигатель при блокировке ротора.

Принцип действия теплового автоматического выключателя

На графике справа показана зависимость сопротивления от температуры для стандартного теплового автоматического выключателя. У каждого производителя эта характеристика своя. TN обычно лежит в интервале 150-160 °C.





Подключение


Подключение трёхфазного электродвигателя со встроенным тепловым выключателем и реле перегрузки.


Обозначение TP на графике


Защита по стандарту IEC 60034-11:


TP 111 (постепенная перегрузка). Для того чтобы обеспечить защиту при блокировке ротора, электродвигатель должен быть оборудован реле перегрузки.






Второй тип внутренней защиты - это терморезисторы, или датчики с положительным температурным коэффициентом (PTC). Терморезисторы встраиваются в обмотки электродвигателя и защищают его при блокировке ротора, продолжительной перегрузке и высокой температуре окружающей среды. Тепловая защита обеспечивается с помощью контроля температуры обмоток электродвигателя с помощью PTC датчиков. Если температура обмоток превышает температуру отключения, сопротивление датчика меняется соответственно изменению температуры.








В результате такого изменения внутренние реле обесточивают контур управления внешнего контактора. Электродвигатель охлаждается, и восстанавливается приемлемая температура обмотки электродвигателя, сопротивление датчика понижается до исходного уровня. В этот момент происходит автоматическое приведение модуля управления в исходное положение, если только он предварительно не был настроен на сброс данных и повторное включение вручную.


Если терморезисторы установлены на концах катушки самостоятельно, защиту можно классифицировать только как TP 111. Причина в том, что терморезисторы не имеют полного контакта с концами катушки, и, следовательно, не могут реагировать так быстро, как если бы они изначально были встроены в обмотку.





Система, чувствительная к температуре терморезистора, состоит из датчиков с положительным температурным коэффициентом (PTC), устанавливаемых последовательно, и твердотельного электронного выключателя в закрытом блоке управления. Набор датчиков состоит из трёх - по одному на фазу. Сопротивление в датчике остаётся относительно низким и постоянным в широком диапазоне температур, с резким увеличением при температуре срабатывания. В таких случаях датчик действует как твердотельный тепловой автоматический выключатель и обесточивает контрольное реле. Реле размыкает цепь управления всего механизма для отключения защищаемого оборудования. Когда температура обмотки восстанавливается до допустимого значения, блок управления можно привести в прежнее положение вручную.


Все электродвигатели Grundfos мощностью от 3 кВт и выше оснащены терморезисторами. Система терморезисторов с положительным температурным коэффициентом (PTC) считается устойчивой к отказам, так как в результате выхода из строя датчика или отсоединении провода датчика возникает бесконечное сопротивление, и система срабатывает так же, как при повышении температуры, - происходит обесточивание контрольного реле.

Принцип действия терморезистора

Критические значения зависимости сопротивление/ температура для датчиков системы защиты электродвигателя определены в стандартах DIN 44081/ DIN 44082.


На кривой DIN показано сопротивление в датчиках терморезистора в зависимости от температуры.





По сравнению с PTO терморезисторы имеют следующие преимущества:


Более быстрое срабатывание благодаря меньшему объёму и массе


Лучше контакт с обмоткой электродвигателя


Датчики устанавливаются на каждой фазе


Обеспечивают защиту при блокировке ротора

Обозначение TP для электродвигателя с PTC

Защита двигателя TP 211 реализуется, только когда терморезисторы PTC полностью установлены на концах обмоток на заводе-изготовителе. Защита TP 111 реализуется только при самостоятельной установке на месте эксплуатации. Электродвигатель должен пройти испытания и получить подтверждение о соответствии его маркировке TP 211. Если электродвигатель с терморезисторами PTC имеет защиту TP 111, он должен быть оснащён реле перегрузки для предотвращения последствий заклинивания.


