Понятие оптимизации тепловых и гидравлических режимов работы тепловых сетей. Снижение потерь энергии и ресурсов в связи с оптимизацией работы тепловых сетей

Проблемы потерь тепла и наладка качественной теплоизоляции – одни из ключевых вопросов строительной и жилищно-коммунальной сферы.

Предотвращают и решают проблемы утечек тепла инженеры ещё на стадии строительства. Но вот дом сдан и Вы, как счастливый обладатель любимых квадратных метров, остаётесь с проблемами наедине. Конечно, если речь не идёт о серьёзных технологических нарушениях, за устранением которых – прямиком к подрядчиками и управляющей компании. А если дело в относительно небольших огрехах, то справляться с ними, как правило, приходится своими силами и посредством собственного кошелька.

Проблемы потерь тепла реальны?

Квартиры, частные дома, гаражи, офисы, склады – словом, любые сооружения, теряют тепло через ограждающие конструкции: стены, пол, потолок и перекрытия. Источников проблемы может быть два. Первый – явные конструкционные дефекты, или попросту – щели, зазоры, трещины. Второй источник проблемы потерь тепла – собственно материал. Тепло может уходить сквозь стены, окна и крыши в буквальном смысле слова.

Возьмём, к примеру, стены. Ключ к сохранению тепла – сопротивление теплопередаче. Стена – это барьер между воздухом комнатным и уличным. С одной стороны на неё воздействует температура выше, с другой – ниже. Законы физики не обойдёшь. И стена выступает в качестве передатчика тепла. Очевидно – чем хуже будет стена передавать тепло, тем стабильнее будет климат внутри помещения: зимой – тепло, летом – прохладно. Значит, материал стены должен по максимуму выполнять задачу «непередачи». И стены делают не однородными, а состоящими из нескольких слоёв, каждый из которых работает на то, чтобы минимизировать смешение двух температур. Если материалы с задачей не справляются, Вы теряете тепло. Всё тоже и с окнами. Около 20-25% фасада здания – это окна. И через них также может уходить тепло: сквозь щели и путём теплового излучения.

Почему возникают проблемы потерь тепла

И снова можно назвать два источника проблемы. Первый – строительство с нарушениями и огрехами. К сожалению, современные российские технологии далеко не всегда соответствуют образцам энергосберегающего строительства. Например, в США при возведении новых жилых и офисных помещений примерно 80% окон закрывают энергосберегающими стёклами. Ещё больше таких стеклопакетов ставят в Германии. А в отечественных новостях то и дело показывают растерянные лица жильцов, которые демонстрируют промёрзшие углы, протекающие крыши новостроек. Естественно, подобные жилищные оказии – скорее исключение. Но говорить о том, что 99% зданий в нашей стране тёплые, сухие и комфортные, к сожалению, не приходится.

И даже в строительстве частном, когда Вы максимально контролируете процесс, нет стопроцентной гарантии, что бригада или Вы сами не допустите огрехов, а материалы, к примеру, герметик, качественные.

Перейдём к источнику проблем потерь тепла номер два. Даже отлично выполненная стена, окно, пол, перекрытие со временем ветшают. Под воздействием двух факторов, человеческого и среды, неминуемо появляются дефекты. Яркий пример – трещины в швах панельных домов. Другой пример – разрушение кровли осадками, птицами и массой снега. По крошке, по крошке, дефект уже заметен глазу и стал путём выхода тепла.

И даже наша, казалось бы, созидательная деятельность, вроде замены окон, дверей или утепления крыши, не всегда приносит желаемый эффект. Не качественным может быть сам стеклопакет, нетщательно загерметизированы щели.

Как же решить проблему потери тепла? Как превратить наши жилища в уютные «термосы» зимой и уголки прохлады и комфорта летом? Задача очевидна – устранить места теплопотерь, сделать качественное утепление. И первый шаг – поиск утечек тепла – определение локализации зон, через которые уходит тёплый воздух.

Эффективное решение проблемы теплопотерь

Компания «ТеплоПоток» успешно помогает устранить проблемы потерь тепла в Новосибирске , а именно выполнить первый этап – определить места «утечек». Мы проводим тепловизионные исследования домов, коттеджей, квартир, гаражей, бань и других помещений и целых зданий. Профессиональный прибор для поиска потерь тепла – тепловизор. Он позволяет получить изображение, на котором видно распределение температур в цветовой схеме и с указанием конкретных градусов. Прибор для поиска потерь тепла безошибочно продемонстрирует все слабые, с точки зрения энергоэффективности, места в ограждающих конструкциях.

Поиск скрытых коммуникаций – второе назначение тепловизора. Проблемы с запрятанными в стенах, потолке и полу системами также могут спровоцировать нарушение комфортного домашнего климата. Неполадки с отоплением? Прибор для поиска потерь тепла поможет найти дефекты тёплых полов, не вскрывая настил, выявить места образования воздушных пробок в радиаторах и сделать другие полезные исследования скрытых коммуникаций.

На основании снимков, термограмм, которые даёт прибор для поиска потерь тепла, мы готовим для Вас отчёт. В нём Вы увидите все холодные зоны – места утечек тепла и неполадки скрытых коммуникаций.

Имея чёткое представление о состоянии помещения и зная его слабые места, Вы без лишних временных и финансовых затрат сможете поправить дефекты. Полезны при этом будут и прописанные к термограммам комментарии наших специалистов, с рекомендациями по устранению нарушений.

Немного статистики по проблемам потерь тепла

Согласно проведенным не так давно исследованиям, порядка 75% энергии, вырабатываемой в стране, уходи в никуда. Можно сказать, растворяется в воздухе. Не зря в городе всегда на 2-3 градуса теплее зимой, чем в той же области. Связанно это именно с выходом тепла наружу. Но, зачем отапливать улицу, когда и на дом-то не хватает?

Давайте приведем немного статистики. Проблемы потерь тепла в Сибири далеко не на последнем месте. Сами понимаете, что наш суровый сибирский климат располагает к тому, чтобы к зиме утеплить свой дом как можно лучше, сильнее. От этого зависит не просто комфортное в нем пребывание, но и здоровье всех тех, кто в нем собирается зимовать.

Существует мнение, что большое количество теплопотерь идет через окна. Безусловно, это так. Но лидером среди большой отдачи тепла являются стены. На их долю приходится порядка 35% всех теплопотерь дома. Но это и не удивительно. Ведь дом – это и есть стены. И, к сожалению, не всегда качественные, не всегда хорошо утепленные, не всегда сделанные «на совесть». Тем более, в связи с тем, что в наше время строится очень много жилья и строители стараются успеть в срок, а то и раньше сдать дом в эксплуатацию. Иногда это отражается на качестве. Но, предпринятые вовремя меры, значительно улучшат теплопроводность и сведут тепловые потери к минимуму. А это значит, что завышенные счета за отопление вскоре заменятся на нормальные, адекватные цены, на такие, какими они и должны быть.

