Условия воспламенения и сгорания газового топлива. Горение газа

Топливом для котельной является природный газ, поступающий с ГРС. Природный газ с давлением 1-2 МПа, температура, расход и давление которого регистрируются приборами коммерческого учета, поступает на первую ступень редуцирования. Давление после первой ступени редуцирования регулируется клапаном регулятора давления.

Далее топливный газ с давлением около 0,5 МПа поступает в трубное пространство подогревателя, теплоносителем которого является пар 0,3-0,6 МП. Температура топливного газа после подогревателя изменяется регулировочным клапаном, установленным на трубопроводе пара. После подогревателя давление топливного газа снижается второй ступенью редуцирования до 3-80 кПа.После второй ступени редуцирования газ поступает на горелки котлов через стандартные блоки газооборудования (СБГ). Перед СБГ каждого котла измеряется и регистрируется давление, расход, температура газа. Давление газа после СБГ каждого котла также регистрируется

5.3.2. Особенности процесса горения природного газа.

Выбор типа и количества газовых горелок, их размещение и организация процесса сгорания зависят от особенностей теплового и аэродинамического режима работы промышленной установки. Правильное решение этих задач определяет интенсивность технологического процесса и экономичность установки. Теоретические предпосылки и опыт работы свидетельствуют, что при проектировании новых газовых установок основные показатели их работы, как правило, могут быть улучшены. Однако здесь следует отметить, что неправильно выбранный способ сжигания газа и неудачное расположение горелок снижают производительность и к. п. д. установок.

При проектировании промышленных газовых установок задачи интенсификации технологического процесса и повышения эффективности использования топлива должны решаться с наименьшими материальными затратами и с соблюдением ряда других условий, таких как надежность работы, безопасность и т. д.

При сжигании природного газа в отличие от сжигания других видов топлива можно в широких пределах изменять характеристики факела. Поэтому он может быть использован практически для установок любого назначения. Здесь следует лишь помнить, что требуемая максимальная интенсификация технологического процесса, повышение к. п. д., а также удовлетворение других требований, предъявляемых к установке, не могут быть обеспечены только выбором той или иной газовой горелки, а будут достигнуты при правильном решении всего комплекса вопросов теплообмена и аэродинамики, начиная от подачи воздуха и газа и кончая удалением отработанных продуктов горения в атмосферу. Особое значение имеет начальная стадия процесса - организация сжигания газа.

Природный газ – это газ без цвета. Значительно легче воздуха. Присутствие газа в воздухе помещений, колодцах, шурфах более 20% вызывает удушье, головокружение, потерю сознания и смерть. По санитарным нормам природный газ (метан) относится к 4 классу опасности (вещество малоопасное). Малотоксичен, ядом не является.

Состав природного газа:

Метан 98,52%;

Этан 0,46%;

Пропан 0,16%;

Бутан 0,02%;

Азот 0,73%;

Углекислый газ 0,07%.

Если природный газ прошел все степени очистки, то его свойства мало отличаются от свойств метана. Метан – простейший элемент из ряда метановых углеводородов. Свойства метана:

Удельная теплота сгорания 7980 Ккал/м 3 ;

Сжижается при t°=-161°С, затвердевает при t°=-182°С;

Плотность метана – 0,7169 кг/м 3 (легче воздуха в 2 раза);

Температура воспламенения t°=645°С;

Температура горения t°=1500 ÷ 2000°С

Пределы взрываемости 5 ÷ 15%.

При взаимодействии с воздухом образуются высоко взрывоопасные смеси, способные взрываться, производить разрушения.

Горение любого топлива, в том числе и газового, является реакцией химического соединения его с кислородом и сопровождается выделением теплоты. Количество теплоты, получаемое при полном сгорании 1 м 3 (или 1 кг) газа, называется его теплотой сгорания. Различают теплоту сгорания низшую, в которой не учитывается скрытая теплота образования водяных паров, содержащихся в продуктах горения, и высшую, когда эта теплота учитывается. Разница между высшей и низшей теплотой сгорания зависит от количества водяных паров, образующихся при сгорании топлива, и составляет примерно 2500 кДж на 1 кг или 2000 кДж на 1 м 3 водяных паров.

