Какой овощ вырастили в космосе. Гравитация: маленький шаг для растения и огромный скачок для ученого

Многие космонавты пробовали выращивать растения на борту космического корабля.Наши кубанцы тоже заботились о зеленых друзьях. Об исследованиях Виктора Горбатко и Фам Туана мы уже писали, а сейчас предлагаем материал о космических растениеводческих опытах Виталия Севастьянова и Анатолия Березового

О первых опытах выращивания гороха космонавтами интересно рассказывает Г.Береговой в книге «Космос — землянам»:

«Человеку свойственно ощущать свою причастность к земной природе, где бы он ни находился. Но когда оказываешься за пределами родной планеты, это воспринимается особенно остро. Обратите внимание, с каким волнением и теплотой рассказывают космонавты о том, как выглядит Земля с высоты орбиты. Ну а если вместе с ними путешествует в безжизненной пустоте космоса кусочек живого мира, то забота о «земляках» становится прямо-таки нежной. Даже когда эти «земляки» — зеленые стебли обыкновенного гороха. Именно его, кстати, выращивали на «Салюте-4» А.Губарев и Г.Гречко, а затем вновь посадили участники следующей экспедиции П.Климук и В.Севастьянов.

На борту космической станции имеется специальная установка для выращивания растений в условиях невесомости — «Оазис». Растениям в нем созданы нормальные условия, а космонавты ежедневно наблюдают за своими зелеными питомцами и заботятся о них.

Не имея надежных данных о том, как влияет невесомость на развитие растений, авторы эксперимента положили зерна в свой «Оазис» как попало (поэтому и первые всходы были неважные: из 36 зерен взошли только 3). На Земле, естественно, корень всегда уходит в почву, вниз, а проросток тянется к свету. А как быть горошине в космосе, где нет ни верха, ни низа? Куда ей прорастать?

Выяснилось, что горошине подсказывает, как быть, не гравитация, а генетически заложенная в нее так называемая полярная ориентация: если проросток направлен к свету, то корень непременно в противоположную сторону. Значит, стоит только помочь горошине — заранее сориентировать ее так, чтобы корешок уткнулся в почву, а проросток направился к свету, — и всходы обеспечены. В ином случае растение погибнет.

Предположение ученых проверяла вторая экспедиция на «Салюте-4». П.Климук и В.Севастьянов захватили с собой на орбиту усовершенствованный «Оазис» и семенной материал. Расположили зерна в соответствии с заданием. И вот на десятые сутки биологи запрашивают космонавтов: как, мол, там растения?

— Все в порядке, — спокойно докладывает В.Севастьянов, — можно собирать урожай — стрелки лука уже достигли 10-15 см.

— Какие стрелки, какого лука? — обомлели сначала на Земле, но быстро спохватились: — Понимаем, это шутка, мы же вам давали горох, а не луковицы.

— Были у нас семена гороха, верно, — сжалился над биологами бортинженер, — но мы прихватили с собой из дома и две луковицы, посадили их, так сказать, сверх плана. А горошины почти все взошли, теперь подрастают. Так что в космосе жить можно.

Однако, дальнейшие опыты с растениями, проведенные в более длительных полетах уже на борту орбитальной станции «Салют-6» принесли ученым немало новых сюрпризов. Тот же горох, вопреки заверениям В.Севастьянова, что в космосе жить можно, почему-то никак не мог там выжить. Раз за разом высаживали его в «огороде над облаками», семена прорастали, растения нормально развивались и … погибали. «Космических» семян никак не получалось, хотя уход за растениями организован был не только тщательный, но даже… он был сверхзаботливым. Космонавты каждодневно возились в своем «огороде», лелеяли каждый росток, а результат все тот же — сохранить их не удалось. Какие-то рахиты вырастали в невесомости…

Тем не менее ни ученые, ни космонавты не опускали рук, не теряли надежды.»

Растения в космосе - это не только важная тема современных прикладных научных исследований, но и уникальная возможность проникнуть в глобальные тайны растительного мира.

Почему растения в космосе не цветут? Как и по какой причине меняется биохимическая структура их организма? Возможна ли полноценная растительная жизнь в космосе? На эти и многие другие вопросы предстояло или еще предстоит ответить ученым, прежде чем зазеленеют межпланетные космические корабли, а в будущем, возможно, и далекие планеты.

Наш мир полон загадок, невидимых связей, не выявленных закономерностей. Даже притом, что обычно мы ограничиваем свои представления окружающим нас земным миром, а ведь за его пределами еще лежит Космос, в отношении которого у нас куда больше теорий, догадок и предположений, нежели чем реальных фактов.

Рождение «растительной космонавтики»

К. Э. Циолковский, «отец космонавтики», первым заговорил о необходимости использования высших растений в качестве средства обеспечения людей кислородом и питанием в длительных космических полетах.

Более полувека назад под руководством С. П. Королева на втором космическом корабле-спутнике начались первые эксперименты по воздействию факторов космического полета на растения. Тогда стали «космонавтами» и успешно вернулись на Землю традесканция, хлорелла, семена лука, гороха, пшеницы, кукурузы.

Проведенный на Земле анализ показал, что, несмотря на внешнее сходство с контрольными, «космические» растения отличались по структуре клеток, биохимическому составу и другим характеристикам.

Дальнейшие эксперименты выявили проблему, которую не удавалось решить на протяжении десятилетий - растения в космосе не только не давали «потомства», то есть семян, но и вовсе отказывались цвести.

Цветы в космосе — не цветы

В 1979 году в Главном ботаническом саду АН СССР подготовили тюльпаны для выгонки на борту станции «Салют-6». Цветам оставалось лишь распуститься в космосе, но этого-то они и «не захотели» сделать по неизвестной причине. Почему — понять до сих пор не удалось. При этом в аналогичном эксперименте на Северном полюсе тюльпаны порадовали полярников дружным цветением.

Хочется рассказать еще об одном занимательном эксперименте прошлого, когда ученые остановили выбор на тропических орхидеях, поскольку полагали, что эпифитный образ жизни орхидей может сделать их более устойчивыми к условиям космоса.

