Почему не падает вращающийся волчок? Почему вращающийся волчок не падает.

В классических волчках свободная нога вытягивается вперёд или немного присогнута внутрь к опорной ноге. Однако существует множество вариаций, где свободная нога может быть направлена в сторону или назад от опорной, или лежать сверху.

Волчок - одна из трёх базовых позиций вращений .

Классический волчок в исполнении Аманды Эворы

  • волчок может исполняться в качестве вращения в одной позиции , как со сменой ноги, так и без.
  • волчок также может исполняться в комбинированных вращениях . В зависимости от вида программ, позиция волчка может быть обязательной, например в комбинированном вращении со сменой ноги в коротких программах.
  • прыжок в волчок — вращение в волчке без смены ноги, с входом прыжком. Наиболее распространённые прыжковые заходы в волчок — чинян , Death Drop и бедуинский.
Примеры позиций волчков
Простой волчок. Самое классическое и каноническое исполнение, бедро опорной ноги параллельно льду, свободная нога либо вытянута вперёд, либо немного согнута внутрь, спина прямая и наклонена вперёд, руки тянутся вперёд.

Классификация по НСС: Простая вариация позиции волчка.

Простой волчок, низкий вариант. Бедро опорной ноги заметно ниже, чем уровень параллели льду.

Классификация по НСС: Простая вариация позиции волчка. С точки зрения судейства ничем не отличается от классического варианта.

Простой волчок, высокий вариант. Современные правила предъявляют довольно жёсткие требования к позиции волчка, бедро опорной ноги должно быть хотя бы параллельно льду. Строго говоря, из-за высокого положения опорного бедра это уже не волчок, а промежуточная позиция, близкая к волчку.

Классификация по НСС: скорее всего, такой волчок будет квалифицирован как простая вариация промежуточной позиции. Такая позиция не позволяет получать какие-либо черты, повышающие уровень сложности вращения, а равно не засчитывается в качестве выполненного волчка во вращении в одной позиции и комбинированных.

Пушка, волчок с захватом свободной ноги руками. Свободная нога распрямлена, вытянута вперёд, удерживается руками параллельно льду. Часто исполняется как в прямых, так и обратных вращениях.

Классификация по НСС: простая вариация позиции волчка. Сам по себе захват ноги не делает вариацию сложной, необходимы другие факторы, усложняющие вращение.

Складка. Волчок, в котором корпус и голова плотно сложены к опорной ноге, свободная нога или вытянута вперёд, тогда такой вариант ещё называют "пушкой", либо согнута внутрь — последний вариант ещё иногда называют Cannonball. Вариации часто исполняются как в прямых, так и обратных вращениях.

Классификация по НСС: сложная вариация позиции волчка, категория SF (Sit Forward) .

Волчок - стульчик, со свободной ногой, находящейся за опорной. Свободная нога заводится назад за опорную, и удерживается противоположной рукой за конёк или ботинок. Для усложнения вращения корпус и голову складывают к опорной ноге, или, возможно, делают какие-либо иные вариации. Исполняется как в прямых, так и обратных вращениях.

Классификация по НСС: SB (Sit Behind) .

Pancake Spin (блинчик). Конёк свободной ноги лежит на колене или бедре опорной, при этом позиции рук могут варьироваться, руки могут обхватывать опорный конёк, быть отведены в стороны или сомкнуты в замке за спиной. Вариация исполняется как в прямых, так и обратных вращениях.

Классификация по НСС: При хорошем исполнении трактуется как сложная вариация волчка категории SF (Sit Forward) . Но, эту вариацию сложно сделать так, чтобы опорное бедро было достаточно низким, и тогда эта позиция будет трактоваться как сложная промежуточная.

Волчок, с руками в замке за спиной. Корпус складывается к опорной ноге, руки находятся в замке за спиной, натянуты вверх.

Классификация по НСС: При достаточно сложном исполнении трактуется как сложная вариация волчка категории SF (Sit Forward) .

Волчок с горизонтально развёрнутым корпусом. Очень необычная и оригинальная позиция.