Теплота сгорания различных видов топлив может значительно различаться. Так, например, дрова и торф имеют низшую теплоту сгорания до 12500, лучшие каменные угли-до 31000, а нефть около 40000 кДж/кг. Природный газ имеет низшую теплоту сгорания 40-44 МДж/кг.

Полное время сгорания  определяется временем  д смесеобразования (диффузионных процессов) и временем  к протекания химических реакций горения (кинетических процессов). С учетом того, что может происходить наложение этих стадий процесса, получаем  д + к.

При  к  д (горение протекающее одновременно со смесеобразованием в топке называется диффузионным , так как это смесеобразование включает процессы турбулентной (в заключительной стадии - молекулярной) диффузии).

При  д  к  к (горение заранее подготовленной смеси нередко условно называют кинетическим , оно определяется кинетикой химических реакций).

Когда  д и к соизмеримы, процесс горения называют смешанным.

Следующий этап за смесеобразованием - нагрев и воспламенение топлива. При смешивании струи горючего газа со струёй воздуха и постепенном повышении их температуры при некоторой температуре произойдет воспламенение смеси. Минимальную температуру, при которой смесь воспламеняется, называют температурой воспламенения.

Температура воспламенения не является физико-химической константой вещества, так как кроме природы горючего газа зависит от концентрации газа и окислителя, а также от интенсивности теплообмена между газовой смесью и окружающей средой.

Существуют верхний и нижний пределы концентрации газа и окислителя и вне этих пределов при данной температуре смеси не воспламеняются. При повышении температуры газо-воздушной смеси согласно закону Аррениуса происходит увеличение скорости реакции пропорционально е -Е/ RT , этой же величине пропорционально тепловыделение. Если тепло потери зоны горения, связанные с теплообменом с окружающей средой, превышают тепловыделение, то воспламенение и горение невозможны. Обычно разогрев протекает одновременно со смесеобразованием.

Газо-воздушная смесь, в которой содержание газа находится между нижним и верхним пределами воспламенения, является взрывоопасной. Чем шире диапазон пределов воспламенения (называемых также пределами взрываемости), тем более взрывоопасен газ. По химической сущности взрыв газо-воздушной (газокислородной) смеси - процесс очень быстрого (практически мгновенного) горения, приводящий к образованию продуктов горения, имеющих высокую температуру, и резкому возрастанию их давления. Расчетное избыточное давление при взрыве природного газа 0,75, пропана и бутана - 0,86, водорода-0,74, ацетилена-1,03 МПа. В практических условиях температура взрыва, не достигает максимальных значений и возникающие давления ниже указанных, однако они вполне достаточны для разрушения не только обмуровки котлов, зданий, но и металлических емкостей, если в них произойдет взрыв.

В результате воспламенения и горения возникает пламя, которое является внешним проявлением интенсивных реакций окислителя вещества. Движение пламени по газовой смеси называется распространением пламени. При этом газовая смесь делится на две части- сгоревший газ, через который пламя уже прошло, и несгоревший газ, который вскоре войдет в область пламени. Граница между этими двумя частями горящей газовой смеси называется фронтом пламени.

Факелом называют поток, содержащий смесь воздуха, горящих газов, частиц топлива и продукты сгорания, в котором происходит разогрев, воспламенение и горение газообразного топлива.

При обычных температурах в топках (1000-1500 °С) углеводороды, включая метан, даже в очень малые промежутки времени в результате термического разложения дают заметные количества элементарного углерода. В результате появления в факеле элементарного углерода процесс горения в известной степени приобретает элементы гетерогенного, т. е. протекающего на поверхности твердых частиц. Наличие катализаторов (окислов железа, никеля) значительно ускоряет процесс разложения метана и других углеводородов.