Операция «Орхидея», хоть и вошла в историю космического растениеводства как одно из самых ярких событий, не завершилась успехом.

Экзотические растения в космосе не зацвели, но зато продержались на «Салюте-6» почти полгода. Стоило орхидеям вернуться в оранжерею родного ботанического сада в Киеве, как они тут же покрылись цветами.

Космический успех арабидопсиса

Слава первого растения, зацветшего в космосе, выпала на долю не великолепной орхидеи, а невзрачного растения - арабидопсиса. Арабидопсис, он же резушка, - скромный род сорных растений из семейства Крестоцветные. Кстати, это еще и первое растение, геном которого был полностью расшифрован, правда случилось данное событие значительно позже.

Прибывшей на станцию «Салют -6» Светлане Савицкой космонавты вручили небольшой букетик из цветов арабидопсиса. На Земле в стручках арабидопсиса обнаружили 200 семян. Этот опыт наконец-то опроверг мнение о невозможности прохождения растениями в невесомости всех стадий развития — от семени до семени.

Фотография K.U.Leuven Campus Kortrijk

Введение в Марсианские хроники

Сегодняшние опыты с растениями в космосе, хотя и оставляют еще множество загадок, становятся все более успешными. Например, горох, выращиваемый на Международной космической станции, относится уже к третьему поколению космической флоры.

По мнению многих исследователей, растения обладают восприятием, чувствами, памятью - уникальными свойствами, ничем в их сравнительно примитивном организме не обусловленными.

Ученые полагают, что даже межпланетный перелет на Марс - давнюю мечту человечества - ряд растений в состоянии не только успешно пережить самим, но и помочь в этом космонавтам. При длительных космических полетах растения становятся не просто предметом эксперимента, они должны решать ряд задач, связанных с жизнеобеспечением экипажа корабля (вспомните слова Циолковского, сказанные чуть меньше столетия назад). И может быть то, что совершается сегодня, уже войдет в будущие «Марсианские хроники».

Расшифровывая ДНК и до последней клетки «разбирая» строение живых организмов, ученые пока очень мало продвинулись в другой области, лежащей за гранью физического мира. По мнению многих исследователей, растения обладают восприятием, чувствами, памятью - уникальными свойствами, ничем в их сравнительно примитивном организме не обусловленными. И если мы не нашли души цветка внутри него, может быть ответ есть где-то там, во Вселенной?

Номинация

Эксперимент в космосе

РАСТЕНИЯ В КОСМОСЕ

Сергеева Анастасия

Средняя общеобразовательная школа №6

Научный руководитель:

учитель физики

СОШ № 6 г. Шумерля

г. Чебоксары, 2010

Основополагающий вопрос:

Насколько важно выращивать в космосе растения и строить для них теплицы, оранжереи?

Цель: Узнать о поведении наших «зеленых братьев» в космосе.

Задачи:

Изучить мнение ученых, космонавтов о строительстве в космосе теплиц и оранжерей; Узнать о современных возможностях создания теплиц и оранжерей в космосе; Составить собственное рассуждение на эту тему и сформулировать выводы.

Методы исследования:

1. Поиск и сбор материала (Книги, Интернет-ресурсы, фотоматериалы).

2. Свой эксперимент с выращиванием фасоли;

3. Оформление исследовательской работы.

Полученный результат:

Исследовательская работа,

Введение……………………………………………………………………………………………….3

Основная часть:

«Лада» - маленькая, да удаленькая………………………………………………..............................4

Надежды и разочарования…………………………………………………………………………....5

Поиски ведут к успеху………………………………………………………………………………..6

К внеземным оранжереям будущего………………………………………………………………...7

Не только полезно выращивать растения, но и выгодно!................................................................7

Мутаций нет…………………………………………………………………………………………...8

Как много значит для человека природа, общение с ней!..............................................................10

Практическая часть. Эксперимент с фасолью…………………………………………………10

Заключение………………………………………………………………………………………….11

Библиографический список…………………………………………………………………….....11

Приложения………………………………………………………………………………………….12

Введение

Еще показал необходимость использования высших растений в качестве средства, призванного обеспечить дыхание и питание людей в длительных внеземных полетах. В трудах гениального ученого мы находим первые «технические условия» на создание космических оранжерей и жилых орбитальных сооружений с замкнутым экологическим циклом. А еще в 1915-1917 годах в своей московской квартире начал ставить эксперименты по созданию, как он говорил, оранжереи авиационной легкости. Во второй половине ХХ в. биология вышла за пределы земных проблем: биологические исследования стали проводиться и в космосе. То, о чем мечтали теоретики космонавтики, стало претворяться в жизнь под руководством. Эксперименты по воздействию факторов космического полета на растительные объекты начались в 1960 году на втором космическом корабле-спутнике. Тогда совершили свой полет и успешно возвратились на Землю традесканция, хлорелла, семена различных сортов лука, гороха, пшеницы, кукурузы. Культуры хлореллы летали в космос и на пилотируемом космическом корабле «Восток-5». После этого растительные организмы путешествовали в космос на всех наших космических кораблях, орбитальных станциях и биоспутниках серии «Космос». В 1962 году Главный конструктор наметил целую программу ботанических и агротехнических исследований в космосе и вскоре по инициативе Главного конструктора в Красноярске появился экспериментальный замкнутый биотехнический комплекс «Биос». Длительное время испытатели обеспечивались в нем кислородом, растительной пищей и водой за счет систем жизнеобеспечения с участием высших растений и микроводорослей.

Итак, выращивание растений - очень важный шаг в космонавтике. И в дальнейшем он поможет освоить другие планеты Солнечной Системы, а может, и всей Галактики. Люди смогут в будущем жить вне Земли.