Классификация по НСС: Сложная вариация категории SF (Sit Forward)

Скрученный волчок. Корпус сильно скручивается так, что линия плеч становится перпендикулярна льду. Свободная нога скрещивается спереди с опорной. Распространённая вариация для обратных вращений.

Классификация по НСС: сложная вариация волчка категории SF (Sit Forward) . Существенно отличается от вариаций вроде складок.

Ломаный волчок (Broken Leg Sit Spin). Нога развёрнута и сильно вынесена в сторону от опорной. Вариация только для прямых вращений.

Классификация по НСС: При достаточно хорошем и сложном исполнении засчитывается как сложная вариация волчка категории SS (Sit Sideways)

Волчок, с прямой свободной ногой, скрещенной сзади от опорной. Довольно эффектная позиция, для обратных вращений.

Классификация по НСС: При хорошем исполнении засчитывается как сложная вариация волчка категории SB (Sit Behind)

Чинян. Чинян — прыжок во вращение, с принятием позиции волчка в воздухе. Чинян, это именно сам прыжок, а не вращение, начинающееся с этого прыжка (так, чинян может предшествовать вращениям стоя, не обязательно волчкам). Ключевой критерий — должна быть принята позиция волчка в воздухе, бедро ноги, с которой делается прыжок, в какой-то момент должно быть параллельно льду.

Классификация по НСС: использование чиняна в качестве захода на вращение (как в составе элемента "прыжок во вращение", так и любого другого вращения с заходом прыжком), при достаточно хорошем исполнении, повышает уровень сложности.

Некоторые вопросы, связанные с судейством

  • позиция волчка может считаться исполненной только в том случае, если было сделано не менее двух непрерывных оборотов в базовой (то есть, достаточно низкой) позиции. Если этот критерий не выполнен для вращения в волчке, то элемент будет записан как "вращение без уровня" (с нулевой оценкой). Если засчитанной позиции не будет в комбинированном вращении со сменой ноги, то элемент получит уровень не выше 1, а в короткой программе так же будет снижено GOE элемента.
  • категория сложной вариации вращения — понятие, введённое в сезоне 2010-11. Сложные вариации волчков классифицируются по категориям по положению свободной ноги относительно опорной (спереди, сбоку или сзади). В течении всей программы не более двух попыток исполнения сложных вариаций одной категории могут повысить уровни вращений, и только при условии, если эти две вариации одной категории существенно разные.
  • черты сложности для волчков (на сезон 2010-11): 8 оборотов в одной вариации позиции (в том числе, в простых вариациях), сложные вариации (как сложные позиции, так и подпрыжки), смена ребра (с сезона 2010-11 только в прямых вращениях и только с ребра назад-внутрь на вперёд-наружу), обратный вход во вращение. Прим.: требования к чертам сложности требуют отдельного детального рассмотрения.

И хотя сегодня явственно слышно, что песенка, в общем-то, танцевальная, по своей ритмике и стилю близкая к диско, тогда мы, ничтоже сумняшеся, воспринимали её, как настоящую . Фото: Скан обложки СВ

История КРУИЗА, как и многих других советских 1980-х годов, уходит своими корнями в ВИА. Был такой немалый ансамбль из 12 человек — МОЛОДЫЕ ГОЛОСА. В 1980 году в эту многочисленную компанию решили принять .

Этот парень в тёмных очках (Сарычев выбил в детстве глаз из самодельного пистолета и долго по этому поводу комплексовал) оказался не только талантливым клавишником и обладателем самопального синтезатора, но и весьма креативным человеком. Именно он выдвинул идею создать на базе МОЛОДЫХ ГОЛОСОВ собственную группу, которая после официальной программы, состоящей из песен советских композиторов, играла бы на сцене собственный материал.

Сергей Сарычев:
«Я подговорил их руководителя Матвея Аничкина, чтобы он организовал концерт из двух отделений. Чтобы в первом МОЛОДЫЕ ГОЛОСА со своими „дудками“ исполняли этот свой „джаз“, а во втором отделении пятеро музыкантов МОЛОДЫХ ГОЛОСОВ играли рок».

Очень быстро выяснилось, что второе отделение вызывает у публики гораздо больший интерес, чем первое. И уже в 1981 году рок-пятёрка создаёт при Тамбовской филармонии отдельную группу под названием КРУИЗ.

