Расчет сопротивления резистора для светодиодов. Расчет сопротивления для светодиода Расчет гасящего сопротивления для светодиода

В схемах со светодиодами обязательно используются для ограничения. Они защищают от перегорания и преждевременного выхода из строя светодиодных элементов. Основная проблема заключается в точном подборе необходимых параметров, поэтому у специалистов широкой популярностью пользуется калькулятор расчета сопротивления для светодиодов. Для получения максимально точных результатов потребуются данные о напряжении источника питания, о прямом напряжении самого светодиода и его расчетном токе, а также схема подключения и количество элементов.

Как рассчитать сопротивление токоограничивающих резисторов

В самом простом случае, когда отсутствуют необходимые исходные данные, величину прямого напряжения светодиодов можно с высокой точностью установить по цвету свечения. Типовые данные об этом физическом явлении сведены в таблицу.

Многие светодиоды имеют расчетный ток 20 мА. Существуют и другие виды элементов, у которых этот параметр может достигать значения 150 мА и выше. Поэтому для того чтобы точно определить номинальный ток, понадобятся данные о технических характеристиках светодиода. Если же нужная информация полностью отсутствует, номинальный ток элемента условно принимается за 10 мА, а прямое напряжение - 1,5-2 вольта.

Количество токоограничивающих резисторов напрямую зависит от схемы подключения полупроводниковых элементов. Например, если используется , можно вполне обойтись одним резистором, поскольку сила тока во всех точках будет одинаковой.

В случае параллельного соединения одного гасящего резистора будет уже недостаточно. Это связано с тем, что характеристики светодиодов не могут быть абсолютно одинаковыми. Все они обладают собственными сопротивлениями и такими же разными потребляемыми токами. То есть, элемент с минимальным сопротивлением потребляет большее количество тока и может преждевременно выйти из строя.

Следовательно, если выйдет из строя хотя-бы один светодиод из подключенных параллельно, это приведет к возникновению повышенного напряжения, на которое остальные элементы не рассчитаны. В результате, они тоже перестанут работать. Поэтому при параллельном соединении для каждого светодиода предусматривается собственный резистор.

Все эти особенности учтены в онлайн-калькуляторе. В основе расчетов лежит формула определения сопротивления: R = Uгасящее/Iсветодиода. В свою очередь Uгасящее = Uпитания - Uсветодиода.

Работа светодиода основана на излучении квантов света, возникающих при протекании по нему тока. В зависимости от этого меняется и яркость свечения элемента. При малом токе он светит тускло, а при большом - вспыхивает и сгорает. Для ограничения протекающего через него тока проще всего использовать сопротивление. Выполнить правильный расчёт резистора несложно, но при этом следует помнить, что он только ограничивает, но не стабилизирует ток.

Принцип работы и свойства

Светодиод - это прибор , обладающий способностью излучать свет. На печатных платах и схемах он обозначается латинскими буквами LED (Light Emitting Diode), что в переводе обозначает «светоизлучающий диод». Физически он представляет собой кристалл, помещённый в корпус. Классически им считается цилиндр, одна сторона которого имеет выпуклую округлую форму, являющуюся линзой-полусферой, а другая - плоское основание, и на ней располагаются выводы.

С развитием твердотельных технологий и уменьшения технологического процесса промышленность стала производить SMD-диоды, предназначенные для установки поверхностным монтажом. Несмотря на это, физический принцип работы светодиода не изменился и одинаков как для любого вида, так и для цвета устройства.

Процесс изготовления прибора излучения можно описать следующим образом. На первом этапе выращивают кристалл. Происходит это путём помещения искусственно изготовленного сапфира в заполненную газообразной смесью камеру. В состав этого газа входят легирующие добавки и полупроводник. При нагреве камеры происходит осаждение образующегося вещества на пластину, при этом толщина такого слоя не превышает нескольких микрон. После окончания процесса осаждения методом напыления формируются контактные площадки и вся эта конструкция помещается в корпус.

Из-за особенностей производства одинаковых по параметрам и характеристикам светодиодов не бывает. Поэтому хотя производители и стараются отсортировывать близкие по значениям устройства, нередко в одной партии попадаются изделия, отличающиеся по цветовой температуре и рабочему току.