«Лада» - маленькая, да удаленькая

В лаборатории биологических систем жизнеобеспечения Института медико-биологических проблем (ИМБП) разработали космическую тепличку – «Ладу», рассчитанную на 60 Вт, стоящую 50 тысяч долларов. if(docid!=221589){toggleElement("anons221589");} Глядя на маленькую, размером с микроволновку установку, дилетанту не понять, во что там вложены такие деньги. "Лада" состоит из собственно теплицы, снабженной двумя мини-компьютерами, блоками выращивания, емкостей для воды. Первым на борту МКС зацвел зеленый японский салат Мизуна. Сотрудник лаборатории, доктор биологических наук Маргарита Левинских выбрала растение из сотен других за неприхотливость, быстроту роста, вкусовые качества и большое содержание витаминов . Салат оправдал доверие: на борту МКС он пользуется огромным успехом. Командир российского экипажа Валерий Корзун, первым снявший дегустацию космического растения, признался, что готов был съесть весь кустик.

Подобные эксперименты российские специалисты проводят уже не первый год. На борту станции "Мир" в оранжерее "Свет", например, длительное время росла пшеница. Были планы продолжить опыты на других злаковых. Космонавты даже шутили, что скоро будут печь хлеб в космосе… Увы, уникальная аппаратура "Мира" погибла в океанских водах, однако опыт работы остался. Он и был использован при разработке "Лады".

"Это живой, постоянно развивающийся эксперимент, - рассказывает ведущий научный сотрудник лаборатории, кандидат технических наук Игорь Подольский. - По возможности мы будем досылать на МКС новые корневые модули, менять освещение, саму программу… Таким образом, собираемся исследовать влияние факторов космического полета на рост и развитие растений, отрабатывать технологии их культивирования в условиях космического полета. Ведь там все иначе, чем на Земле".

Возникает вопрос: а зачем вообще все это нужно? Разве на родной планете мало заброшенных полей, где можно выращивать тот же салат или горох не крошечными кустиками, а целыми плантациями?

"Если мы сочтем целесообразным освоение человеком космического пространства, то признаем и важность создания биологических систем жизнеобеспечения, - говорит Подольский. - Люди без растений долго не протянут. Чтобы длительно существовать вне Земли, нужны "зеленые братья". Это и пища, и мощный психологический фактор. Если среди металла на борту станции теплится маленький зеленый кустик, космонавт не так тоскует по дому. Кроме того, это тест на состояние окружающей среды: известно, что растения более ранимы к внешним факторам, чем животные. На станции "Мир" пшеница долго плохо росла. Причина выяснилась случайно: на станции появились установки по сжиганию метана, а заодно с ним снизилось содержание в воздухе этилена, - растение вдруг вовсю заколосилось. Космонавты не чувствовали повышенного содержания этих веществ, а вот пшеница хворала".

Маргарита Левинских считает, что растения каким-то образом улавливают эмоциональную информацию из внешнего мира. А в космосе человек и растения становятся более привязанными друг к другу.

Связь с живой природой помогает оставаться людьми даже вдали от голубой планет. Все как у Маленького принца Экзюпери, который нежно любил свою розу, думая, что она - единственная на целом свете. Для него так оно и было, хотя вдали, на другой планете, росли целые сады таких же роз". Существует мнение, что "космические семена" приобретают необычайные лечебные и питательные свойства, могут исцелить тело и душу человека. "На самом деле подобной информацией мы пока что не располагаем, - говорит Подольский. - Хотя, возможно, в недалеком будущем откроются не менее фантастические перспективы. Американские ученые уже пытаются создавать наземные модули оранжерей для выращивания растений на других планетах. Есть подобные разработки - правда, пока на бумаге - и у российских ученых. Так что, похоже, мечты отца отечественной космонавтики Константина Циолковского о космических поселениях когда-нибудь сбудутся.

Надежды и разочарования

В 1971 году на корабле «Союз-10» за пределы Земли отправилась установка «Вазон» с двумя тюльпанами. Но, к сожалению, стыковки со станцией «Салют» не произошло, распустившиеся цветы могли наблюдать уже на Земле лишь специалисты группы поиска.

На орбитальной станции «Салют-4» стоял довольно совершенный «Оазис», снабженный телеметрической и кинорегистрирующей системами. Исследования велись с горохом.

Поначалу многое не ладилось, - рассказывает космонавт Георгий Гречко.

Вода не поступала туда, куда было нужно, затем стали срываться огромные капли, и за ними пришлось гоняться с салфетками. Но в целом эксперимент удался, были получены взрослые, двадцатитрехдневные растения. Правда, цветов не было, но фильм с замедленной съемкой динамики роста растений снять удалось. Именно Гречко одним из первых свидетельствовал о психологической поддержке, которую космонавты получали у растений. Сам он, особенно к концу полета, старался при каждом удобном поводе подплыть к оранжерее, чтобы лишний раз бросить взгляд на зеленых друзей. Иногда он ловил себя на том, что делает это неосознанно.

Проведенный на Земле анализ показал, что, несмотря на внешнее сходство с контрольными, растения отличались по структуре клеток, биохимическому составу, ростовым характеристикам. Это, казалось, подтверждало скепсис тех ученых, которые и до того уже сомневались в возможности нормального роста растений в условиях невесомости. Дальнейшие эксперименты по культивированию растений в длительных космических экспедициях тоже не принесли ничего утешительного. У пшеницы и гороха никак не удавалось получить не только семян, но даже цветов. На стадий их образования растения просто погибали. И этот факт давал основание говорить о принципиальной невозможности роста и развития растений в условиях космического полета. Тогда-то к решению проблемы и подключились опытные научные коллективы , возглавляемые академиком, академиком АН Литовской ССР и академиком АН Украинской ССР. Прежде всего решили выяснить, влияет ли тут именно невесомость или же другие факторы, например, технология культивирования. Ведь сама эта технология для столь необычных условий еще только создавалась. А на нее-то невесомость оказывала явное влияние. Ведь при отсутствии гравитации водо - и газообмен у растений происходит по-иному, возникает проблема отвода метаболитов и обеспечения нужного теплового режима, поскольку естественная конвекция тоже отсутствует. Вновь попытались вернуться к культивации растений, в лукавицах которых сосредоточен почти полный запас необходимых для развития веществ.

Летом и осенью 1978 года во время полета космонавты В. Коваленок и А. Иванченков выращивали лук двумя способами: научным и, «как в деревне Белой», откуда был родом командир корабля.