При качественной и правильной теплоизоляции дома, здания, гаража, да и любой другой постройки, даже если уличная температура опустится до -30 градусов, а отопление по какой-то причине отключится, температура внутри помещения не должна упасть больше, чем на 1 градус. Впечатляет? Не верится? Но это правда!

Ситуации бывают всякие, легко может случится коммунальная авария, при которой вы вынуждены будете находиться какое-то время без тепла. А благодаря правильной теплоизоляции, уже накопленное тепло, не выйдет наружу. Это очень важно, как для частных домов, так и городских многоэтажек. Потому что, обычно, такие аварии быстро не устраняются. И вместо того, чтобы надевать десятки теплых носков и три свитера, лучше задуматься о том, есть ли у вас проблемы потерь тепла в доме.

Нет нерешаемых проблем тепловых потерь

Конечно, можно попробовать самостоятельно найти проблемные места в доме. Начать хотя бы с тех же самых окон. Проверьте, правильно ли функционируют все механизмы открывания и закрывания. Не требуется ли им регулировка? Между окном и стеной не должно быть никаких зазоров. Это однозначно приведет к большим теплопотерям. В таких случаях может помочь даже обычный герметик. Если в конструкции дома предусмотрены лоджии или балконы, то их тоже необходимо осмотреть на предмет герметичности. +1 к утеплению помещения дает остекление балконов. Это помогает пускать в помещение гораздо меньше холодного воздуха с улицы. А отражающее покрытие, нанесенное на окна, также благотворно влияют на сохранение тепла в помещении. Кстати, в домах, в которых предусмотрено 2 входных двери, вместо одной – тепло сохраняется чуть лучше, чем в домах с одной входной дверью. Не говоря уже об улучшенной звукоизоляции от улицы и подъезда.

Стоит ли говорить о дополнительном утеплении крыши и подвала? Бесспорно. Обычно такие места отдают не меньше тепла, чем стены. Подвал, конечно, должен быть сухим и прохладным, но это не значит, что вся его прохлада должна попадать в жилое помещение. Советуем вам обратить внимание на то, что утеплять стены и крышу лучше снаружи. Связанно это с тем, что при утеплении стен изнутри помещения, может образоваться конденсат, который в свою очередь не просто сделает хуже для теплоизоляции дома, но и станет отличным поводом для появления плесени. А плесень для здоровья часто даже хуже, чем обычный сквозняк. К тому же плесень негативно влияет на сохранность материалов и прочность вашего дома окажется под угрозой.

Проблему потери тепла гораздо легче обнаружить при помощи тепловизионного обследования. Обследование тепловизором, проведенное профессионалами, значительно сэкономит ваше время на обнаружение теплопотерь. Это означает, что приступить к устранению проблемы потерь тепла вы сможете гораздо быстрее и начнете экономить на теплоэнергии уже в ближайшее время.

В «тепловизионном парке» компании ТеплоПоток собраны только лучшие модели тепловизоров, зарекомендовавшие себя не однократно. Но, даже самый лучший тепловизор не справится в одиночку. Именно поэтому, мы подобрали самых сильных специалистов в сфере тепловизионного обследования, дали им в руки тепловизоры и отправили бороться с теплопотерями. От них не скроется ни один угол, ни одна щель, через которую может задувать даже самый незначительный сквозняк. А, как известно, даже маленький сквозняк, может напакостить по-крупному!

  • Определение структуры неучтенных расходов воды методом зонирования
  • Экспертиза систем водоснабжения и канализации — наш опыт
  • Потери воды в тепловых сетях: методы снижения объёма утечек
  • Потери воды в тепловых сетях: методы снижения объема утечек

    Задача уменьшения потерь воды сегодня стоит весьма остро. Утечки теплоносителя и, как следствие, существенные потери тепла имеются на большинстве действующих сетей. В результате увеличивается объем необходимой подпиточной воды, расходы на ее подготовку.

    Основные причины утечек:

    • Разрушение труб под действием коррозии.
    • Неплотная подгонка регулирующей и запорной арматуры.
    • Нарушения целостности трубопровода под воздействием механических нагрузок, которые происходят по причине некачественного монтажа.

    Для восполнения утечек необходима энергия источника теплоты (подпиточная вода подогревается до определенной температуры), что приводит к лишним затратам.

    Потери горячей воды могут быть:

    • аварийными;
    • постоянными.

    Постоянные в тепловых сетях зависят от площади неплотных участков и давления. Аварийные утечки связаны с разрывами трубопроводов. Потери холодной воды (остывшего теплоносителя) вследствие аварий встречаются довольно редко. Подавляющее большинство аварий происходит именно на подающих трубопроводах. По ним движется вода высокой температуры под достаточно большим давлением.

    Согласно действующим нормативам при эксплуатации тепловой сети утечка теплоносителя должна за час составлять не более 0,25% от общего объема.

    Для сокращения потерь тепла, причиной которого являются утечки воды, необходимо регулярно проводить профилактические мероприятия.

    К таким мерам относятся:

    • Защита труб от электрохимической коррозии. Для этого выполняется катодная защита, и наносятся антикоррозийные средства.
    • Качественная водоподготовка. Для замедления коррозии трубопроводов снижают количества растворенного в воде кислорода.
    • Периодическая оценка остаточного ресурса труб. Благодаря этому можно своевременно выявлять участки трубопровода, которые необходимо заменить. Это позволяет существенно снизить риск аварий и, как следствие, уменьшить потери воды.

    Водный баланс тепловых сетей

    На любом объекте, который поставляет тепло, каждый месяц определяют эффективность работы. В том числе, подсчитывают баланс отпущенной и доставленной конечным потребителям воды. Небаланс может свидетельствовать как о существенных утечках, так и о неправильно проведенных измерениях или расчетах. Например, при выполнении расчетов не учтена погрешность средств измерения.

    Если наблюдается крупный небаланс, имеет смысл заказать диагностику сети, которая определит ее техническое состояние и возможность дальнейшей эксплуатации. Инженерная диагностика – это целый комплекс работ. Проводится визуальное обследование трубопровода, которое позволяет выявить очаги коррозии. При помощи ультразвуковой диагностики выполняется толщинометрия труб.

    Скрытые утечки обнаруживаются посредством корреляционной и акустической диагностики. Также выполняется анализ технической документации и необходимые инженерные расчеты. Заказчику представляется заключение, в котором указан остаточный ресурс, техническое состояние сети и рекомендации.

    Количество потребляемого энергосистемой топлива в значительной мере зависит от потерь тепловой и электрической энергии. Чем выше эти потери, тем больше топлива потребуется при прочих равных условиях. Снижение потерь электроэнергии на 1 % позволит сэкономить 2,5–4 % топливных ресурсов. Одним из путей, способствующих уменьшению потерь тепловой и электрической энергии, является внедрение АСУ ТП и АСКУЭ.