Устройство радиоэлемента

Светодиод или LED-диод представляет собой полупроводниковый радиоэлемент, в основе работы которого лежат свойства электронно-дырочного перехода. При прохождении через него тока в прямом направлении на границе соприкосновения двух материалов возникают процессы рекомбинации, сопровождающиеся излучением в видимом спектре.

Очень долго промышленность не могла изготовить синий светодиод, из-за чего нельзя было получить и излучатель белого свечения. Лишь только в 1990 году исследователи японской корпорации Nichia Chemical Industries изобрели технологию получения кристалла, излучающего свет в синем спектре. Это автоматически позволило путём смешения зелёного, красного и синего цвета получить белый.

В основе процесса излучение лежит освобождение энергии при рекомбинации зарядов в зоне электронно-дырочного перехода. Образовывается он путём контакта двух полупроводниковых материалов с разной проводимостью. В результате инжекции, перехода неосновных носителей заряда, образуется запирающий слой.

На стороне материала с n-проводимостью возникает барьер из дырок, а на стороне с p-проводимостью - из электронов. Наступает равновесие. При подаче напряжения в прямом смещении происходит массовое перемещение зарядов в запрещённую зону с обеих сторон. В результате они сталкиваются и выделяется энергия в виде излучения света.

Этот свет может быть как видимым человеческому глазу, так и нет. Зависит это от состава полупроводника, количества примесей, ширины запрещённой зоны. Поэтому видимый спектр достигается путём изготовления многослойных полупроводниковых структур.

Характеристики светодиодов

Цвет свечения зависит от типа полупроводника и степени его легирования, что определяет ширину запрещённой зоны p-n перехода. Срок службы светодиодов в первую очередь зависит от температурных режимов его работы. Чем выше нагрев прибора, тем быстрее наступает его старение. А температура, в свою очередь, связана с проходящей через светодиод силой тока. Чем меньшей мощности источник света, тем дольше его срок службы. Старение выражается в виде уменьшения яркости прибора света. Поэтому так важно правильно подобрать сопротивление для светодиода.

К основным характеристикам LED-диодов относят:

Способы подключения

Для беспроблемной работы светодиода очень важно значение рабочего тока. Неверное подключение источников излучения или существенный разброс их параметров при совместной работе приведёт к превышению протекающего через них тока и дальнейшему перегоранию приборов. Связано это с увеличением температуры, из-за которой кристалл светодиода просто деформируется, а p-n переход пробьётся. Поэтому так важно ограничить подающуюся на источник света величину тока, то есть ограничить питающее напряжение.

Проще всего это выполнить, используя сопротивление, включённое последовательно в цепь излучателя. В этом качестве применяется обыкновенный резистор, но он должен иметь определённую величину. Его большое значение не сможет обеспечить нужную разность потенциалов для возникновения процесса рекомбинации, а меньшее - спалит. При этом нужно не только знать, как рассчитать сопротивление для светодиода, но и понимать, как правильно его поставить, особенно если схема насыщена радиоэлементами.

В электрической цепи может использоваться как один светодиод, так и несколько. При этом существует три схемы их включения:

  • одиночная;
  • последовательная;
  • параллельная.

Одиночный элемент

Когда в электрической цепи используется только один светодиод, то последовательно с ним ставится одни резистор. В результате такого подключения общее напряжение, приложенное к этому контуру, будет равно сумме падений разности потенциалов на каждом элементе цепи. Если обозначить эти потери на резисторе как Ur, а на светодиоде Us, то общее напряжение источника ЭДС будет равно: Uo = Ur + Us.

Перефразируя закон Ома для участка сети I = U / R, получается формула: U = I * R. Подставив полученное выражение в формулу для нахождения общего напряжения, получим:

Uo = IrRr + IsRs, где

  • Ir - ток, протекающий через резистор, А.
  • Rr - расчётное сопротивление резистора, Ом.
  • Is - ток, проходящий через светодиод, А.
  • Rs - внутренний импеданс светодиода, Ом.

Значение Rs изменяется в зависимости от условий работы источника излучения и его величина зависит от силы тока и разности потенциалов. Эту зависимость можно увидеть изучая вольт-амперную характеристику диода. На начальном этапе происходит плавное увеличение тока, а Rs имеет высокое значение. После импеданс резко падает и ток стремительно возрастает даже при незначительном росте напряжения.