Лук растет в двух сосудах, один по вашей методике, а другой по моей, крестьянской, - докладывал В. Коваленок. - Если его сверху не обрезать, то он начинает гнить, а если подрезать, растет хорошо, не гниет. В репортаже по телевидению командир шутил: «Сельхозтехника лучше работает, это мы проверили в результате соцсоревнования. Наш лучок-то растет быстрее, чем научный!» Но увы, ни по той, ни по другой методике строптивое растение до цветения довести так и не удалось.

На следующий год в Главном ботаническом саду АН СССР в установке под названием «Лютик» подготовили для выгонки на борту станции «Салют-6» тюльпаны. Им оставалось только распуститься в космосе, но этого-то они и «не захотели» сделать. Почему - понять до сих пор не удалось. Аналогичная установка почти в то же время побывала на Северном полюсе. И когда там появилась лыжная экспедиция под руководством И. Шпаро, тюльпаны порадовали отважных путешественников ярким пламенем своих цветов.

Поиски ведут к успеху

Но почему же растения так и не цветут? Чтобы ответить на этот вопрос, во время последних экспедиций на «Салюте-6» и на новой станции «Салют-7» было проведено много экспериментов с целым набором оригинальных устройств для культивирования растений. Вот их перечень: малая орбитальная оранжерея «Фитон» на борту станции «Салют-7», где впервые арабидопсис прошел полный цикл развития и дал семена, малая орбитальная оранжерея «Светоблок», в ней на борту станции «Салют-6» арабидопсис впервые зацвел, бортовая оранжерея «Оаэис-1А» станции «Салют-7», бортовая установка «Биогравистат» с вращающимися и неподвижными дисками для экспериментов по проращиванию семян в условиях искусственной силы тяжести. Конструкторы и ботаники предусмотрели систему дозированного полуавтоматического полива, аэрации и электростимулирования корневой зоны, смены перемещения вегетационных сосудов с растениями относительно источника автономного освещения.

Нужно было помочь растениям справиться с невесомостью. Прежде всего в «Оазисе» попытались применить стимуляцию электрическим полем. При этом исходили из предположения, что геотропическая реакция связана с биоэлектрической полярностью тканей, вызванной электромагнитным полем Земли. В космических экспериментах это предположение подтвердилось лишь частично.

Исследования велись и в других направлениях. Например, проростки некоторых растений выращивались на небольшой центрифуге «Биогравистат». Она создавала на борту корабля постоянное ускорение до 1 g. Оказалось, что в физиологическом смысле центробежные силы адекватны силе тяжести. В центрифуге проростки отчетливо ориентировались вдоль вектора центробежной силы. В стационарном блоке, напротив, наблюдалась полная дезориентация всходов.

А в устройстве «Магнитогравистат» изучалось ориентирующее действие другого фактора - неоднородного магнитного поля. Его влияние на проростки креписа, льна, сосны тоже компенсировало отсутствие гравитационного поля. Словом, упорству исследователей можно было позавидовать. Наконец, пришел успех. И выпал он на долю маленького, невзрачного растения арабидопсиса. Имея цикл развития всего около 30 дней, оно прекрасно растет на искусственных почвах. Во время последней экспедиции на «Салюте-6» арабидопсисы зацвели в камере установки «Светоблок». На станции «Салют-7», где работали А. Березовой и В. Лебедев, эксперимент по культивированию арабидопсиса подготовили особенно тщательно. Там была герметичная камера «Фитон-3» с пятью кюветами и своим . В кюветах - субстрат из агара, содержащий до 98% воды. По мере роста растений они могли отодвигаться от источника света. Семена с помощью сеялки-пушки посеяли сами космонавты. Вначале растения росли медленно. Но вот 2 августа 1982 года В. Лебедев сообщил:

Появилось много, много бутонов и первые цветы. Прибывшей на станцию Светлане Савицкой космонавты вручили небольшой букетик из цветов арабидопсиса. Она тщательно зарисовала его. При подсчете на Земле в стручках обнаружили 200 семян.

Этот опыт опроверг мнение о невозможности прохождения растениями в невесомости всех стадий развития - от семени до семени.

Правда, арабидопсис - самоопылитель, оплодотворение у него происходит еще до раскрытия бутона. Но все же успех огромен. И это успех не только научного коллектива Института ботаники АН Литовской ССР, возглавляемого академиком, но также космонавтов Анатолия Березового и Валентина Лебедева. Теперь можно говорить, что космическое растениеводство родилось практически, и оценивать его перспективы.

К внеземным оранжереям будущего

Вернувшийся из 211-суточного полета Валентин Лебедев на вопрос: - Нужна ли в длительном полете оранжерея? - ответил так: - Без сомнения, нужна. Ухаживая за растениями, ремонтируя и кое в чем совершенствуя ботанические установки, мы поняли, что без растений длительные космические экспедиции невозможны. Перед возвращением на Землю растения просто жалко было вырывать. Вынимали мы их очень осторожно, чтобы не повредить ни одного корешка.

Такие оранжереи, - считает космонавт, - займут целые отсеки внеземных станций. Ведь растениям нужна иная атмосфера, нежели людям, - с повышенным содержанием углекислоты и водяных паров. Наверное, другой должна быть и оптимальная для получения наибольшего урожая температура, а также продолжительность светового дня. А главное - им нужен настоящий солнечный свет.

Делать очень большие иллюминаторы или же целые стеклянные стены пока технически невозможно. Видимо, наряду с некоторым увеличением размеров иллюминаторов следует применить зеркальные концентраторы. Собранный ими и направленный внутрь отсека световой поток можно будет через систему световодов подводить к растениям подобно тому, как к ним подводится влага с питательными веществами. Вот тогда и исполнится предсказание Циолковского о том, что при подборе самых урожайных культур и оптимальных условий для их развития каждый квадратный метр внеземной плантации сможет полностью прокормить одного жителя космического поселения.

Все мы уверены, что так и будет!

Не только полезно выращивать растения, но и выгодно!