Соединение


На рисунках справа представлены схемы подключения трёхфазного электродвигателя, оснащённого терморезисторами PTC, с расцепителями Siemens. Для реализации защиты как от постепенной, так и от быстрой перегрузки, мы рекомендуем следующие варианты подключения электродвигателей, оснащённых датчиками PTC, с защитой TP 211 и TP 111.






Если электродвигатель с терморезистором имеет маркировку TP 111, это значит, что электродвигатель защищён только от постепенной перегрузки. Для того чтобы защитить электродвигатель от быстрой перегрузки, электродвигатель должен быть оборудован реле перегрузки. Реле перегрузки должно подключаться последовательно к реле PTC.






Защита TP 211 двигателя обеспечивается, только если терморезистор PTC полностью встроен в обмотки. Защита TP 111 реализуется только при самостоятельном подключении.


Терморезисторы разработаны в соответствии со стандартом DIN 44082 и выдерживают нагрузку Umax 2,5 В DC. Все отключающие элементы предназначены для приёма сигналов от терморезисторов DIN 44082, т.е терморезисторов компании Siemens.


Обратите внимание : Очень важно, чтобы встроенное устройство PTC было последовательно соединено с реле перегрузки. Многократные повторные включения реле перегрузки могут привести к сгоранию обмотки в случае блокировки электродвигателя или пуска при высокой инерции. Поэтому очень важно, чтобы температурные показатели и данные по потребляемому току устройства PTC и реле

ельных тепловых перегрузках. Защита от перегрузки должна применяться только для электродвигателей тех рабочих механизмов, у которых возможны ненормальные увеличения нагрузки при нарушениях рабочего процесса.

Аппараты защиты от перегрузки (тепловые и температурные реле, электромагнитные реле, автоматические выключатели с тепловым расцепителем или с часовым механизмом) при возникновении перегрузки отключают двигатель с определенной выдержкой времени, тем большей, чем меньше перегрузка, а в ряде случаев, при значительных перегрузках, - и мгновенно.

Рис.6 Обмоточный цех

Защита асинхронных электродвигателей от понижения или исчезновения напряжения

Защита от понижения или исчезновения напряжения (нулевая защита) выполняется с помощью одного или нескольких электромагнитных аппаратов, действует на отключение двигателя при перерыве питания или снижении напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания или восстановления нормального напряжения сети.

Специальная защита от работы на двух фазах предохраняет двигатель от перегрева, а также от «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве в одной из фаз главной цепи. Защита действует на отключение двигателя. В качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Рис.7 Замена, демонтаж и ТО системы вентиляции «Климат-47»

Другие виды электрической защиты асинхронных электродвигателей

Существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряжения, однофазных замыканий на землю в сетях с изолированной нейтралью, увеличения скорости вращения привода и т. п.).

Электрические аппараты, применяемые для защиты электродвигателей

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, - аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор вида электрической защиты электродвигателей

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном случае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического оборудования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5-10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока. В таких случаях рекомендуется использовать устройство плавного пуска (софтстартер).Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей - четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.

ГУП ППЗ «Благоварский»

ГУП "Племптицезавод Благоварский" является правопреемником птицефабрики Благоварская, которая была введена в строй в 1977 году как товарное хозяйство по производству утиного мяса. В 1995 году птицефабрика получила статус государственного племенного птицеводческого завода с возложением функций селекционно-генетического центра по утководству. Племптицезавод Благоварский расположен вблизи села Языково, Благоварского района республики Башкортостан.

Общая земельная площадь составляет 2108 га, из них пашни занимают1908 га, а сенокосы и пастбища 58 га. Среднее поголовье уток 111,6 тысяч голов, в том числе 25,6 тысяч голов утки-несушки.

В коллективе трудится 416 человек, из них в аппарате управления 76.

В структуре завода функционируют:

Цех родительского стада уток: имеет 30корпусов с количеством птицемест на 110 тысяч голов.

Цех выращивания ремонтного молодняка: имеет 6 корпусов с количеством птицемест на 54 тысячи голов.