Если соединить формулы, получится следующее выражение:

Rr = (Uo - Us) / Io, Ом

При этом учитывается, что сила тока, протекающего в последовательном контуре участка цепи, одинакова в любой его точке, то есть Io = Ir = Is. Это выражение подходит и для последовательного соединения светодиодов, ведь при нём для всей цепи используется также лишь один резистор.

Таким образом, для нахождения нужного сопротивления остаётся узнать величину Us. Значение падения напряжения на светодиоде является справочной величиной и для каждого радиоэлемента она своя. Для получения данных понадобится воспользоваться даташитом на устройство. Даташит - это набор информационных листов, которые содержат исчерпывающие сведения о параметрах, режимах эксплуатации, а также схемы включения радиоэлемента. Выпускает его производитель изделия.

Параллельная цепь

При параллельном соединение радиоэлементы контактируют между собой в двух точках - узлах. Для такого типа цепи справедливы два правила: сила тока, входящая в узел, равна сумме сил токов, исходящих из узла, и разность потенциалов во всех точках узлов одинакова. Исходя из этих определений, можно сделать заключение, что в случае параллельного соединения светодиодов искомый резистор, располагающийся в начале узла, находится по формуле: Rr = Uo / Is1+In, Ом, где:

  • Uo - приложенная к узлам разность потенциалов.
  • Is1 - сила тока, протекающая через первый светодиод.
  • In - ток, проходящий через n-й светодиод.

Но такая схема с общим сопротивлением, располагающимся перед параллельным соединением светодиодов, - не используется. Связанно это с тем, что в случае перегорания одного излучателя, согласно закону, сила тока, входящая в узел, останется неизменной. А это значит, она распределится между оставшимися рабочими элементами и при этом через них пойдёт больший ток. В результате возникнет цепная реакция и все полупроводниковые излучатели в конечном счёте сгорят.

Поэтому правильно будет использовать собственный резистор для каждой параллельной ветки со своим светодиодом и выполнить расчёт резистора для светодиода отдельно для каждого плеча. Такой подход ещё выгоден тем, что в схеме можно использовать радиоэлементы с разными характеристиками.

Расчёт сопротивления каждого плеча происходит аналогично одиночному включению: Rn = (Uo - Us) / In, Ом, где:

  • Rn - искомое сопротивление n -ой ветки.
  • Uo - Us - разность падений напряжений.
  • In - сила тока через n-й светодиод.

Пример расчёта

Пускай на электрическую схему поступает питание от источника постоянного напряжения, равного 32 вольтам. В этой схеме стоят два параллельно включённых друг другу светодиода марки: Cree C503B-RAS и Cree XM-L T6. Для расчёта требуемого импеданса понадобится узнать из даташита типовое значение падения напряжения на этих светодиодах. Так, для первого оно составляет 2.1 В при токе 0,2, а второго - 2,9 В при той же величине силы тока.

Подставив данные значения в формулу для последовательной цепи, получится следующий результат:

  • R1 =(U0-Us1)/ I=(32−2,1)/0,2 = 21,5 Ом.
  • R2 = (U0-Us2)/ I=(32−2,9)/0,2 = 17,5 Ом.

Из стандартного ряда подбирают ближайшие значения. Ими будут: R1 = 22 Ома и R2 = 18 Ом. При желании можно рассчитать и мощность, рассеиваемую на резисторах по формуле: P = I*I*U. Для найденных резисторов она составит P= 0,001 Вт.

Браузерные онлайн-калькуляторы

При большом количестве светодиодов в схеме рассчитывать для каждого сопротивление - процесс довольно утомительный, тем более что при этом можно допустить ошибку. Поэтому проще всего для расчётов использовать онлайн-калькуляторы.

Представляют они собой программу, написанную для работы в браузере. В интернете можно встретить много таких калькуляторов для светодиодов , но принцип работы у них одинаков. Понадобится ввести справочные данные в предложенных формах, выбрать схему подключения и нажать кнопку «Результат» или «Расчёт». После чего останется только дождаться ответа.

Пересчитав вручную, его можно проверить, но особого смысла в этом не будет, так как при вычислении программы используют аналогичные формулы.