    Главной причиной потерь тепловой энергии является низкий коэффициент полезного действия (КПД) тепловых электростанций. В настоящее время износ энергетических установок на белорусских электростанциях составляет порядка 60 %, а темпы обновления основных фондов в энергетике отстают от темпов старения ранее введенных мощностей. По этой причине значительная часть основного оборудования уже отработала положенный срок эксплуатации. Оборудование крупных ТЭЦ и ГРЭС в Беларуси сегодня соответствует среднему зарубежному уровню 1980-х гг. КПД на наших конденсационных электростанциях составляет не более 40 % при полной загрузке энергоблоков, а при неполной загрузке он еще ниже. На электростанциях типа ТЭЦ в отопительный сезон и при полной загрузке энергоблоков КПД составляет примерно 80 %, в неотопительный сезон и при неполной загрузке энергоблоков – примерно 50 %. Значительная часть тепла теряется и в котлоагрегатах. В старых котлоагрегатах КПД составляет около 75 %. При их замене на новые, более совершенные котлоагрегаты КПД котельной части увеличивается до 80–85 %. Однако это не решает проблему снижения потерь тепловой энергии кардинально.

    Ведется также преобразование котельных в мини-ТЭЦ. В этих работах используются газотурбинные, газопоршневые двигатели и котлы-утилизаторы. Применение частотного электропривода позволяет существенно повысить КПД тепловых электростанций и котельных.

    Для уменьшения потерь тепла в теплосетях стали применять предизолированные трубы (ПИ-трубы). Благодаря их использованию потери тепла уменьшаются примерно в 10 раз по сравнению с применением обычных стальных труб с теплоизоляцией 120 Вт/м.

    Одним из способов уменьшения потерь тепловой энергии является также переход с централизованной системы теплоснабжения к децентрализованной, при которой отсутствует потребление тепла от ТЭЦ или от центральной котельной через тепловые сети.

    Немало тепла «уходит» через стены, полы, потолки, окна и двери зданий и сооружений старой постройки. В старых зданиях из кирпича потери составляют примерно 30 %, а в зданиях из бетонных плит со встроенными радиаторами – до 40 %. Потери тепла в зданиях увеличиваются и из-за неравномерности распределения тепла в помещениях, поэтому желательно проводить выравнивание разности температур (пол – потолок) с помощью потолочных вентиляторов. За счет этого потери тепла можно уменьшить до 30 %. Для сокращения утечек тепла из помещений желательно делать воздушный завес.

    Снизить потери тепловой энергии в помещениях помогает и регулирование тепла с учетом ориентации дома по частям света, что у нас пока не делается.

    Со временем ожидается внедрение в энергетику высокоэкономичных дизельных и газотурбинных установок средней и малой мощности, высокоинтенсивных теплогенераторов для электро- и теплоснабжения отдельных домов и малых предприятий. Планируется также применение топливных элементов и тепловых насосов для выработки тепла, холода и электроэнергии.

    Неэффективное теплоснабжение приводит к огромному перерасходу энергетических, материальных и финансовых ресурсов. Эффективность функционирования систем централизованного теплоснабжения во многом зависит от режимов работы тепловых сетей и систем теплопотребления. Поэтому задача оптимизации режимов, проведения наладки и регулирования тепловых и гидравлических режимов в сложных системах средних и крупных городов является весьма актуальной.

    Оптимизация режимов работы тепловых сетей относится к организационно-техническим мероприятиям, не требующих значительных финансовых затрат на внедрение, но приводящая к значительному экономическому результату и снижению затрат на топливно-энергетические ресурсы.

    В работе по управлению и наладке режимов работы тепловых сетей задействованы практически все структурные подразделения «Тепловых сетей». Они разрабатывают оптимальные тепло-гидравлические режимы и мероприятия по их организации, анализируют фактические режимы, выполняют разработанные мероприятия и наладку САР, а также оперативно управляют режимами, контролируют потребление тепловой энергии и др.

    Разработка режимов (в отопительный и межотопительный периоды) проводится ежегодно с учетом анализа режимов работы тепловых сетей в предыдущие периоды, уточнения характеристик по тепловым сетям и системам теплопотребления, ожидаемого присоединения новых нагрузок, планов капитального ремонта, реконструкции и технического перевооружения. С использованием данной информации осуществляются теплогидравлические расчеты с составлением перечня наладочных мероприятий, в том числе с расчетом дроссельных устройств для каждого теплового пункта.

    Разработка режимов работы тепловых сетей в течение последних лет ведется при помощи программных обеспечений.

    Основным критерием оптимизационной задачи при разработке режимов и перераспределения тепловых нагрузок является снижение затрат на производство и транспорт тепловой энергии (загрузка наиболее экономичных тепловых источников) при имеющихся технологических ограничениях (располагаемые мощности и характеристика оборудования тепловых источников, пропускная способность тепловых сетей и характеристики оборудования перекачивающих насосных станций, допустимые рабочие параметры систем теплопотребления и т.д.).

    Основной задачей регулирования отпуска теплоты в системах теплоснабжения является поддержание комфортной температуры и влажности воздуха в отапливаемых помещениях при изменяющихся на протяжении всего отопительного периода внешних климатических условиях и постоянной температуре воды, поступающей в систему горячего водоснабжения при переменном в течение суток расходе. Выполнение этого условия является одним из критериев оценки эффективности системы.


    Способы регулирования

    Оптимизация теплогидравличесих режимов и эффективность работы СЦТ во многом зависит от применяемого метода регулирования тепловой нагрузки.

    Основные способы регулирования могут быть определены из анализа совместного решения уравнений теплового баланса нагревательных приборов по общеизвестным формулам и зависит от:

    Температуры теплоносителя;

    Расхода теплоносителя;

    Коэффициента теплопередачи;

    Площади поверхности теплообмена. Централизованное регулирование от тепловых источников возможно осуществлять путем изменения двух величин: температуры и расхода теплоносителя. В целом регулирование отпуска тепловой энергии может осуществляться тремя способами:

    1) качественным - заключающимся в регулировании отпуска тепловой энергии путем изменения температуры теплоносителя на входе в прибор при сохранении постоянным количества расхода теплоносителя, подаваемого в регулируемую установку;

    2) количественным, заключающимся в регулировании отпуска теплоты путем изменения расхода теплоносителя при постоянной температуре на входе в регулируемую установку;

    3) качественно-количественным, заключающимся в регулировании отпуска теплоты путем одновременного изменения расхода и температуры теплоносителя.

    Для поддержания комфортных условий внутри зданий регулирование должно быть минимум двухуровневым: централизованное (на источниках тепла) и местное (на тепловых пунктах).

    Широко используемый в практике график качественного регулирования отопительной нагрузки показывает зависимость температур теплоносителя в подающем и обратном трубопроводах в зависимости от температуры наружного воздуха. Расчет графика производится по общеизвестным формулам, которые выводятся из уравнения баланса нагревательного прибора при расчетных и других температурных условиях.