Валерий Гаина, гитарист КРУИЗА:
«…мы заметили совершенно непонятную реакцию зала — как только мы начинали эти песни играть, публика тут же сходила с ума. Ни с того ни с сего. Этих песен тогда не знали — не было записей. А они устраивали фурор на ».

Хотя первый альбом группы, проходивший под незатейливым названием «Круиз-1», обычно датируется 1981 годом, музыканты вспоминали, что сама дебютная фонограмма была записана осенью 1980-го (ещё до выхода из состава МОЛОДЫХ ГОЛОСОВ). Первое же выступление под новой маркой состоялось в сентябре 1981 года в Харьковском Дворце Спорта (вместе с группой МАГНЕТИК БЭНД). По воспоминаниям, в пятитысячный зал тогда удалось втиснуться восьми тысячам человек. Те же, кому не повезло, внимали звукам с улицы.

Драйв, профессиональная игра и лазерное шоу сделали КРУИЗ суперпопулярными. Их даже бранили в прессе за то, что, мол, молодежь у них на концертах стулья ломает.

Для первого альбома Сарычев сочинил всего одну песню — зато именно она и стала прорывным хитом КРУИЗА. Правда многие слушатели были озадачены тем, почему «Волчок» содержит всего один куплет. Оказалось, что в оригинальной задумке никакого куплета вообще не планировалось.

Александр Монин, вокалист КРУИЗА:
«Изначально автор этой песни Борис Доронин… написал текст вообще из двух строк. Запев шел на „Крутится волчок, крутится волчок, крутится волчок“, и больше ничего по запеву не произносилось. А припев звучал так: „Бежит слеза, вперёд, назад“.
Вот весь текст. Я бы сказал, стихи. Это был минимализм, но это была песня, которая наполнялась какими-то эмоциями. Любую фразу можно произнести с разными интонациями сто тысяч раз. Это и происходило в песне. Но… Местные московские цензоры на нас наехали, сказав, что песня не может состоять из двух строчек. Мы взяли и подписали ещё немножечко. Хотя суть песни не изменилась».

Текст досочинил основной текстовик КРУИЗА — , и песня обрела такой желанный для советских цензоров смысл.

Александр Монин:
«Нужно понимать, что это абсолютная символика. Это не детская игрушка. Это вечно вращающийся символ жизни, который периодически то медленнее, то быстрее вращается, то заваливается на бок. Чтобы он вращался и не останавливался, надо прилагать какие-то усилия. Именно об этом и песня…».

«Волчком» хиты группы КРУИЗ не ограничивались. Достаточно упомянуть такие яркие песни, как «Не позволяй душе лениться», «Музыка Невы», «Как скучно жить без светлой сказки». Музыку к ним сочинил Валерий Гаина, который, правда, не постеснялся вставить в «Сказку» проигрыш из песни Боба Дилана «I Want You» .

Что касается «Души», то здесь Гаина обратился к классике, а именно к стихотворению поэта . Лично мне эта песня никогда не нравилась — мажорный припев плохо резонировал со стихами. Зато КРУИЗ сумел попасть с «Душой» на большой экран — их выступление можно было увидеть в художественном фильме «Путешествие будет приятным» (1982).

Советская индустрия звукозаписи соизволила обратить внимание на успех группы лишь в 1983 году. «Волчок», наконец-то, обрёл воплощение на виниле. Сначала как одна из песен на сборнике «Парад ансамблей» и лишь в 1985-м — на отдельном миньоне самого КРУИЗА.
Фото: Обложки пластинок

За это время группа успела распасться (в 1984 году вышел указ, погубивший много советских рок-коллективов) и собраться вновь — на этот раз в обличье «хеви-металлического» трио, возглавляемого Гаиной. «Металл» был в моде, и «Волчки» уже не годились.

В 1989 году группа снова распалась, а Гаина организовал собственный проект. Очередной раз КРУИЗ собрался лишь в 1992 году по инициативе Монина. Страну к тому времени прошибла ностальгия и о «Волчке» вспомнили. Правда, играли его теперь более жёстко.