Чтобы растение успешно развивалось и давало больше плодов, одной богатой почвы недостаточно. Хорошо известно: чем больше листьев будет освещено солнечными лучами, тем больший урожай принесет растение осенью. Однако в посевах верхние листья, как правило, затеняют нижние, на полях с этим бороться бесполезно, но в теплицах такие попытки делались. Однако раздвигать растения по мере их роста оказалось и трудно, и дорого, поэтому экспериментировать перестали. Но потом об этом вспомнили космические ботаники, которые предложили устраивать внеземные оранжереи не на плоской, а на криволинейной поверхности. На Земле стебли растений, подчиняясь силе тяжести; вытягиваются вверх параллельно друг другу. Их космические собратья развиваются в невесомости, и направление их роста определяется только освещением. Поэтому их можно высаживать на сферические или цилиндрические «поля», окружая светильниками той же формы. Стебли растений в таких оранжереях расположатся по радиусам сферы или цилиндра и сами будут раздвигаться по мере роста. При этом освещенность нижних ярусов листьев и соответственно продуктивность посевов будут намного выше, чем на Земле. Возможность выращивания растений с радиальным расположением стеблей подтверждена в наземном эксперименте. Растения разных видов пшеницы культивировали в установке со сферической поверхностью, вращающейся вокруг трех взаимно перпендикулярных осей со скоростями порядка 2 оборота в сутки. Конечно, по первым опытам трудно судить, как пойдет дело дальше. Предстоит проверить идею в условиях реального космического полета. Но уже сейчас ее авторы подчеркивают, что «применение криволинейных посадочных поверхностей позволяет предложить весьма компактные и технологические конструкции конвейерных оранжерей для космических систем жизнеобеспечения экипажа».

Мутаций нет

На МКС получены ростки третьего поколения гороха, выращенного в орбитальных условиях. Геннадия Падалку журналисты уже называют знатным космическим агрономом. В 1999 году на станции "Мир" он вырастил первые колосья пшеницы. Космический земельный надел невелик, посевные площади до тетрадного листа не дотягивают, это в три тысячи раз меньше дачных "шести соток". Это - земной дублер космической оранжереи. На МКС - точно такая же. Здесь готовят следующий эксперимент, на очереди японская листовая капуста и редис. Главные требования к растениям-претендентам на космический полет - компактность и неприхотливость. Расти придется при скудном освещении и поливе, вода в космосе на строгом учете. Освещение оранжереи и два компьютера, которые следят за ростом растений, употребляют всего-навсего 60 ватт. Раз в неделю космонавты отправляют данные на Землю, вместе с фотографиями плантации. На станции сейчас зацветает уже третье поколение выращенного здесь гороха. Всего шесть растений, на каждом - по три стручка. Немного, но вполне достаточно для того, чтобы уже считать доказанным - в космических условиях растения не становятся мутантами. Эксперимент начался 15 месяцев назад, этого достаточно, чтобы пилотируемый корабль долетел до Марса. Ученые уже могут назвать возможные растения-претенденты.
Фиолетовые цветы заметно оживили интерьер станции.

Как показали земные эксперименты, при круглосуточном освещении растений «Фитоконвейер» может давать до 300 г свежей зелени каждые 4-5 суток, т. е. в 3 раза больше, чем при традиционной компоновке. Разработчики считают, что такая цилиндрическая конвейерная оранжерея перспективна для производства растительной продукции на марсианском корабле или орбитальной станции.

Как много значит для человека природа, общение с ней!

Зеленые растения создают хорошее настроение, отвлекают от однообразных и утомительных текущих дел, успокаивают. Плантация зеленых растений доставит большую радость экипажам космических кораблей и станций. И, не боясь преувеличения, можно предположить, что «ветка сирени» в космосе для человека будет значить гораздо больше, чем на Земле.

В оранжереях будущего растения будут снабжены специальными датчиками и приборами. Они будут не только сообщать о своем состоянии, но с помощью автоматики обеспечивать поступление воды и питательных веществ в необходимых для себя количествах. Они сами смогут регулировать микроклимат всего помещения оранжереи, подбирая наилучшие условия для своего роста. И это вполне реально, так как установлено, что все растения отвечают на изменения окружающих условий токами электрической природы - биотоками. Опыты, проведенные в лаборатории профессора Тимирязевской сельскохозяйственной академии И. Гунара, показали, что изменение температуры в зоне корней растений, а также некоторые химические вещества, воздействующие на корни, вызывают появление слабых биотоков, которые зарегистрированы чувствительными самописцами.

Для отведения биотоков использовались электроды, не травмирующие растения. Было установлено, что здоровые растения тотчас же реагировали на раздражения, на изменение условий, а больные - с задержкой, вяло. Интересно, что при воздействии на корни, например, насыщенным раствором питательных солей ответную реакцию растений в этих же опытах удавалось регистрировать на листьях. Выходит, информация об изменении условий в зоне корня была передана листьям. Значит, растения чувствуют? Вероятно.

В космических оранжереях целесообразно выращивать скороспелые овощные растения. Это однолетние растения - листовая капуста, кресс-салат, огуречная трава, укроп. Эти растения содержат значительное количество витаминов А, В1, В2, PP. В огуречной траве содержится меньше витаминов, чем в других растениях, но зато она обладает целебными свойствами, приятным запахом и вкусом свежих огурцов, что делает ее очень привлекательной для введения в рацион.

Так как в обычных условиях препараты витаминов плохо сохраняются, поэтому целесообразно их постоянно иметь в свежем виде. Значит, необходимо изучать возможности оранжереи обеспечивать потребности экипажа в витаминах в специфических условиях гермообъекта.

Растения оранжереи должны быть неприхотливыми, устойчивыми к заболеваниям и хорошо изученными в обычных условиях.

Практическая часть. Эксперимент с фасолью

На Земле стебли растений, подчиняясь силе тяжести; вытягиваются вверх параллельно друг другу. Их космические собратья развиваются в невесомости, и направление их роста определяется только освещением.

Я решила провести эксперимент с фасолью и наглядно показать, как это происходит. Я взяла семена фасоли, завернула их в мокрую марлю и поместила в стеклянную мензурку(2), при этом я периодически меняла положение мензурки. Через неделю семена проклюнулись(3) и я высадила их в грунт(4). Баночки с посаженными семенами я тоже переворачивала. Позже фасоль проросла(5).