Инкубатории: 3 цеха с общей мощностью 695520 шт. яиц на одну закладку.

Цех убоя с производительностью 6-7 тысяч голов за смену.

Цех кормоприготовления с производительностью 50 тонн за смену с емкостью 450 тонн.

Автотранспортный цех: автомобили - 53, трактора - 30, сельхозмашины 27.

В 1998 году на базе племптицезавода создана научно-производственная система по утководству, объединяющая работу птицехозяйств, занимающихся разведением уток в 24 регионах российской федерации. Через научно-производственную систему реализуется более 20 млн. штук племенных яиц и 15 млн. голов молодняка уток. Племматериал так же поставляется в такие страны ближнего зарубежья как Казахстан и Украина.

Утки созданные селекционерами ГУП Племптицезавода Благоварский получили повсеместное распространение в Российской Федерации, их успешно разводят как в Краснодарском, так и в Приморском краях. Использование уток селекции племзавода в структуре общегопоголовья уток России составляет около 80%.

ДневникДатаРабочее местоВид работыТехнология выполнения работыПодпись руков.Примечание26.06.12-27Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Разборка и сборка 3-х фазных асинхронных двигателей. 28.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей. 29.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Прокладка кабеля. 30.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Прокладка кабеля. 01.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Сборка зернодробилки, монтаж водонагревателя. 04.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 05.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 06.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж системы освещений. 07.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж, ТО системы вентиляции «Климат-47» 08.07.12-09.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Плановая работа. Очистка и уборка от зеленых насаждений вокруг охраняемой зоны ЛЭП. 10.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Установка дизельной электростанции.

ДневникДатаРабочее местоВид работыТехнология выполнения работыПодпись руков.Примечание 11.07.12-15.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж, ТО системы вентиляции «Климат-47» 16.07.12-17.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей. 18.07.12-22.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 23.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Плановая работа. Очистка и уборка от зеленых насаждений вокруг охраняемой зоны ЛЭП. 24.07.12-29.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж и запуск АВМ. 30.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Разборка и сборка 3-х фазных асинхронных двигателей. 31.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж системы освещений. 1.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Техническое обслуживание трансформаторов. 2.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 3.08.12-4.08.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей.

Начало практики 26.06.12 Конец практики 04.08.12

ЗАКЛЮЧЕНИЕ

В результате прохождения производственной эксплуатационной практики в ГУП ППЗ «Благоварский» мною были изучены структура предприятия, схема сети электроснабжения предприятии, а так же собран материал по тем

Перегрузка электродвигателей возникает

· при затянувшемся пуске и самозапуске,

· при перегрузке приводимых механизмов,

· при понижении напряжения на выводах двигателя.

· при обрыве фазы.

Для электродвигателя опасны только устойчивые перегрузки. Сверхтоки, обусловленные пуском или самозапуском электродвигателя, кратковременны и самоликвидируются при достижении нормальной частоты вращения.

Значительное увеличение тока электродвигателя получается также при обрыве фазы, что встречается, например, у электродвигателей, защищаемых предохранителями, при перегорании одного из них. При номинальной загрузке в зависимости от параметров электродвигателя увеличение тока статора при обрыве фазы будет составлять примерно (1,6…2,5) I ном . Эта перегрузка носит устойчивый характер. Также устойчивый характер носят сверхтоки, обусловленные механическими повреждениями электродвигателя или вращаемого им механизма и перегрузкой самого механизма. Основной опасностью сверхтоков является сопровождающее их повышение температуры отдельных частей, и в первую очередь, обмоток. Повышение температуры ускоряет износ изоляции обмоток и снижает срок службы двигателя. Перегрузочная способность электродвигателя определяется характеристикой зависимости между сверхтоком и допускаемым временем его прохождения:

где t – допустимая длительность перегрузки, с;

А – коэффициент, зависящий от типа изоляции электродвигателя, а также периодичности и характера сверхтоков; для обычных двигателей А = 150-250;

К – кратность сверхтока, т. е. отношение тока электродвигателя I д к I ном .