А что же Сарычев? — спросите вы. А Сарычев покинул КРУИЗ ещё в начале 1983 года, чтобы создать свой собственный проект. Но об этом в следующей статье.

Хороший волчок должен легко вертеться. Для этого необходимо правильно разместить центр тяжести.При большой скорости вращающийся волчок стремится сохранить неизменным положение своей оси и не падает. Постепенно из-за трения скорость вращения уменьшается. И когда скорость становится недостаточной, ось волчка по спирали отклоняется от вертикали, далее следует падение.

Из тысяч людей, забавлявшихся в детстве с волчком, не многие смогут правильно ответить на этот вопрос. Как, в самом деле, объяснить то, что вращающийся волчок, поставленный отвесно или даже наклонно, не опрокидывается, вопреки всем ожиданиям?

Какая сила удерживает его в таком, казалось бы, неустойчивом положении? Разве тяжесть на него не действует? Здесь имеет место весьма любопытное взаимодействие сил. Теория волчка непроста, и углубляться в нее мы не станем. Наметим лишь основную причину , вследствие которой вращающийся волчок не падает.

На рисунке изображен волчок, вращающийся в направлении стрелок. Обратите внимание на часть А его ободка и на часть В, противоположную ей. Часть А стремится двигаться от вас, часть В – к вам. Проследите теперь, какое движение получают эти части, когда вы наклоняете ось волчка к себе.

Этим толчком вы заставляете часть А двигаться вверх, часть В – вниз; обе части получают толчок под прямым углом к их собственному движению. Но так как при быстром вращении волчка окружная скорость частей диска очень велика, то сообщаемая вами незначительная скорость, складываясь с большой круговой скоростью точки, дает равнодействующую, весьма близкую к этой круговой, – и движение волчка почти не меняется.

Отсюда понятно, почему волчок как бы сопротивляется попытке его опрокинуть. Чем массивнее волчок и чем быстрее он вращается, тем упорнее противодействует он опрокидыванию.

Вращающийся волчок, будучи подброшен, сохраняет первоначальное направление своей оси.
Сущность этого объяснения непосредственно связана с законом инерции. Каждая частица волчка движется по окружности в плоскости, перпендикулярной к оси вращения. По закону инерции частица в каждый момент стремится сойти с окружности на прямую линию, касательную к окружности.

Но всякая касательная расположена в той же плоскости, что и сама окружность; поэтому каждая частица стремится двигаться так, чтобы все время оставаться в плоскости, перпендикулярной к оси вращения.

Отсюда следует, что все плоскости в волчке, перпендикулярные к оси вращения, стремятся сохранить свое положение в пространстве, а поэтому и общий перпендикуляр к ним, т. е. сама ось вращения , также стремится сохранить свое направление.
Не будем рассматривать всех движений волчка, которые возникают при действии на него посторонней силы.

Это потребовало бы чересчур подробных объяснений, которые, пожалуй, покажутся скучными.
Я хотел лишь разъяснить причину стремления всякого вращающегося тела сохранять неизменным направление оси вращения. Этим свойством широко пользуется современная техника. Различные гироскопические (основанные на свойство волчка) приборы – компасы, стабилизаторы и др. – устанавливаются на кораблях и самолетах. Таково полезное использование простой, казалось бы, игрушки.

Вращение обеспечивает устойчивость снарядов и пуль в полете, а также может быть использовано для обеспечения устойчивости космических снарядов – спутников и ракет – при их движении.

Дети порой бывают очень любопытными и иногда задают вопросы, на которые очень сложно ответить. Например, почему люди не падают с Ведь она круглая, вращается вокруг своей оси да еще и перемещается в бескрайних просторах Вселенной среди огромного количества звезд. Почему при этом человек может спокойно ходить, сидеть на диване и совершенно не беспокоиться? К тому же некоторые народы так и живут «вверх ногами». Да и бутерброд, который уронили, падает на землю, а не летит в небо. Может, что-то притягивает нас к Земле и мы не может оторваться?

Почему люди не падают с поверхности Земли?

Если ребенок начал задавать подобные вопросы, то можно рассказать ему о гравитации, или по-другому - о земном притяжении. Ведь именно это явление заставляет любой предмет стремиться к поверхности Земли. Благодаря гравитации человек не падает и не улетает.