Светодиод — прибор, который при прохождении через него тока излучает свет.

В зависимости от типа используемого материала для изготовления прибора, светодиоды могут излучать свет различного цвета. Эти миниатюрные, надежные, экономичные приборы используются в технике, для освещения и в рекламных целях.

Светодиод обладает такой же вольтамперной характеристикой, как и обычный полупроводниковый диод. При этом при повышении прямого напряжения на светодиоде проходящий через него ток резко возрастает.

Например, для зеленого светодиода типа WP710A10LGD компании Kingbright при изменении приложенного прямого напряжения от 1,9 В до 2 В ток меняется в 5 раз и достигает 10 мА. Поэтому при прямом подключении светодиода к источнику напряжения при небольшом изменении напряжения ток светодиода может возрасти до очень большого значения, что приведет к сгоранию p-n перехода и светодиода.

осуществлена с применением букв и цифр, с помощью которых можно определить качественные характеристики устройств.

Поэтому при параллельном включении светодиодов обычно к каждому прибору последовательно подключают свой ограничивающий резистор. Расчет сопротивления и мощности такого резистора ничем не отличается от ранее рассмотренного случая.

При последовательном включении светодиодов необходимо включать приборы одного типа. Кроме того, надо учитывать то, что напряжение источника должно быть не меньше суммарного рабочего напряжения всей группы светодиодов.
Расчет токоограничивающего резистора для светодиодов последовательного включения считаются также, как и раньше. Исключение состоит в том, что при вычислении вместо величины Uсв используется величина Uсв*N. В данном случае N — это количество включенных приборов.

Выводы:

  1. Светодиоды — широко распространенные приборы, используемые в технике, для освещения и рекламы.
  2. Во избежание выхода из строя светодиодов из-за их чувствительности к изменениям напряжения для них часто используют ограничивающие резисторы.
  3. Расчет значения сопротивления ограничивающего резистора делается на основе закона Ома.

Расчет резистора для подключения светодиодов на видео

Обычный маленький светодиод выглядит как пластиковая колбочка-линза на проводящих ножках, внутри которой расположены катод и анод. На схеме светодиод изображается как обычный диод, от которого стрелочками показан излучаемый свет. Вот и служит светодиод для получения света, когда электроны движутся от катода к аноду — излучается видимый свет.

Изобретение светодиода приходится на далекие 1970-е, когда для получения света во всю применяли лампы накаливания. Но именно сегодня, в начале 21 века, светодиоды заняли наконец место самых эффективных источников электрического света.

Где у светодиода «плюс», а где «минус»?

Чтобы правильно подключить светодиод к источнику питания, необходимо прежде всего соблюсти полярность. Анод светодиода подключается к плюсу «+» источника питания, а катод — к минусу «-». Катод, подключаемый к минусу, имеет вывод короткий, анод, соответственно, - длинный — длинную ножку светодиода - на плюс «+» источника питания.

Взгляните во внутрь светодиода: большой электрод — это катод, его — к минусу, маленький электрод, похожий просто на окончание ножки, - на плюс. А еще рядом с катодом линза светодиода имеет плоский срез.

Паяльник долго на ножке не держать

Паять выводы светодиода следует аккуратно и быстро, ведь полупроводниковый переход очень боится лишнего тепла, поэтому нужно краткими движениями паяльника дотрагиваться его жалом до припаиваемой ножки, и тут же паяльник отводить в сторону. Лучше в процессе пайки держать припаиваемую ножку светодиода пинцетом, чтобы обеспечить на всякий случай отвод тепла от ножки.

Резистор обязателен при проверке светодиода

Мы подошли к самому главному — как подключить светодиод к источнику питания. Если вы хотите , то не стоит напрямую присоединять его к батарее или к блоку питания. Если ваш блок питания на 12 вольт, то используйте для подстраховки резистор на 1 кОм последовательно с проверяемым светодиодом.

Не забывайте о полярности — длинный вывод на плюс, вывод от большого внутреннего электрода — к минусу. Если не использовать резистор, то светодиод быстро перегорит, в случае если вы нечаянно превысите номинальное напряжение, через p-n-переход потечет большой ток, и светодиод практически тут же выйдет из строя.