    В действительности все теплообменные процессы, происходящие в элементах системы теплоснабжения, нестационарные, и эта особенность должна быть учтена при анализе и регулировании тепловой нагрузки. Однако на практике эта особенность не учитывается и проектные графики используются при эксплуатации и оперативном управлении.

    Тепловой режим зданий

    Тепловой режим зданий формируется как результат совокупного влияния непрерывно изменяющихся внешних (изменения температуры наружного воздуха, скорости и направления ветра, интенсивности солнечной радиации, влажности воздуха) и внутренних (изменение подачи тепла от системы отопления, выделение тепла при приготовлении пищи, работа электроосветительных приборов, действие солнечной радиации сквозь остекление, тепло, выделяемое людьми) возмущающих воздействий.

    Основным параметром, определяющим качество теплоснабжения потребителя и создания комфортных условий, является поддержание температуры воздуха внутри помещений в пределах допустимых отклонений ± (К2) °С.

    Особенности оперативного регулирования тепловых режимов

    Оперативное регулирование приводит к:

    1) уменьшению вероятности повреждений трубопроводов и повышение надежности;

    2) повышению экономичности:

    При производстве энергии за счет разности приростов расхода топлива на выработку энергии на ТЭЦ при разных температурах теплоносителя;

    При транспорте и распределении тепловой энергии за счет разности прироста тепловых потерь трубопроводами при разных температурах теплоносителя;

    3) снижению количества пусков-остановов основного теплогенерирующего оборудования, что также повышает надежность и экономичность.

    2. Классификация СО по типу передачи тепла от нагревательного прибора воздуху.

    Передача тепла от от.прибора воздуху осущ-ся след. способами:
    1.Конвекцией- распространением воздуха.
    2. Электромагнитными волнами - излучением.

    Первый способ используют конвекционные отопительные системы. В этом случае тепловая энергия согретого воздуха распространяется в пространство постепенной передачей энергии (тепла).

    Необходимым условием такого распространения тепла является вещественная среда, так как передача энергии (тепла) происходит при непосредственном соприкасании молекулы вещества с более высокой температурой с молекулой более низкой температуры. Человек в отапливаемом пространстве становится составной частью системы и ощущает тепло как непосредственную тепловую энергию окружающего воздуха и предметов, с которыми соприкасается. Таким образом, для конвекционно отапливаемого пространства температура воздуха (tv), согретого конвекторами, выше или равняется температуре окружающих предметов (tp), которые должны быть согреты этим воздухом.

    Энергия электромагнитного излучения трансформируется в тепло после попадания излучения на поверхность предметов, которые данную энергию поглощают. Если мы нагреваем тело, оно начинает излучать электромагнитные волны (энергию) в окружающее пространство. Если данная энергия поглощается другим телом, это приводит к его нагреванию, что и используется при лучистом отоплении, В этом случае лучистые отопительные устройства, которые размещают на определенной высоте над полом, излучают электромагнитные волны, которые поглощаются полом, вследствие чего повышается температура пола и предметов, на которые попадает излучение. Согретый таким образом пол нагревает воздух.

    Приведенные свойства можно отобразить следующим образом:
    1. Передача тепла конвекцией: tv > tp.
    Передача тепла: конвекционное тело - согревание воздуха - согревание человека.
    2. Передача тепла излучением: tv < tp.
    Излучающее устройство: согревание предметов и человека - согревание воздуха.

    Тепловые характеристики типичных зданий при температуре наружного воздуха -6С.
    1. С лучевым отоплением:
    температура внутренних стен - 23-25 град,
    температура наружных стен - 21 -22 град,
    температура воздуха в помещении 21 град.
    Ощущение людей: свежо и тепло - комфортно.
    2. Панельный дом с конвекторным отоплением:

    температура внутренних стен - 20 -21 град,
    температура наружных стен - 18 -19 град (местами видна плесень),
    температура воздуха в помещении - 24 град.
    Ощущение людей: «душно и холодно» - дискомфорт.

    3. Виды ремонтов и их планирование

    Виды ремонтов и их планирование

    Основными видами ремонтов установок и сетей являются капитальный и текущий.

    При капитальном ремонте должны быть восстановлены исправность и полный или близкий к полному ресурс с заменой или восстановлением любых частей, включая базовые.

    При текущем ремонте должна быть восстановлена работоспособность, заменены и (или) восстановлены отдельные части (кроме базовых).

    При типовом капитальном ремонте, например, котельных агрегатов выполняются следующие работы:

    Полный наружный осмотр котла и его трубопроводов при полном давлении;

    Полный внутренний осмотр котла после его остановки и расхолаживания;

    Проверка наружных диаметров труб всех поверхностей нагрева с заменой дефектных;

    Промывка труб пароперегревателя, регуляторов перегрева, пробоотборников, холодильников и т.д.;

    Проверка состояния и ремонт (или замена) арматуры котла и главных паропроводов;

    Проверка и ремонт механизмов топок (питатель, цепная решетка, мельницы, горелки и т.п.);

    Проверка и ремонт обмуровки котла, гарнитуры, устройств для очистки наружных поверхностей нагрева;

    Опрессовка воздушного тракта и воздухоподогревателя, ремонт воздухоподогревателя;

    Опрессовка газового тракта и его уплотнение;

    Проверка состояния и ремонт тягодутьевых устройств и их осевых направляющих аппаратов;

    Проверка и ремонт золоуловителей и устройств для удаления золы;

    Наружная и внутренняя очистки поверхностей нагрева барабанов и коллекторов;

    Проверка и ремонт системы шлакоудаления;

    Проверка состояния и ремонт тепловой изоляции горячих поверхностей котла.

    Капитальный ремонт котлов производят раз в 1-2 года, а капремонт тепловых сетей, работающих без перерыва, - раз в 2-3 года. Как правило, одновременно с капремонтом котла ремонтируется его вспомогательное оборудование, средства измерения и система автоматического регулирования. Продолжительность капитального ремонта – 30 – 40 суток.

    При текущем ремонте оборудования производится его чистка и осмотр, частичная разборка узлов с быстро изнашивающимися деталями и замена деталей, выработавших свой ресурс, ремонт или замена отдельных деталей, устранение дефектов, выявленных в процессе эксплуатации, составление предварительной ведомости дефектов и изготовление заказов или сверка чертежей на запасные детали.

    Текущий ремонт котельных агрегатов проводится один раз в 3-4 месяца, а тепловых сетей - не реже 1 раза в год. Продолжительность текущего ремонта составляет в среднем 8-10 суток.

    Мелкие дефекты оборудования (парение, пыление, присосы воздуха и т.п.) устраняются без его остановки, если это разрешено правилами техники безопасности.

    Система плановых выводов оборудования из работы носит название системы планово-предупредительных ремонтов (ППР) . На предприятиях в целом и в каждом его подразделении должна быть разработана система ППР, состоящая из текущих и капитальных ремонтов, выполняемых в соответствии с графиком, утвержденным главным инженером предприятия.