Вид перегрузочной характеристики при постоянной времени нагрева T = 300 с представлен на рис. 20.2.

При решении вопроса об установке РЗ от перегрузки и характере ее действия руководствуются условиями работы электродвигателя, имея в виду возможность устойчивой перегрузки его приводного механизма:

а . На электродвигателях механизмов, не подверженных технологическим перегрузкам (например, электродвигателях циркуляционных, питательных насосов и т. п.) и не имеющих тяжелых условий пуска или самозапуска, РЗ от перегрузки может не устанавливаться. Однако, ее установка целесообразна на двигателях объектов, не имеющих постоянного обслуживающего персонала, учитывая опасность перегрузки двигателя при пониженном напряжении питания или неполнофазном режиме;

Рис. 20.2. Характеристика зависимости допустимой длительности перегрузки от кратности тока перегрузки

б . На электродвигателях, подверженных технологическим перегрузкам (например, электродвигателях мельниц, дробилок, насосов и т.п.), а также на электродвигателях, самозапуск которых не обеспечивается, должна устанавливаться РЗ от перегрузки;

в . Защита от перегрузки выполняется с действием на отключение в случае, если не обеспечивается самозапуск электродвигателей или с механизма не может быть снята технологическая перегрузка без останова электродвигателя;

г . Защита от перегрузки электродвигателя выполняется с действием на разгрузку механизма или сигнал, если технологическая перегрузка может быть устранена с механизма автоматически или вручную персоналом без останова механизма, и электродвигатели находятся под наблюдением персонала;

д . На электродвигателях механизмов, которые могут иметь как перегрузку, устраняемую при работе механизма, так и перегрузку, устранение которой невозможно без останова механизма, целесообразно предусматривать действие РЗ от сверхтоков с меньшей выдержкой времени на отключение электродвигателя; в тех случаях, когда ответственные электродвигатели собственных нужд электростанций находятся под постоянным наблюдением дежурного персонала, защиту их от перегрузки можно выполнить с действием на сигнал.

Защита электродвигателей, подверженных технологическойперегрузке, желательно иметь такой, чтобы она, с одной стороны, защищала от недопустимых перегрузок, а с другой – давала возможность наиболее полно использовать перегрузочную характеристику электродвигателя с учетом предшествовавшей нагрузки и температуры окружающей среды. Наилучшей характеристикой РЗ от сверхтоков являлась бы такая, которая проходила несколько ниже перегрузочной характеристики (пунктирная кривая на рис. 20.2).

20.4. Защита от перегрузки с тепловым реле . Лучше других могут обеспечить характеристику, приближающуюся к перегрузочной характеристике электродвигателя, тепловые реле, которые реагируют на количество тепла Q , выделенного в сопротивлении его нагревательного элемента. Тепловые реле выполняются на принципе использования различия в коэффициенте линейного расширения различных металлов под влиянием нагревания. Основой такого теплового реле является биметаллическая пластина состоящая из спаянных по всей поверхности металлов а и б с сильно различающимися коэффициентами линейного расширения. При нагревании пластина прогибается в сторону металла с меньшим коэффициентом расширения и замыкает контакты реле.

Нагревание пластины осуществляется нагревательным элементом при прохождении по нему тока.

Тепловые реле сложны в обслуживании и наладке, имеют различные характеристики отдельных экземпляров реле, часто не соответствуют тепловым характеристикам электродвигателей и имеют зависимость от температуры окружающей среды, что приводит к нарушению соответствия тепловых характеристик реле и электродвигателя. Поэтому тепловые реле применяются в редких случаях, обычно в магнитных пускателях и автоматах 0,4 кВ.

20.5. Защита от перегрузки с токовыми реле . Для защиты электродвигателей от перегрузки обычно применяются МТЗ с использованием реле с ограниченно зависимыми характеристиками типа РТ-80 или МТЗ с независимыми токовыми реле и реле времени.