В итоге растение росло и изгибалось во все стороны. Благодаря этой способности растения в космосе могут принести урожая больше чем на земле, вследствие компактности и отсутствия силы тяготения земли.

https://pandia.ru/text/78/432/images/image002_27.jpg" width="200" height="267 src=">

https://pandia.ru/text/78/432/images/image004_15.jpg" width="269 height=192" height="192">

https://pandia.ru/text/78/432/images/image006_14.jpg" width="272 height=192" height="192">

left" width="450 " style="width:337.85pt">

https://pandia.ru/text/78/432/images/image012_6.jpg" align="left" width="794" height="586 src=">

Теплица, которую я готовлю для дальнейших экспериментов

https://pandia.ru/text/78/432/images/image015_4.jpg" width="759 height=500" height="500">

https://pandia.ru/text/78/432/images/image017_2.jpg" align="left" width="696" height="404 src=">

Эксперимент по выращиванию растений получил название Veg-01 и стал возможным благодаря системе Veggie. Цель - изучить то, как ведут себя растения на орбите.

Система Veggie была доставлена на МКС в рамках миссии SpaceX в апреле 2014 года. На тот момент возраст семян составлял уже 15 месяцев. В Veggie они погружены на специальную платформу и освещаются красными, синими и зелёными лампами.

Красные и синие лампы нужны для обеспечения качественного роста растений и в то же время потребляют наименьшее количество энергии. Зелёные нужны лишь для визуального восприятия (мы привыкли к зелёным растениям), но, по сути, на рост не оказывают никакого влияния.

Это второй эксперимент по выращиванию растений на МКС. Первый также прошёл удачно, но через 33 дня полученные ростки отправили во Флориду, чтобы провести исследования. Листья салата из проекта Veg-01 также росли в течение 33 дней перед тем, как космонавты их собрали.

Сами астронавты отнеслись к проекту Veggie с теплотой. В одном из интервью канадец Крис Хэдфилд говорил, что на МКС никогда не бывает скучно: всегда есть задачи, которые нужно выполнить. Однако все они сводятся к анализу показаний приборов и работе с оборудованием. Возможность ухаживать за растениями пришлась по душе всем ещё и потому, что это разнообразит жизнь на станции.

Почему это важно

Первая мысль, которая пришла вам в голову наверняка верна. Важность выращивания еды в космосе сложно переоценить. Сейчас космонавты получают еду с Земли, однако в будущем, когда более длительные космические миссии будут подразумевать перелёты на другие планеты, этот способ будет становиться всё более дорогостоящим.

В 2030 году NASA готовится отправить группу космонавтов на Марс. К этому времени нужно создать стабильную систему по производству еды, ведь полёт в одну сторону займёт от 150 до 300 дней - это зависит от положения Марса.


Челл Линдгрен, Скотт Келли и Кимия Юи едят салат

Смогут ли земляне когда-нибудь засеивать поля на других планетах? Чтобы можно было вслед за космонавтами и мечтателями пропеть, что «и на Марсе будут яблони цвести»? Возможно, совсем скоро мы ответим на этот вопрос. А пока - давайте поговорим о некоторых конкретных космических исследованиях, которые ставили своей целью изучение поведения растений в условиях гравитации.

Эта работа публикуется в рамках конкурса научно-популярных статей , проведенного на конференции «Биология - наука 21 века» в 2015 году.

Наверное, у многих возник вопрос: неужели у растений тоже есть поведение? Разве это свойство живых существ не является прерогативой представителей исключительно животного мира? Оказывается - нет! Представьте себе, у растений тоже есть свои «фишки», в том числе: чувствительность к внешним раздражителям, разные рецепторные процессы, специфические реакции на свет, температуру, силу тяжести. И - что очень любопытно - растения обладают удивительной способностью определять свое положение в пространстве. Вот об этом удивительном феномене растительного мира я и предлагаю поговорить.

Гравитация: маленький шаг для растения и огромный скачок для ученого

Кстати говоря, арабидопсис - самое первое растение, которое не только проявило себя в опытах по влиянию отсутствия гравитации на рост, но и прошло полный цикл развития в космосе, успешно перенеся воздействие всех неблагоприятных внеземных условий.

Фитогормоны: растения тоже чувствуют!

Рисунок 3. Корневой статоцит в вертикальном положении. А - проксимальная часть клетки (расположенная ближе к центру). В - дистальная часть клетки (периферическая). 1 - клеточная стенка, 2 - эндоплазматический ретикулум , 3 - плазмодесма , 4 - ядро, 5 - митохондрия , 6 - цитоплазма, 7 - статолит, 8 - корень, 9 - корневой чехлик, 10 - статоцит. Рисунок из «Википедии ».

Давайте задумаемся над вопросом: как же растения понимают, где у них низ, а где верх? Человек, например, в любой момент времени может определить, стоит ли он на земле или лежит беспомощный (за эту способность определять свое место в пространстве можно сказать спасибо вестибулярному аппарату). А обездвиженным и безмолвным растениям приходится изощряться другими способами.

Так, у представителей растительного царства есть специальная группа клеток-статоцитов , которые содержат специфические тяжелые структуры, быстро оседающие под действием гравитации (рис. 3). Эти образования называются статолитами .

Допустим, растение пригнулось к земле - отлично, в игру вступают статолиты, которые «падают» вниз (то есть осаждаются) под воздействием силы тяжести. В итоге формируются новые низ (там, где статолиты) и верх (где их нет). Далее запускается целый каскад реакций, призванных преобразовать физический процесс осаждения статолитов в биохимические процессы, которые в итоге ведут к гравитропическому ответу. Это явление очень сложно и до конца не изучено; можно с определенностью сказать лишь то, что в нем задействуется целая сеть различных посредников, вторичных мессенджеров и, конечно же, фитогормонов . Да-да, представьте себе, у растений тоже есть свои гормоны - пусть не такие популярные в плане исследований, как гормоны животных, но всё же не менее интересные и важные. Эти вещества способны оказывать целый спектр биологических воздействий. Но я предлагаю поговорить об ауксине (он же - индол-3-уксусная кислота, ИУК ) как о важном участнике гравитропической реакции .