    Кроме плановых ремонтов для ликвидации последствий аварий при эксплуатации оборудования приходится выполнять восстановительные ремонты с целью восстановления оказавшихся поврежденными в результате аварий узлов и

    Как показывает анализ, причиной большинства аварий является перегрузка оборудования, нарушение правил эксплуатации и низкое качество плановых ремонтов.

    Планирование ремонтов заключатся в разработке перспективных, годовых и месячных планов. Этим занимаются отделы главного энергетика (механика).

    При планировании ППР следует предусматривать продолжительность ремонта, рациональное распределение работ, определение численности персонала в цехах и по специальностям. Ремонт теплотехнического оборудования должен быть увязан с ремонтом технологического оборудования и режимами его работы.

    Так, например, капремонт котлов следует проводить в летний период, а текущий ремонт - в периоды пониженных нагрузок.

    Планирование ремонта должно базироваться на сетевой модели , в состав которой входят сетевые графики для конкретного оборудования, выводимого в ремонт. Сетевой график должен отображать технологический процесс ремонта и содержать информацию о ходе ремонтных работ, что позволяет осуществлять ремонт с наименьшими затратами материалов, труда и времени.

    Началом ремонта считается момент выдачи ремонтной бригаде наряда - допуска на производство ремонтных работ и вывод оборудования из эксплуатации (отключение от паропроводов) или резерва, о чем начальником цеха или его за-

    местителем делается запись в оперативном журнале.

    Контроль за качеством ремонта осуществляется пооперационно, а также путем контроля за качеством основных материалов, узлов и деталей.

    По окончании ремонта производятся поузловые и общая окончательная приемки и оценка качества выполненного ремонта.

    Поузловая приемка производится по мере готовности и сопровождается предъявлением следующих документов: ведомости объема работ с указанием выполненных работ; формуляров, сертификатов и др. данных о качестве материалов; чертежей по реконструктивным работам (если выполнялись). При этом выполняется тщательный осмотр узла, вращающиеся механизмы опробуются на холостом ходу и под нагрузкой. После этого составляется акт, в котором указывается объем выполненных работ, обнаруженные недостатки, результаты опробования и предварительная оценка работ.

    По окончании капремонта проводится предварительная приемка комиссией под председательством главного инженера (энергетика, механика) с участием начальника цеха и руководителя работ от подрядчика. При этом предъявляются документы: ведомость объема работ с отметкой о выполненных работах, графики ремонта, акты сдачи отдельных узлов, заполненные сертификаты и формуляры на материалы, копии удостоверений сварщиков и результаты испытания образцов, чертежи и схемы реконструктивных работ. Производится осмотр оборудования и устанавливаются сроки устранения выявленных дефектов. После устранения дефектов производится пуск оборудования и приемка его под нагрузкой в течение 24 часов.

    Окончательная оценка качества ремонтных работ производится после месячной эксплуатации оборудования. Все пусковые послеремонтные работы выполняет оперативный персонал в соответствии с письменным распоряжением начальника цеха или его заместителя. Результаты ремонта заносятся в технический паспорт оборудования.

    Министерство образования Республики Беларусь

    Учреждение образования

    «Белорусский национальный технический университет»

    РЕФЕРАТ

    Дисциплина «Энергоэффективность»

    на тему: «Тепловые сети. Потери тепловой энергии при передаче. Тепловая изоляция.»

    Выполнил: Шрейдер Ю. А.

    Группа 306325

    Минск, 2006

    1. Тепловые сети. 3

    2. Потери тепловой энергии при передаче. 6

    2.1. Источники потерь. 7

    3. Тепловая изоляция. 12

    3.1. Теплоизоляционные материалы. 13

    4. Список используемой литературы. 17

    1. Тепловые сети.

    Тепловая сеть - это система прочно и плотно соединенных между собой участников теплопроводов, по которым теплота с помощью теплоносителей (пара или горячей воды) транспортируется от источников к тепловым потребителям.

    Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки, изоляционная конструкция, предназначенная для защиты трубопровода от наружной коррозии и тепловых потерь, и несущая конструкция, воспринимающая вес трубопровода и усилия, возникающие при его эксплуатации.

    Наиболее ответственными элементами являются трубы, которые должны быть достаточно прочными и герметичными при максимальных давлениях и температурах теплоносителя, обладать низким коэффициентом температурных деформаций, малой шероховатостью внутренней поверхности, высоким термическим сопротивлением стенок, способствующим сохранению теплоты, неизменностью свойств материала при длительном воздействии высоких температур и давлений.

    Снабжение теплотой потребителей (систем отопления, вентиляции, горячего водоснабжения и технологических процессов) состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя. Системы теплоснабжения классифицируются по следующим основным признакам: мощности, виду источника теплоты и виду теплоносителя.

    По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей. Они могут быть местными и централизованными. Местные системы теплоснабжения - это системы, в которых три основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях (печи). Централизованные системы, в которых от одного источника теплоты подается теплота для многих помещений.

    По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При системе районного теплоснабжения источником теплоты служит районная котельная, теплофикации-ТЭЦ.

    По виду теплоносителя системы теплоснабжения делятся на две группы: водяные и паровые.

    Теплоноситель – среда, которая передает теплоту от источника теплоты к нагревательным приборам систем отопления, вентиляции и горячего водоснабжения.

    Теплоноситель получает теплоту в районной котельной (или ТЭЦ) и по наружным трубопроводам, которые носят название тепловых сетей, поступает в системы отопления, вентиляции промышленных, общественных и жилых зданий. В нагревательных приборах, расположенных внутри зданий, теплоноситель отдает часть аккумулированной в нем теплоты и отводится по специальным трубопроводам обратно к источнику теплоты.

    В водяных системах теплоснабжения теплоносителем служит вода, а в паровых - пар. В Беларуси для городов и жилых районов используются водяные системы теплоснабжения. Пар применяется на промышленных площадках для технологических целей.

    Системы водяных теплопроводов могут быть однотрубными и двухтрубными(в отдельных случаях многотрубными). Наиболее распространенной является двухтрубная система теплоснабжения (по одной трубе подается горячая вода потребителю, по другой, обратной, охлажденная вода возвращается на ТЭЦ или в котельную). Различают открытую и закрытую системы теплоснабжения. В открытой системе осуществляется "непосредственный водоразбор", т.е. горячая вода из подающей сети разбирается потребителями для хозяйственных, санитарно - гигиенических нужд. При полном использовании горячей воды может быть применена однотрубная система. Для закрытой системы характерно почти полное возвращение сетевой воды на ТЭЦ (или районную котельную).

    К теплоносителям систем централизованного теплоснабжения предъявляют следующие требования: санитарно- гигиенические (теплоноситель не должен ухудшать санитарные условия в закрытых помещениях - средняя температура поверхности нагревательных приборов не может превышать 70-80), технико-экономические (чтобы стоимость транспортных трубопроводов была наименьшей, масса нагревательных приборов - малой и обеспечивался минимальный расход топлива для нагрева помещений) и эксплуатационные (возможность центральной регулировки теплоотдачи систем потребления в связи с переменными температурами наружного воздуха).