Преимуществами МТЗ по сравнению с тепловыми являются более простая их эксплуатация и более легкий подбор и регулировка характеристик РЗ. Однако, МТЗ не позволяют использовать перегрузочные возможности электродвигателей из-за недостаточного времени действия их при малых кратностях тока.

МТЗ с независимой выдержкой времени в однорелейном исполнении обычно применяется на всех асинхронных электродвигателях собственных нужд электростанций, а на промышленных предприятиях - для всех синхронных (когда она совмещена с РЗ от асинхронного режима) и асинхронных электродвигателей, являющихся приводами ответственных механизмов, а также для неответственных асинхронных электродвигателей с временем пуска более 12…13 с.

Релейная защита от перегрузки с зависимой выдержкой времени лучше согласовываются с тепловой характеристикой двигателя, однако, и они недостаточно используют перегрузочную способность двигателей в области малых токов.

Защита от перегрузки с зависимой характеристикой выдержки времени может быть выполнена на реле типа РТ-80 или цифровом реле.

Ток срабатывания защиты от перегрузки устанавливается из условия отстройки от I ном электродвигателя:

где к отс – коэффициент отстройки, принимается равным 1,05.

Время действия МТЗ от перегрузки t 3П должно быть таким, чтобы оно было больше времени пуска электродвигателя t пуск , а у электродвигателей, участвующих в самозапуске, больше времени самозапуска.

Время пуска асинхронных электродвигателей обычно составляет 8…15 с. Поэтому характеристика реле с зависимой характеристикой должна иметь при пусковом токе время, не меньшее 12…15 с. На РЗ от перегрузки с независимой характеристикой выдержка времени принимается 14…20 с.

20.6. Защита от перегрузки с тепловой характеристикой выдержки времени на цифровом реле. В цифровое реле защиты двигателя, например, типа MiCOM Р220 заложена тепловая модель двигателя из составляющих прямой и обратной последовательности тока, потребляемого двигателем таким образом, чтобы учесть тепловое воздействие тока в статоре и роторе. Составляющая обратной последовательности токов, протекающих в статоре, наводит в роторе токи значительной амплитуды, которые создают существенное повышение температуры в обмотке ротора. Результатом сложения, проведенного MiCOM Р220 является эквивалентный тепловой ток I экв , отображающий повышение температуры, вызванное током двигателя. Ток I экв вычисляется в соответствии с зависимостью:

(20.7)

К э – коэффициент усиление влияния тока обратной последовательности учитывает повышенное воздействие тока обратной последовательности по сравнению с прямой последовательности на нагрев двигателя. При отсутствии необходимых данных принимается равным 4 - для отечественных двигателей и 6 – для зарубежных.

Дополнительные функции реле MiCOM P220, связанные с тепловой перегрузкой двигателяследующие.

· Запрет отключения от тепловой перегрузки при пуске двигателя.

· Cигнализация тепловой перегрузки.

· Запрет пуска.

· Затяжной пуск.

· Заклинивание ротора.

Заклинивание ротора двигателя может произойти при пуске двигателя или в процессе его работы.

Функция заклинивание ротора при работающем двигателе вводится автоматически при его успешном развороте после истечения заданной выдержки времени.

В цифровых реле Sepam 2000 защита двигателя от затяжного пуска и заклинивания ротора выполнена иначе. Первая защита срабатывает и отключает двигатель, если ток двигателя от начала процесса пуска превышает значение 3I ном в течение заданного времени t 1 = 2t пуска. Начало пуска обнаруживается в момент увеличения потребляемого тока от 0 до значения 5% номинального тока. Вторая защита срабатывает, если пуск завершен, двигатель работает нормально, и в установившемся режиме неожиданно ток двигателя достигает значения более 3I ном и держится в течение заданного времени t 2 = 3-4с.