Так, при «перевороте» растения происходит накопление ИУК на нижней стороне гравистимулированного органа (как растение определяет свой верх и низ, мы уже обсуждали выше). Это приводит к различной скорости роста клеток на противоположных сторонах побега и корня. Получается, что ауксин - это определяющий фактор формирования гравитропического изгиба . Однако было бы несправедливо оставить в стороне помощников ауксина - специальные PIN-белки (от англ. pin - булавка), которые транспортируют его к месту воздействия . Таких белков-переносчиков в клетке очень много, их классификация довольно сложна, но суть заключается в том, что именно от типа и количества этих белков зависит, куда пойдет ауксин. Получается, что если PIN-белков много на нижней стороне корня, то там будет и ауксин, чтобы простимулировать его рост.

И наконец мы подходим к такому интересному моменту, как распределение PIN-белков в пространстве клетки. Ведь сами белки, хоть и называются переносчиками, лишены возможности произвольного перемещения. Их распределение регулируется цитоскелетом . У клеток растений тоже есть свой скелет, и представлен он не костями и хрящами, а специальными веществами: актином , тубулином и миозином . Важно, что именно эти структурные полимеры определяют подвижность большинства компонентов клетки. Актиновый цитоскелет - это словно раскинувшаяся по всему объему клетки огромная сеть дорог, по которой обеспечивается транспорт большинства соединений .

А еще - актиновый цитоскелет очень сложно увидеть: для этого было бы недостаточно даже применения очень сильного микроскопа. Дело даже не в чрезвычайно малых размерах данной структуры, а в визуализации* - ведь человеческий глаз не способен различать эти тонкие ниточки, из которых состоят микрофиламенты , даже при очень большом увеличении. И здесь нам на помощь приходят трансгенные растения . Уверена, что многие из вас так или иначе слышали о них, причем большей частью плохое. На самом же деле трансгенные растения - это универсальный инструментарий биолога, без которого нельзя представить работу любой современной физиологической лаборатории.

* - Как преодолеть дифракционный барьер и различить детали размером меньше полудлины волны мы писали в статье «Лучше один раз увидеть, или микроскопия сверхвысокого разрешения » , а о лауреатах Нобелевской премии за разработку методов сверхразрешающей микроскопии - в материале «По ту сторону дифракционного барьера: Нобелевская премия по химии 2014 » . В сообщении « » описан новый метод приготовления микропрепаратов, который позволяет существенно улучшить разрешение . - Ред.

Итак, «трансгены» - это те же самые растения (в нашем случае - арабидопсис), просто снабженные специальными белками для создания новой экспериментальной модели. Получается, мы берем резуховидку Таля и внедряем в ее ДНК ген зеленого флуоресцентного белка (GFP , green fluorescent protein ). А затем исследуем трансформированное растение под особым конфокальным микроскопом , подсвечивая лазером. И, как говорится, voila - получаем на выходе цифровое изображение, на котором прекрасно видны внутренние структуры, в частности актиновый цитоскелет, который и был нам нужен (рис. 4) .

* - Значимость GFP для биологических экспериментов оказалась настолько высока, что за открытие этого маркера вручили Нобелевскую премию: « » . Однако ученые не удовлетворились и явили миру новые поколения флуоресцентных белков: « » . - Ред .

Рисунок 4. Так выглядит актиновый цитоскелет корня, если подсветить его лазером конфокального микроскопа. Яркие тонкие нити - микрофиламенты, границы клеток светятся менее ярко. Масштабная линейка равна 50 мкм. Фото автора.

Новые направления: что же будет дальше?

Возможно, кого-то заинтересует, зачем нужны подобные исследования с использованием конфокальной микроскопии и где они выполняются? Поведение растений в космосе - глобальная тема исследований, над которой работают многие научные умы. Однако я могу назвать конкретное место, где тоже происходит активнейшее изучение процессов гравитропизма, - это кафедра физиологии и биохимии растений Санкт-Петербургского государственного университета. Именно здесь были сделаны конкретные экспериментальные заключения, о которых и пойдет речь ниже. В том числе по той причине, что я - студентка этой кафедры и работаю над магистерской диссертацией (за помощь хочется поблагодарить Ресурсный центр «Развитие молекулярных и клеточных технологий» СПбГУ, а особенно - их замечательный конфокальный микроскоп Leica TCS SPE).

А теперь, познакомившись с основным инструментарием, обратимся непосредственно к результатам проведенных экспериментов. Фундаментальной проблемой, интересовавшей нас в ходе работы, было поведение растений в космосе, и для ее решения мы проводили опыты по гравистимуляции растительных образцов с дальнейшей визуализацией актинового цитоскелета. Была поставлена задача сравнить корни контрольных (вертикально растущих) и гравистимулированных (расположенных горизонтально) растений арабидопсиса, а также исследовать действие на них различных реагентов.

Выяснилось, что в нормально (вертикально) развивающихся растениях находится очень много аксиально ориентированных микрофиламентов - то есть тех, которые сонаправлены с вектором силы тяжести. А вот в случае гравистимуляции, когда арабидопсис оказывается лежащим на боку, происходят изменения - в частности, увеличивается доля тех актиновых нитей, которые расположены наклонно или перпендикулярно поверхности Земли. Это значит, что корень действительно узнает, что низ и верх теперь не там, где были раньше, и уже через 20–30 минут после этой «смены полюсов» начинает активно подстраиваться под новые условия за счет переориентации своего цитоскелета. Данные механизмы лежат в основе формирования гравитропического изгиба - структуры, которую мы так долго и упорно обсуждали.

Еще более интересные результаты были получены в случае действия на такие же растения разнообразных реагентов (рис. 5). Известно, что при стрессе (например, во время гравистимуляции) в клетках растений начинает синтезироваться гормон стресса - этилен , который подавляет процессы роста корней и развитие побега, но не препятствует гравитропической реакции. При дополнительной обработке корней арабидопсиса раствором этефона (из которого образуется этилен) обнаруживалась почти тотальная разборка цитоскелета, и чем дольше растение подвергалось такому воздействию, тем больше разрушались актиновые микрофиламенты. Гравитропический изгиб образовывался, но корень был значительно короче.