    Направление теплопроводов выбирается по тепловой карте района с учетом материалов геодезической съемки, плана существующих и намечаемых надземных и подземных сооружений, данных о характеристике грунтов и т. д. Вопрос о выборе типа теплопровода (надземный или подземный) решается с учетом местных условий и технико-экономических обоснований.

    При высоком уровне грунтовых и внешних вод, густоте существующих подземных сооружений на трассе проектируемого теплопровода, сильно пересеченной оврагами и железнодорожными путями в большинстве случаев предпочтение отдается надземным теплопроводам. Они также чаще всего применяются на территории промышленных предприятий при совместной прокладке энергетических и технологических трубопроводов на общих эстакадах или высоких опорах.

    В жилых районах из архитектурных соображений обычно применяется подземная кладка тепловых сетей. Стоит сказать, что надземные теплопроводные сети долговечны и ремонтопригодны, по сравнению с подземными. Поэтому желательно изыскание хотя бы частичного использования подземных теплопроводов.

    При выборе трассы теплопровода следует руководствоваться в первую очередь условиями надежности теплоснабжения, безопасности работы обслуживающего персонала и населения, возможностью быстрой ликвидации неполадок и аварий.

    В целях безопасности и надежности теплоснабжения, прокладка сетей не ведется в общих каналах с кислородопроводами, газопроводами, трубопроводами сжатого воздуха с давлением выше 1,6 МПа. При проектировании подземных теплопроводов по условиям снижения начальных затрат следует выбирать минимальное количество камер, сооружая их только в пунктах установки арматуры и приборов, нуждающихся в обслуживании. Количество требующих камер сокращается при применении сильфонных или линзовых компенсаторов, а также осевых компенсаторов с большим ходом (сдвоенных компенсаторов), естественной компенсации температурных деформаций.

    На не проезжей части допускаются выступающие на поверхность земли перекрытия камер и вентиляционных шахт на высоту 0,4 м. Для облегчения опорожнения (дренажа) теплопроводов, их прокладывают с уклоном к горизонту. Для защиты паропровода от попадания конденсата из конденсатопровода в период остановки паропровода или падения давления пара после конденсатоотводчиков должны устанавливаться обратные клапаны или затворы.

    По трассе тепловых сетей строится продольный профиль, на который наносят планировочные и существующие отметки земли, уровень стояния грунтовых вод, существующие и проектируемые подземные коммуникации, и другие сооружения пересекаемые теплопроводом, с указанием вертикальных отметок этих сооружений.

    2. Потери тепловой энергии при передаче.

    Для оценки эффективности работы любой системы, в том числе теплоэнергетической, обычно используется обобщенный физический показатель, - коэффициент полезного действия (КПД). Физический смысл КПД - отношение величины полученной полезной работы (энергии) к затраченной. Последняя, в свою очередь, представляет собой сумму полученной полезной работы (энергии) и потерь, возникающих в системных процессах. Таким образом, увеличения КПД системы (а значит и повышения ее экономичности) можно достигнуть только снижением величины непроизводительных потерь, возникающих в процессе работы. Это и является главной задачей энергосбережения.

    Основной же проблемой, возникающей при решении этой задачи, является выявление наиболее крупных составляющих этих потерь и выбор оптимального технологического решения, позволяющего значительно снизить их влияние на величину КПД. Причем каждый конкретный объект (цель энергосбережения) имеет ряд характерных конструктивных особенностей и составляющие его тепловых потерь различны по величине. И всякий раз, когда речь заходит о повышении экономичности работы теплоэнергетического оборудования (например, системы отопления), перед принятием решения в пользу использования какого-нибудь технологического новшества, необходимо обязательно провести детальное обследование самой системы и выявить наиболее существенные каналы потерь энергии. Разумным решением будет использование только таких технологий, которые существенно снизят наиболее крупные непроизводительные составляющие потерь энергии в системе и при минимальных затратах значительно повысят эффективность ее работы.

    2.1 Источники потерь.

    Любую теплоэнергетическую систему с целью анализа можно условно разбить на три основные участка:

    1. участок производства тепловой энергии (котельная);

    2. участок транспортировки тепловой энергии потребителю (трубопроводы тепловых сетей);

    3. участок потребления тепловой энергии (отапливаемый объект).

    Каждый из приведенных участков обладает характерными непроизводительными потерями, снижение которых и является основной функцией энергосбережения. Рассмотрим каждый участок в отдельности.

    1.Участок производства тепловой энергии. Существующая котельная.

    Главным звеном на этом участке является котлоагрегат, функциями которого является преобразование химической энергии топлива в тепловую и передача этой энергии теплоносителю. В котлоагрегате происходит ряд физико-химических процессов, каждый из которых имеет свой КПД. И любой котлоагрегат, каким бы совершенным он не был, обязательно теряет часть энергии топлива в этих процессах. Упрощенно схема этих процессов изображена на рисунке.

    На участке производства тепловой энергии при нормальной работе котлоагрегата всегда существуют три вида основных потерь: с недожогом топлива и уходящими газами (обычно не более18%), потери энергии через обмуровку котла (не более 4%) и потери с продувкой и на собственные нужды котельной (около 3%). Указанные цифры тепловых потерь приблизительно близки для нормального не нового отечественного котла (с КПД около 75%). Более совершенные современные котлоагрегаты имеют реальный КПД около 80-85% и стандартные эти потери у них ниже. Однако они могут дополнительно возрастать:

    • Если своевременно и качественно не проведена режимная наладка котлоагрегата с инвентаризацией вредных выбросов, потери с недожогом газа могут увеличиваться на 6-8 %;
    • Диаметр сопел горелок, установленных на котлоагрегате средней мощности обычно не пересчитывается под реальную нагрузку котла. Однако подключенная к котлу нагрузка отличается от той, на которую рассчитана горелка. Это несоответствие всегда приводит к снижению теплоотдачи от факелов к поверхностям нагрева и возрастанию на 2-5% потерь с химическим недожогом топлива и уходящими газами;
    • Если чистка поверхностей котлоагрегатов производится, как правило, один раз в 2-3 года, это снижает КПД котла с загрязненными поверхностями на 4-5% за счет увеличения на эту величину потерь с уходящими газами. Кроме того, недостаточная эффективность работы системы химводоочистки (ХВО) приводит к появлению химических отложений (накипи) на внутренних поверхностях котлоагрегата значительно снижающих эффективность его работы.
    • Если котел не оборудован полным комплектом средств контроля и регулирования (паромерами, теплосчетчиками, системами регулирования процесса горения и тепловой нагрузки) или если средства регулирования котлоагрегата настроены неоптимально, то это в среднем дополнительно снижает его КПД на 5%.
    • При нарушении целостности обмуровки котла возникают дополнительные присосы воздуха в топку, что увеличивает потери с недожогом и уходящими газами на 2-5%
    • Использование современного насосного оборудования в котельной позволяет в два-три раза снизить затраты электроэнергии на собственные нужды котельной и снизить затраты на их ремонт и обслуживание.
    • На каждый цикл "Пуск-останов" котлоагрегата тратится значительное количество топлива. Идеальный вариант эксплуатации котельной - ее непрерывная работа в диапазоне мощностей, определенном режимной картой. Использование надежной запорной арматуры, высококачественной автоматики и регулирующих устройств позволяет минимизировать потери, возникающие из-за колебаний мощности и возникновения нештатных ситуаций в котельной.