Светодиоды бывают разных цветов, однако цвет свечения не всегда определяется цветом линзы светодиода. Белый, красный, синий, оранжевый, зеленый или желтый — линза может быть прозрачной, а включишь — окажется красным или синим. Светодиоды синего и белого свечения — самые дорогие. Вообще, на цвет свечения светодиода влияет в первую очередь состав полупроводника, и как вторичный фактор - цвет линзы.

Находим номинал резистора для светодиода

Резистор включается последовательно со светодиодом. Функция резистора — ограничить ток, сделать его близким к номиналу светодиода, чтобы светодиод мгновенно не перегорел, и работал бы в нормальном номинальном режиме. Берем в расчет следующие исходные данные:

    Vps - напряжение источника питания;

    Vdf - прямое падение напряжения на светодиоде в нормальном режиме;

    If - номинальный ток светодиода при нормальном режиме свечения.

Теперь, прежде чем находить , отметим, что ток в последовательной цепи у нас будет постоянным, одним и тем же в каждом элементе: ток If через светодиод будет равен току Ir через ограничительный резистор.

Следовательно Ir = If. Но Ir = Ur/R - по закону Ома. А Ur = Vps-Vdf. Таким образом, R = Ur/Ir = (Vps-Vdf)/If.

То есть, зная напряжение источника питания, падение напряжения на светодиоде и его номинальный ток, можно легко подобрать подходящий ограничительный резистор.

Если найденное значение сопротивления не удается выбрать из стандартного ряда номиналов резисторов, то берут резистор несколько большего номинала, например вместо найденных 460 Ом, берут 470 Ом, которые всегда легко найти. Яркость свечения светодиода уменьшится весьма незначительно.

Пример подбора резистора:

Допустим, имеется источник питания на 12 вольт, и светодиод, которому нужно 1,5 вольта и 10 мА для нормального свечения. Подберем гасящий резистор. На резисторе должно упасть 12-1,5 = 10,5 вольт, а ток в последовательной цепи (источник питания, резистор, светодиод) должен получиться 10 мА, следовательно из Закона Ома: R = U/I = 10,5/0,010 = 1050 Ом. Выбираем 1,1 кОм.

Какой мощности должен быть резистор? Если R = 1100 Ом, а ток составит 0,01 А, то, по закону Джоуля-Ленца, на резисторе каждую секунду будет выделяться тепловая энергия Q = I*I*R = 0,11 Дж, что эквивалентно 0,11 Вт. Резистор мощностью 0,125 Вт подойдет, даже запас останется.

Последовательное соединение светодиодов

Если перед вами стоит цель соединить несколько светодиодов в единый источник света, то лучше всего соединение выполнять последовательно. Это нужно для того, чтобы к каждому светодиоду не цеплять свой резистор, чтобы избежать лишних потерь энергии. Наиболее подходят для последовательного соединения светодиоды одного и того же вида, из одной и той же партии.

Допустим, необходимо последовательно объединить 8 светодиодов по 1,4 вольта с током по 0,02 А для подключения к источнику питания 12 вольт. Очевидно, общий ток будет составлять 0,02 А, но общее напряжение составит 11,2 вольта, следовательно 0,8 вольт при токе в 0,02 А должны рассеяться на резисторе. R = U/I = 0,8/0,02 = 40 Ом. Выбираем резистор на 43 Ом минимальной мощности.

Параллельное соединение цепочек светодиодов — не лучший вариант

Если есть выбор, то светодиоды лучше всего соединять последовательно, а не параллельно. Если соединить несколько светодиодов параллельно через один общий резистор, то в силу разброса параметров светодиодов, каждый из них будет не в равных условиях с остальными, какой-то будет светиться ярче, принимая больше тока, а какой-то — наоборот тусклее. В результате, какой-нибудь из светодиодов сгорит раньше в силу быстрой деградации кристалла. Лучше для параллельного соединения светодиодов, если альтернативы нет, применить к каждой цепочке свой ограничительный резистор.

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (U R) и на светодиоде (U LED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), R LED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение R LED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего R LED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: U LED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (U LED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (I max), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление: Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое U LED = 2,9 В и максимальное U LED = 3,5 В при токе I LED =0,7 А. В расчёты следует подставлять типовое значение U LED , так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для . Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое U LED =3,3 В при токе одного чипа I LED =0,02 А. Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.