Салициловая кислота ускоряла реорганизацию цитоскелета и в целом угнетала гравитропическую реакцию за счет подавления синтеза этилена. То есть корни растения не воспринимали переворот на 90 градусов в качестве стресса: ведь этилен, призванный сигнализировать о стрессовых изменениях, не выделялся. Однако по прошествии часа действие салицилата ослабевало, и растение, ощутив стресс, могло формировать изгиб.

А вот при удалении Cа 2+ из клеточных стенок с помощью раствора EGTA (которая способствует связыванию ионов кальция) образование гравитропического изгиба полностью ингибировалось.

Подводя итог, можно сказать, что все эти вещества оказывают свои собственные эффекты на рост растения, причем способны как подавлять стресс, так и усиливать действие гравистимуляции.

Рисунок 5. Растения, которые подверглись различным воздействиям. В верхней строчке - нормальное (вертикальное) положение корней, в нижней - гравистимулированные (перевернутые) корни. В случае EGTA использовали два красителя: циановым цветом показан актиновый цитоскелет, а цветом фуксии - ядра клеток. Фото автора.

Варианты вертикального и горизонтального (в случае поворота растения на 90 градусов по часовой стрелке) роста арабидопсиса в течение 12 часов. Col-0 - дикий тип, GFP-fABD2 - растения Col-0, трансформированные конструкцией GFP-fABD2. В случае гравистимулированных образцов (справа ) наблюдается формирование гравитропического изгиба под влиянием изменения вектора гравитации. Стрелкой показаны кончики корней, клетки которых служили объектом для исследования актинового цитоскелета.

На самом деле, это исследование только начинается. Нам еще предстоят новые эксперименты, связанные с обработкой резуховидок Таля различными активаторами и ингибиторами роста, регуляторами транспорта ауксина. К слову, оформленных научных статей еще нет: ведь работа не прекращается, буквально каждую неделю можно говорить о новых результатах.

Думаю, может возникнуть вопрос: зачем вообще нужны эти эксперименты? Чтобы лучше разобраться в механизмах стрессовой реакции в условиях смены вектора гравитации. Это поможет лучше понять, что именно испытывают растения в условиях невесомости.

Когда будет жизнь на Марсе?

Идея запланированного полета людей на Марс с целью создания там колонии не нова, однако споры вокруг этого вопроса начались с того самого момента, как идея впервые была высказана. Скептиков и тогда, и сейчас находится очень и очень много.

В одной из недавно опубликованных статей утверждается, что с некоторой долей вероятности марсианский корабль может стать кораблем-призраком, если на Солнце во время полета произойдет незапланированная вспышка . Доза радиации при этом возрастет на порядок и легко убьет экипаж.

Однако технологии постоянно развиваются - пусть медленно, если речь идет о межпланетных путешествиях, но всё же... Уже созданы проекты космических кораблей с уникальной защитной экранирующей поверхностью, способной обеспечить надежную защиту на весь срок полета, а потому проблему радиации можно считать теоретически решенной.

В той же статье автор высказыват мнение о том, что человек в принципе не способен долгое время существовать и работать рядом с одними и теми же людьми. Космонавты в один прекрасный день могут поубивать друг друга просто из-за того, что кто-то кому-то наступит на ногу. А всему виною стресс, особенно от того, что в «мышеловке» марсолёта помощи ждать неоткуда и спасательных капсул для побега на Землю не предусмотрено.

Стресс убивает, это правда. Но давайте заглянем на страничку проекта Mars One (рис. 6), в раздел «Отбор кандидатов» - и мы увидим, что способность справляться со сложными и конфликтными ситуациями (так называемая стрессоустойчивость) является, пожалуй, основным критерием отбора будущих астронавтов. К тому же участники проекта - это люди, которые сами захотели кардинально изменить свою жизнь, в отличие от профессиональных космонавтов, которым ставят конкретные задачи, часто не считаясь с их личным мнением.

Во всяком случае, время для колонизации Марса пока еще не настало, и впереди у нас как минимум десять лет. Ну а кандидатам, уже выбранным по конкурсу для участия в проекте, предстоят длительные тренинги и тщательное обучение на Земле. Что из этого получится - увидим!

Возвращаясь к результатам наших сугубо лабораторных экспериментов, следует сказать, что они имеют важное значение именно для фундаментальной науки. Однако хочется надеяться, что когда-нибудь именно эти исследования лягут в основу проектов по выращиванию свежих овощей и фруктов на космических кораблях или даже на других планетах (напомню, что пока лишь единичные экспериментальные образцы пшеницы и салата смогли пройти полный цикл вегетации в космических условиях). Интерес к внеземным пространствам сопровождал развитие цивилизации, хоть под этим пространством и подразумевалось совершенно разное. Сейчас же для удовлетворения своего интереса человечество способно разрабатывать конкретные планы, моделировать условия, чтобы потом согласно расчетам и результатам экспериментов «расстелить соломку» везде, где только можно. Глядишь, и зацветет марсианский сад?..

Международная космическая программа Mars One уже достаточно обсуждалась в прессе. Набор кандидатов, решивших приобрести билет в один конец, завершен. Теперь руководителям проекта предстоит колоссальная задача по подготовке всех необходимых условий, чтобы облегчить начало колонизации Красной планеты (рис. 7). Колонисты ставят масштабные задачи по преобразованию Марса: предполагается растопить там лед, вызвать парниковый эффект и, когда стабилизируется круговорот воды, засеять планету растениями. А пока что мы просто изучаем поведение растительных организмов в надежде на успешное освоение новых космических пространств.

Рисунок 7. Одна из основных задач научной экспедиции - изучить влияние Марса на растения, а затем и на собственные тела. Рисунок с сайта eggheado.com . . ;

  • Экспансионная микроскопия, или Как увидеть новое сквозь старую линзу ;
  • Флуоресцирующая Нобелевская премия по химии ;
  • Флуоресцентные белки: разнообразнее, чем вы думали! ;
  • Паевский А. (2015). Замечтались . Научно-образовательный проект ТАСС «Чердак». .