Несимметрия. Защита двигателя от перегрузки токами обратной последовательности защищает двигатель от подачи напряжения с обратным чередованием фаз, от обрыва фазы, от работы при длительной несимметрии напряжений.

При подаче на двигатель напряжения с обратным чередованием фаз двигатель начинает вращаться в обратную сторону, приводимый в действие механизм может быть заклинен или вращаться с моментом сопротивления, отличающимся от момента прямого вращения. Таким образом, величина тока обратной последовательности двигателя может колебаться в широких пределах. При обрыве фазы двигатель уменьшает вращающий момент в 2 раза и для компенсации у него в 1,5...2 раза увеличивается ток.

При несимметрии питающих напряжений ток обратной последовательности может иметь различную величину до самых малых значений. Появление тока обратной последовательности более всего влияет на нагрев ротора двигателя, где он наводит токи двойной частоты. Таким образом, целесообразно иметь защиту по I 2 , которая отключала бы двигатель для предотвращения его перегрева.

Защита имеет 2 ступени:

Ступень I обр > с независимой выдержкой времени. Ток срабатывания принимается равным (0,2…0,25)I ном двигателя. Выдержка времени должна обеспечить отключение несимметричных коротких замыканий в прилегающей сети, для чего она должна быть на ступень больше, чем защита питающего трансформатора:

(20.8)

Ступень I обр >> сзависимой характеристикой выдержки времениможет быть использована для повышения чувствительности защиты, если известны реальные тепловые характеристики двигателя по току обратной последовательности.

Потеря нагрузки . Функция позволяет обнаружить расцепление двигателя с приводимым им в движение механизмом вследствие обрыва муфты, ленты транспортера, выпуск воды из насоса и т.д. по уменьшению рабочего тока двигателя.

Уставка минимального тока:

где I хх – ток холостого хода двигателя с механизмом определяется при испытаниях.

Выдержка времени минимального тока двигателя tI< определяется исходя из технологических особенностей механизма – возможных кратковременных сбросов нагрузки, при отсутствии таких соображений принимается равным:

Выдержка времени запрета автоматики минимального тока двигателя t запр. задерживает ввод автоматики при пуске двигателя, если нагрузка подключается к двигателю после его разворота или определяется исходя из технологии подачи нагрузки на двигатель, если нагрузка подключена к двигателю постоянно. Уставка должна быть равна времени разворота двигателя плюс необходимый запас:

Количество пусков двигателя. При отсутствии конкретных данных по двигателю можно руководствоваться следующими общими соображениями:

− Согласно ПТЭ, отечественные двигатели обязаны обеспечивать 2 пуска из холодного состояния и 1 из горячего состояния.

− Постоянная времени охлаждения двигателя равна 40мин.

− Можно выполнить следующие уставки в автоматике подсчета пусков:

Уставка по времени, в течение которого считаются пуски: Т отсчета = 30 мин.

Количество горячих пусков –1. Количество холодных пусков – 2.

Уставка по времени, в течение которого повторный пуск запрещен Т запрет = 5 мин. Минимальное время между пусками не использовать.

Время разрешения самозапуска . Самозапуск двигателей на электростанциях должен обеспечиваться, при времени перерыва питания 2,5с. По этим данным производится расчетная проверка обеспечения самозапуска при перерыве питания двигателей на электростанциях.

Таким образом, для электростанций можно принять Т самозап = 2,5 с.

Для других условий следует определить время, на которое возможен перерыв питания, например время действия АВР, произвести расчетную проверку самозапуска, и если он обеспечивается при таком перерыве питания, установить указанное время на устройстве. Если самозапуск не обеспечивается при любом перерыве питания, или он запрещается, функция «разрешение самозапуска» не вводится.

Контрольные вопросы

1. Какие защиты должны иметь асинхронные двигатели в соответствии с ПУЭ?

2. Какие защиты должны иметь синхронные двигатели в соответствии с ПУЭ?