Земное притяжение позволяет населению планеты спокойно перемещаться по ее поверхности, возводить здания и всевозможные сооружения, кататься на санках или лыжах с горы. Благодаря гравитации предметы падают вниз, а не летят вверх. Чтобы проверить это на деле, достаточно подбросить мяч. Он в любом случае упадет на землю. Вот почему люди не падают с поверхности Земли.

А как же Луна?

Конечно, земное притяжение не позволяет человеку падать с Земли. Но возникает другой вопрос - почему Луна на нее не падает? Ответ очень прост. Луна движется постоянно по орбите нашей планеты. Если же спутник Земли остановится, то он обязательно упадет на поверхность планеты. Это также можно проверить, проведя небольшой эксперимент. Для этого нужно привязать веревочку к гайке и раскрутить ее. Она будет перемещаться в воздухе до тех пор, пока не остановится. Если же прекратить раскручивание, то гайка просто упадет. Стоит также отметить, что гравитация Луны примерно в 6 раз слабее земного притяжение. Именно по этой причине здесь ощущается невесомость.

есть у всех

Силой притяжения обладают практически все предметы: животные, машины, здания, люди и даже мебель. И человек не притягивается к другому человеку только потому, что наша гравитация достаточно мала.

Сила притяжения напрямую зависит от расстояния между отдельными телами, а также от их массы. Так как человек весит очень мало, он притягивается не к другим предметам, а именно к Земле. Ведь ее масса значительно больше. Земля очень большая. Масса нашей планеты огромна. Естественно, и сила притяжения велика. Благодаря этому все предметы притягиваются именно к Земле.

Когда было открыто земное притяжение?

Для детей бывают неинтересны скучные факты. Но история открытия земного притяжения достаточно странная и забавная. был открыт Исааком Ньютоном. Ученый сидел под яблоней и размышлял о Вселенной. В этот момент ему на голову упал плод. В результате этого ученый осознал, что все предметы падают именно вниз, потому что существует сила притяжения. продолжил свои исследования. Ученый установил, что сила гравитации зависит от массы тел, а также от расстояния между ними. Он также доказал, что на большом расстоянии предметы не способны влиять друг на друга. Так и возник закон гравитации.

Все ли падает вниз: небольшой эксперимент

Чтобы ребенок мог лучше понять, почему люди не падают с поверхности Земли, можно провести небольшой эксперимент. Для этого потребуются:

  1. Картон.
  2. Стакан.
  3. Вода.

Стакан необходимо наполнить жидкостью до самых краев. После этого емкость следует накрыть картоном так, чтобы внутрь не попал воздух. После этого нужно перевернуть стакан дном вверх, придерживая при этом картон рукой. Лучше всего проводить эксперимент над раковиной.

Что же произошло? Картон и вода остались на месте. Дело в том, что внутри емкости совершенно нет воздуха. Картон и вода неспособны преодолеть давление воздуха снаружи. Именно по этой причине они остаются на своих местах.

Из тысяч людей, забавлявшихся в детстве с волчком, не многие смогут правильно ответить на этот вопрос. Как, в самом деле, объяснить то, что вращающийся волчок, поставленный отвесно или даже наклонно, не опрокидывается, вопреки всем ожиданиям? Какая сила удерживает его в таком, казалось бы, неустойчивом положении? Разве тяжесть на него не действует?

Здесь имеет место весьма любопытное взаимодействие сил. Теория волчка непроста, и углубляться в нее мы не станем. Наметим лишь основную причину, вследствие которой вращающийся волчок не падает.

На рис. 26 изображен волчок, вращающийся в направлении стрелок. Обратите внимание на часть A его ободка и на часть B, противоположную ей. Часть A стремится двигаться от вас, часть B – к вам. Проследите теперь, какое движение получают эти части, когда вы наклоняете ось волчка к себе. Этим толчком вы заставляете часть A двигаться вверх, часть B – вниз; обе части получают толчок под прямым углом к их собственному движению. Но так как при быстром вращении волчка окружная скорость частей диска очень велика, то сообщаемая вами незначительная скорость, складываясь с большой круговой скоростью точки, дает равнодействующую, весьма близкую к этой круговой, – и движение волчка почти не меняется. Отсюда понятно, почему волчок как бы сопротивляется попытке его опрокинуть. Чем массивнее волчок и чем быстрее он вращается, тем упорнее противодействует он опрокидыванию.