    Перечисленные выше источники возникновения дополнительных потерь энергии в котельной не являются явными и прозрачными для их выявления. Например, одна из основных составляющих этих потерь - потери с недожогом, могут быть определены только с помощью химического анализа состава уходящих газов. В то же время увеличение этой составляющей может быть вызвано целым рядом причин: не соблюдается правильное соотношение смеси топливо-воздух, имеются неконтролируемые присосы воздуха в топку котла, горелочное устройство работает в неоптимальном режиме др.

    Таким образом, постоянные неявные дополнительные потери только при производстве тепла в котельной могут достигать величины 20-25%!

    2. Потери тепла на участке его транспортировки к потребителю. Существующие трубопроводы теплосетей.

    Обычно тепловая энергия, переданная в котельной теплоносителю, поступает в теплотрассу и следует на объекты потребителей. Величина КПД данного участка обычно определяется следующим:

    • КПД сетевых насосов, обеспечивающих движение теплоносителя по теплотрассе;
    • потерями тепловой энергии по длине теплотрасс, связанными со способом укладки и изоляции трубопроводов;
    • потерями тепловой энергии, связанными с правильностью распределения тепла между объектами-потребителями, т.н. гидравлической настроенностью теплотрассы;
    • периодически возникающими во время аварийных и нештатных ситуаций утечками теплоносителя.

    При разумно спроектированной и гидравлически налаженной системе теплотрасс, удаление конечного потребителя от участка производства энергии редко составляет больше 1,5-2 км и общая величина потерь обычно не превышает 5-7%. Однако:

    • использование отечественных мощных сетевых насосов с низким КПД практически всегда приводит к значительным непроизводительным перерасходам электроэнергии.
    • при большой протяженности трубопроводов теплотрасс значительное влияние на величину тепловых потерь приобретает качество тепловой изоляции теплотрасс.
    • гидравлическая налаженность теплотрассы является основополагающим фактором, определяющим экономичность ее работы. Подключенные к теплотрассе объекты теплопотребления должны быть правильно шайбированы таким образом, чтобы тепло распределялось по ним равномерно. В противном случае тепловая энергия перестает эффективно использоваться на объектах потребления и возникает ситуация с возвращением части тепловой энергии по обратному трубопроводу на котельную. Помимо снижения КПД котлоагрегатов это вызывает ухудшение качества отопления в наиболее отдаленных по ходу теплосети зданиях.
    • если вода для систем горячего водоснабжения (ГВС) подогревается на расстоянии от объекта потребления, то трубопроводы трасс ГВС обязательно должны быть выполнены по циркуляционной схеме. Присутствие тупиковой схемы ГВС фактически означает, что около 35-45% тепловой энергии, идущей на нужды ГВС, затрачивается впустую.

    Обычно потери тепловой энергии в теплотрассах не должны превышать 5-7%. Но фактически они могут достигать величины в 25% и выше!

    3. Потери на объектах потребителей тепла. Системы отопления и ГВС существующих зданий.

    Наиболее существенными составляющими тепловых потерь в теплоэнергетических системах являются потери на объектах-потребителях. Наличие таковых не является прозрачным и может быть определено только после появления в теплопункте здания прибора учета тепловой энергии, т.н. теплосчетчика. Опыт работы с огромным количеством отечественных тепловых систем, позволяет указать основные источники возникновения непроизводительных потерь тепловой энергии. В самом распространенном случае таковыми являются потери:

    • в системах отопления связанные с неравномерным распределением тепла по объекту потребления и нерациональностью внутренней тепловой схемы объекта (5-15%);
    • в системах отопления связанные с несоответствием характера отопления текущим погодным условиям (15-20%);
    • в системах ГВС из-за отсутствия рециркуляции горячей воды теряется до 25% тепловой энергии;
    • в системах ГВС из-за отсутствия или неработоспособности регуляторов горячей воды на бойлерах ГВС (до 15% нагрузки ГВС);
    • в трубчатых (скоростных) бойлерах по причине наличия внутренних утечек, загрязнения поверхностей теплообмена и трудности регулирования (до10-15% нагрузки ГВС).

    Общие неявные непроизводительные потери на объекте потребления могут составлять до 35% от тепловой нагрузки!

    Главной косвенной причиной наличия и возрастания вышеперечисленных потерь является отсутствие на объектах теплопотребления приборов учета количества потребляемого тепла. Отсутствие прозрачной картины потребления тепла объектом обуславливает вытекающее отсюда недопонимание значимости принятия на нем энергосберегающих мероприятий.

    3. Тепловая изоляция

    Теплоизоляция, тепловая изоляция, термоизоляция, защита зданий, тепловых промышленных установок (или отдельных их узлов), холодильных камер, трубопроводов и прочего от нежелательного теплового обмена с окружающей средой. Так, например, в строительстве и теплоэнергетике теплоизоляция необходима для уменьшения тепловых потерь в окружающую среду, в холодильной и криогенной технике - для защиты аппаратуры от притока тепла извне. Теплоизоляция обеспечивается устройством специальных ограждений, выполняемых из теплоизоляционных материалов (в виде оболочек, покрытий и т. п.) и затрудняющих теплопередачу; сами эти теплозащитные средства также называются теплоизоляцией. При преимущественном конвективном теплообмене для теплоизоляции используют ограждения, содержащие слои материала, непроницаемого для воздуха; при лучистом теплообмене - конструкции из материалов, отражающих тепловое излучение (например, из фольги, металлизированной лавсановой плёнки); при теплопроводности (основной механизм переноса тепла) - материалы с развитой пористой структурой.

    Эффективность теплоизоляции при переносе тепла теплопроводностью определяется термическим сопротивлением (R) изолирующей конструкции. Для однослойной конструкции R=d/l, где d - толщина слоя изолирующего материала, l - его коэффициент теплопроводности. Повышение эффективности теплоизоляции достигается применением высокопористых материалов и устройством многослойных конструкций с воздушными прослойками.

    Задача теплоизоляции зданий - снизить потери тепла в холодный период года и обеспечить относительное постоянство температуры в помещениях в течение суток при колебаниях температуры наружного воздуха. Применяя для тепловой изоляции эффективные теплоизоляционные материалы, можно существенно уменьшить толщину и снизить массу ограждающих конструкций и таким образом сократить расход основных стройматериалов (кирпича, цемента, стали и др.) и увеличить допустимые размеры сборных элементов.