3. Как осуществляется защита и выбираются уставки защиты от междуфазных КЗ двигателей?

4. Как осуществляется защита и выбираются уставки защиты от перегрузки двигателей?

5. Как осуществляется защита и выбираются уставки защиты минимального напряжения двигателей?

6. Каковы особенности защиты синхронных двигателей?

Электродвигатель, как любое электротехническое устройство, не застрахован от аварийных ситуаций. Если меры вовремя не приняты, т.е. не установлена защита электродвигателя от перегрузок, то поломка его может привести к выходу из строя других элементов.

{ ArticleToC: enabled=yes }

Проблема, связанная с надежной защитой электродвигателей, как и устройств, в которые их устанавливают, продолжает оставаться актуальной и в наше время. Касается это в первую очередь предприятий, где частенько нарушаются правила эксплуатации механизмов, что приводит к перегрузкам изношенных механизмов и авариям.

Чтобы избежать перегрузок, необходима установка защиты, т.е. устройств, которые могут вовремя среагировать и предотвратить аварию.

Поскольку наибольшее применение получил асинхронный двигатель, на его примере будем рассматривать, как двигатель защитить от перегрузки и перегрева.

Для них возможно пять типов аварий:

  • обрыв в обмотке статора фазы (ОФ). Возникает ситуация в 50% аварий;
  • затормаживание ротора, возникающее в 25% случаев (ЗР);
  • понижение сопротивления в обмотке (ПС);
  • плохое охлаждение мотора (НО).

При возникновении любой из перечисленных видов аварий, существует угроза поломки двигателя, поскольку происходит его перегрузка. Если не установлена защита, ток возрастает на протяжении длительного времени. Но может произойти его резкий его рост при коротком замыкании. Исходя из возможного повреждения, подбирается защита электродвигателя от перегрузок.

Типы защиты от перегрузок

Их несколько:

  • тепловая;
  • токовая;
  • температурная;
  • фазочувствительная и пр.

К первой, т.е. тепловой защите электродвигателя относят установку теплового реле, которое разомкнет контакт, в случае перегрева.

Температурная защита от перегрузок, реагирующая на повышение температуры. Для ее установки нужны температурные датчики, которые разомкнут цепь в случае сильного нагрева частей мотора.

Токовая защита, которая бывает минимальной и максимальной. Осуществить защиту от перегрузки можно, применив токовое реле. В первом варианте реле срабатывает, размыкает цепь, если в статорной обмотке превышено допустимое значение тока.

Во втором, реле реагируют на исчезнувший ток, вызванный, к примеру, обрывом цепи.

Эффективную защиту электродвигателя от повышения тока в обмотке статора, следовательно, перегрева осуществляют при помощи автоматического выключателя.

Электродвигатель может выходить из строя из-за перегрева.

Отчего он случается? Вспоминая школьные уроки физики, все понимают, что, протекая по проводнику, ток его нагревает. Электродвигатель не перегреется при номинальном токе, значение которого указывается на корпусе.

Если же в обмотке ток по разным причинам начинает увеличиваться, двигателю грозит перегрев. Если мер не предпринять, он выйдет из строя из-за короткого замыкания между проводниками, у которых расплавилась изоляция.

Поэтому, нужно не допустить роста тока, т.е. установить тепловое реле — эффективную защиту двигателя от перегрева. Конструктивно оно является тепловым расцепителем, биметаллические пластины которого изгибаются под воздействием тепла, размыкая цепь. Для компенсации тепловой зависимости у реле есть компенсатор, благодаря которому происходит обратный прогиб.

У реле шкала прокалибрована в амперах и соответствует значению номинального тока, а не величине тока срабатывания. В зависимости от конструкции монтируют реле на щиты, на магнитные пускатели или в корпус.

Грамотно подобранные, они не просто не допустят перегрузки электродвигателя, но предотвратят перекос фаз и заклинивание ротора.