Рисунок 26. Почему волчок не падает?

Рисунок 27. Вращающийся волчок, будучи подброшен, сохраняет первоначальное направление своей оси.

Сущность этого объяснения непосредственно связана с законом инерции. Каждая частица волчка движется по окружности в плоскости, перпендикулярной к оси вращения. По закону инерции частица в каждый момент стремится сойти с окружности на прямую линию, касательную к окружности. Но всякая касательная расположена в той же плоскости, что и сама окружность; поэтому каждая частица стремится двигаться так, чтобы все время оставаться в плоскости, перпендикулярной к оси вращения. Отсюда следует, что все плоскости в волчке, перпендикулярные к оси вращения, стремятся сохранить свое положение в пространстве, а поэтому и общий перпендикуляр к ним, т. е. сама ось вращения, также стремится сохранить свое направление.



Не будем рассматривать всех движений волчка, которые возникают при действии на него посторонней силы. Это потребовало бы чересчур подробных объяснений, которые, пожалуй, покажутся скучными. Я хотел лишь разъяснить причину стремления всякого вращающегося тела сохранять неизменным направление оси вращения.

Этим свойством широко пользуется современная техника. Различные гироскопические (основанные на свойстве волчка) приборы – компасы, стабилизаторы и др. – устанавливаются на кораблях и самолетах.

Таково полезное использование простой, казалось бы, игрушки.

Искусство жонглеров

Многие удивительные фокусы разнообразной программы жонглеров основаны тоже на свойстве вращающихся тел сохранять направление оси вращения. Позволю себе привести выдержку из увлекательной книги английского физика проф. Джона Перри «Вращающийся волчок».

Рисунок 28. Как летит монета, подброшенная с вращением.

Рисунок 29. Монета, подброшенная без вращения, падает в случайном положении.

Рисунок 30. Подброшенную шляпу легче поймать, если ей было сообщено вращение около оси.

Однажды я показывал некоторые из моих опытов перед публикой, пившей кофе и курившей табак в великолепном помещении концертного зала „Виктория“ в Лондоне. Я старался заинтересовать моих слушателей, насколько мог, и рассказывал о том, что плоскому кольцу надо сообщить вращение, если его желают бросить так, чтобы можно было наперед указать, куда оно упадет; точно так же поступают, если хотят кому‑нибудь бросить шляпу так, чтобы он мог поймать этот предмет палкой. Всегда можно полагаться на сопротивление, которое оказывает вращающееся тело, когда изменяют направление его оси. Далее я объяснял моим слушателям, что, отполировав гладко дуло пушки, никогда нельзя рассчитывать на точность прицела; вследствие этого теперь делают нарезные дула, т. е. вырезают на внутренней стороне дула пушек спиралеобразные желоба, в которые приходятся выступы ядра или снаряда, так что последний должен получить вращательное движение, когда сила взрыва пороха заставляет его двигаться по каналу пушки. Благодаря этому снаряд покидает пушку с точно определенным вращательным движением.

Это было все, что я мог сделать во время этой лекции, так как я не обладаю ловкостью в метании шляп или дисков. Но после того, как я закончил свою лекцию, на подмостки выступили два жонглера, – и я не мог пожелать лучшей иллюстрации упомянутых выше законов, нежели та, которую давал каждый отдельный фокус, показанный этими двумя артистами. Они бросали друг другу вращающиеся шляпы, обручи, тарелки, зонтики… Один из жонглеров бросал в воздух целый ряд ножей, ловил их опять и снова подбрасывал с большой точностью вверх; моя аудитория, только что прослушав объяснение этих явлений, ликовала от удовольствия; она замечала вращение, которое жонглер сообщал каждому ножу, выпуская его из рук так, что мог наверное знать, в каком положении нож снова вернется к нему. Я был тогда поражен, что почти все без исключения жонглерские фокусы, показанные в тот вечер, представляли иллюстрацию изложенного выше принципа».