    В тепловых промышленных установках (промышленных печах, котлах, автоклавах и т. п.) теплоизоляция обеспечивает значительную экономию топлива, способствует увеличению мощности тепловых агрегатов и повышению их КПД, интенсификации технологических процессов, снижению расхода основных материалов. Экономическую эффективность теплоизоляции в промышленности часто оценивают коэффициентом сбережения тепла h= (Q 1 - Q 2)/Q 1 (где Q 1 - потери тепла установкой без теплоизоляции, а Q 2 - c теплоизоляцией). Теплоизоляция промышленных установок, работающих при высоких температурах, способствует также созданию нормальных санитарно-гигиенических условий труда обслуживающего персонала в горячих цехах и предотвращению производственного травматизма.

    3.1 Теплоизоляционные материалы

    Основные области применения теплоизоляционных материалов - изоляция ограждающих строительных конструкций, технологического оборудования (промышленных печей, тепловых агрегатов, холодильных камер и т. д.) и трубопроводов.

    От качества изоляционной конструкции теплопровода зависят не только тепловые потери, но и его долговечность. При соответствующем качестве материалов и технологии изготовления тепловая изоляция может одновременно выполнять роль антикоррозийной защиты наружной поверхности стального трубопровода. К таким материалам, относятся полиуретан и производные на его основе - полимербетон и бион.

    Основные требования к теплоизоляционным конструкциям заключается в следующем:

    · низкая теплопроводность как в сухом состоянии так и в состоянии естественной влажности;

    · малое водопоглощение и небольшая высота капиллярного подъема жидкой влаги;

    · малая коррозионная активность;

    · высокое электрическое сопротивление;

    · щелочная реакция среды (pH>8,5);

    · достаточная механическая прочность.

    Основными требованиями для теплоизоляционных материалов паропроводов электростанций и котельных являются низкая теплопроводность и высокая термостойкость. Такие материалы обычно характеризуются большим содержанием воздушных пор и малой объемной плотностью. Последнее качество этих материалов предопределяет их повышенные гигроскопичность и водопоглощение.

    Одно из основных требований к теплоизоляционным материалам для подземных теплопроводов заключается в малом водопоглащении. Поэтому высокоэффективные теплоизоляционные материалы с большим содержанием воздушных пор, легко впитывающие влагу из окружающего грунта, как правило, непригодны для подземных теплопроводов.

    Различают жёсткие (плиты, блоки, кирпич, скорлупы, сегменты и др.), гибкие (маты, матрацы, жгуты, шнуры и др.), сыпучие (зернистые, порошкообразные) или волокнистые теплоизоляционные материалы. По виду основного сырья их подразделяют на органические, неорганические и смешанные.

    Органические в свою очередь делятся на органические естественные и органические искусственные. К органическим естественным материалам относятся материалы, получаемые переработкой неделовой древесины и отходов деревообработки (древесноволокнистые плиты и древесностружечные плиты), сельскохозяйственных отходов (соломит, камышит и др.), торфа (торфоплиты) и др. местного органического сырья. Эти теплоизоляционные материалы, как правило, отличаются низкой водо- и биостойкостью. Указанных недостатков лишены органические искусственные материалы. Очень перспективными материалами этой подгруппы являются пенопласты, получаемые путем вспенивания синтетических смол. Пенопласты имеют мелкие замкнутые поры и этим отличаются от поропластов – тоже вспененных пластмасс, но имеющих соединяющиеся поры и поэтому неиспользуемые в качестве теплоизоляционных материалов. В зависимости от рецептуры и характера технологического процесса изготовления пенопласты могут быть жесткими, полужесткими и эластичными с порами необходимого размера; изделиям могут быть приданы желаемые свойства (например, уменьшена горючесть). Характерная особенность большинства органических теплоизоляционных материалов - низкая огнестойкость, поэтому их применяют обычно при температурах не выше 150 °С.

    Более огнестойки материалы смешанного состава (фибролит, арболит и др.), получаемые из смеси минерального вяжущего вещества и органического наполнителя (древесные стружки, опилки и т. п.).

    Неорганические материалы. Представителем этой подгруппы является алюминиевая фольга (альфоль). Она применяется в виде гофрированных листов, уложенных с образованием воздушных прослоек. Достоинством этого материала является высокая отражательная способность, уменьшающая лучистый теплообмен, что особенно заметно при высоких температурах. Другими представителями подгруппы неорганических материалов являются искусственные волокна: минеральная, шлаковая и стеклянная вата. Средняя толщина минеральной ваты 6-7 мкм, средний коэффициент теплопроводности λ=0,045 Вт/(м*К). Эти материалы не горючи, не проходимы для грызунов. Они имеют малую гигроскопичность (не более 2%), но большое водопоглащение (до 600%).

    Лёгкие и ячеистые бетоны (главным образом газобетон и пенобетон), пеностекло, стеклянное волокно, изделия из вспученного перлита и др.

    Неорганические материалы, используемые в качестве монтажных, изготовляют на основе асбеста (асбестовые картон, бумага, войлок), смесей асбеста и минеральных вяжущих веществ (асбестодиатомовые, асбестоизвестковокремнезёмистые, асбестоцементные изделия) и на основе вспученных горных пород (вермикулита, перлита).

    Для изоляции промышленного оборудования и установок, работающих при температурах выше 1000 °С (например, металлургических, нагревательных и др. печей, топок, котлов и т. д.), применяют так называемые легковесные огнеупоры, изготовляемые из огнеупорных глин или высокоогнеупорных окислов в виде штучных изделий (кирпичей, блоков различного профиля). Перспективно также использование волокнистых материалов теплоизоляции из огнеупорных волокон и минеральных вяжущих веществ (коэффициент их теплопроводности при высоких температурах в 1,5-2 раза ниже, чем у традиционных).

    Таким образом, имеется большое количество теплоизоляционных материалов, из которых может осуществляться выбор в зависимости от параметров и условий эксплуатации различных установок, нуждающихся в теплозащите.

    4. Список используемой литературы.

    1. Андрюшенко А.И., Аминов Р.З., Хлебалин Ю.М. «Теплофикационные установки и их использование». М. : Высш. школа, 1983.

    2. Исаченко В.П., Осипова В.А., Сукомел А.С. «Теплопередача». М.:энергоиздат,1981.

    3. Р.П. Грушман «Что нужно знать теплоизолировщику». Ленинград; Стройиздат, 1987.

    4. Соколов В. Я. «Теплофикация и тепловые сети» Издательство М.: Энергия, 1982.

    5. Тепловое оборудование и тепловые сети. Г.А. Арсеньев и др. М.: Энергоатомиздат, 1988.

    6. «Теплопередача» В.П. Исаченко, В.А. Осипова, А.С. Сукомел. Москва; Энергоиздат, 1981.