Защита автомобильного двигателя

Перегрев электродвигателя грозит и водителям автомобилей с наступлением жары, да еще с последствиями разной сложности – от поездки, которую придется отменить, до капитального ремонта мотора, у которого от перегрева прихватить может поршень в цилиндре или деформироваться головка.

Во время езды охлаждается электродвигатель воздушным потоком, а когда авто попадает в пробки этого не происходит, что и вызывает перегрев. Чтобы его распознать вовремя, периодически следует посматривать на датчик (при наличии такового) температуры. Как только стрелка окажется в красной зоне, необходимо немедленно остановиться для выявления причины.

Нельзя пренебрегать сигналом аварийной лампочки, потому что за ним почувствуется запах выкипевшей охлаждающей жидкости. Затем, из-под капота появится пар, свидетельствующий о критической ситуации.

Как быть в подобной ситуации? Остановиться, заглушив электродвигатель и подождать, пока прекратится кипение, открыть капот. На это уходит обычно до 15 минут. При отсутствии признаков протекания, доливают жидкость в радиатор, и пробуют завести мотор. Если же температура начнет резко расти, осторожно движутся для выяснения причины в сервис для диагностики.

Причины, вызывающие перегрев

На первом месте стоят неисправности радиатора. Это могут быть: простое загрязнение тополиным пухом, пылью, листвой. Устранив загрязнения, решат проблему. Более проблематично бороться с внутренним загрязнением радиатора — накипью, появляющейся при использовании герметиков.

Решением будет замена этого элемента.

Затем следуют:

  • Разгерметизация системы, вызванная треснувшим шлангом, недостаточно затянутыми хомутами, неисправностью краника отопителя, состарившимся уплотнителем насоса и пр.;
  • Неисправный термостат или краник. Определить это легко, если при горячем двигателе осторожно ощупать шланг или радиатор. Если шланг холодный – причина в термостате и потребуется его замена;
  • Помпа, работающая неэффективно или вовсе неработающая. Это приводит к слабой циркуляции по охлаждающей системе;
  • Сломанный вентилятор, т.е. не включающийся из-за вышедшего из строя мотора, муфты включения, датчика, отошедшего провода. Не крутящаяся крыльчатка тоже вызывает перегрев электродвигателя;
  • Наконец, недостаточное уплотнение камеры сгорания. Это последствия перегрева, приводящие к сгоранию прокладки головки, образованию трещин и деформированию головки цилиндра и гильзы. Если из бачка с охлаждающей жидкостью заметно вытекание, приводящее к резкому повышению давления при запуске охлаждения, или появилась в картере маслянистая эмульсия, значит, причина в этом.

Дабы не попасть в аналогичную ситуацию, необходимо проводить профилактику, способную спасти от перегрева и поломки. «Слабое звено» определяют методом исключения, т.е. проверяют последовательно подозрительные детали.

Может стать причиной перегрева неправильно выбранный режим эксплуатации, т.е. пониженная передача и высокие обороты.

Защита от перегрева мотор-колеса

Мотор — колесо велосипеда тоже приходит в негодность после «перенесенного» перегрева. Если в жаркий день на максимальной мощности ехать какое-то время на предельной скорости, обмотки мотор-колеса перегреются и начнут плавиться, как и любого электрического мотора, испытывающего перегрузки.

Далее, наступит очередь короткого замыкания и остановка двигателя, для восстановления работоспособности которого, нужна перемотка. Чтобы его не допустить, существуют контроллеры большой мощности, увеличивающие крутящий момент. Ремонт мотор-колеса, вышедшего из строя, дорогостоящая операция, соизмеримая по финансовым затратам с покупкой нового.

Можно было бы теоретически установить термодатчик, который не допустит перегрева, но производители этого не делают по ряду причин. Одной из них является усложнение конструкции контроллера и удорожания мотор-колеса в целом. Остается одно – тщательно подбирать контроллер в соответствии с мощностью мотор-колеса.

Видео: Перегрев двигателя, причины перегрева.