Таким образом, в топке или рабочем пространстве печи между моментом ввода газа и воздуха и получением конечных продуктов горения в результате наложения процесса термического распада углеводородов и цепной реакции окисления наблюдается весьма сложная картина, характеризующаяся наличием как продуктов окисления СО 2 и Н 2 О, так и СО, Н 2 , элементарного углерода и продуктов неполного окисления (из последних особо важное значение имеет формальдегид). Соотношение между указанными компонентами будет зависеть от условий и длительности нагревания газа, предшествующего реакциям окисления.

При горении топлива происходят химические процессы окисления его горючих составляющих, сопровождающиеся интенсивным тепловыделением и быстрым подъемом температуры продуктов сгорания.

Различают гомогенное горение, протекающее в объеме, когда топливо и окислитель находятся в одинаковом агрегатном состоянии, и гетерогенное горение, происходящее на поверхности раздела фаз, когда горючее вещество и окислитель находятся в различных агрегатных состояниях.

Горение газообразного топлива является процессом гомогенным. При горении скорость прямого процесса несоизмеримо больше скорости обратного, поэтому обратной реакцией можно пренебречь. Напомним, что для гомогенной реакции горения выражение скорости прямой реакции будет иметь вид:

где -время; Т- абсолютная температура; К- универсальная газовая постоянная; k - константа скорости реакции, зависящая от природы реагирующих веществ, действия катализаторов, температуры; k 0 - эмпирическая константа; Е- энергия активации, характеризующая наименьшую избыточную энергию, которой должны обладать сталкивающиеся частицы, чтобы произошла реакция.

Из выражений (второе из них называют уравнением Аррениуса) следует, что скорость реакции возрастает с увеличением концентраций (давления в системе) и температуры и с уменьшением энергии активации. Экспериментальные измерения дают для энергии активации значительно меньшую величину, чем приведенные закономерности химической кинетики. Это объясняется тем, что процессы горения газов относятся к цепным реакциям и протекают через промежуточные стадии с непрерывным образованием активных центров (атомов или радикалов).

Например, при горении водорода (рис. 3) с помощью свободных атомов кислорода и радикалов гидроксила образуются три активных атома водорода вместо одного, имевшегося в начале рассматриваемого этапа реакции. Такое утроение происходит на каждом этапе, и в цепных реакциях лавинообразно нарастает количество активных центров. Кроме того, взаимодействие между неустойчивыми промежуточными продуктами идет гораздо быстрее, чем между молекулами.

Рис. 3. Схема цепной реакции горения водорода

Суммарная скорость реакции горения водорода определяется скоростью наиболее медленной реакции (выражаемой уравнением Н+О 2 ОН+Н 2) =kC н С о, где С н, С о - концентрации атомарного водорода и молекулярного кислорода.

Процессы окисления углеводородов, составляющих органическую часть природных и попутных газов, являются наиболее сложными. До сего времени отсутствуют четкие представления о кинетическом механизме протекания реакций, хотя можно с уверенностью сказать, что горение имеет цепной характер при наличии периода индукции и протекает с образованием многочисленных промежуточных продуктов частичного окисления и раз­ложения.

Приближенная схема стадийного горения метана может быть представлена набором следующих реакций:

Хотя начальные и конечные продукты реакции горения – газы, в промежуточных продуктах помимо газов может быть элементарный углерод в виде мельчайшей сажистой взвеси.

Скорость реакции горения окиси углерода зависит от концентраций в зоне реакции окиси углерода и водяных паров, а скорость цепного горения метана и других углеводородов - от концентраций атомарного водорода, кислорода и водяных паров.

Горение газового топлива представляет собой совокупность сложных аэродинамических, тепловых и химических процессов. Процесс горения газообразного топлива состоит из нескольких стадий: смешение газа с воздухом, нагрев полученной смеси до температуры воспламенения, зажигание и горение.

Горение газа представляет собой сочетание следующих процессов:

· смешение горючего газа с воздухом,

· подогрев смеси,

· термическое разложение горючих компонентов,

· воспламенение и химическое соединение горючих компонентов с кислородом воздуха, сопровождаемое образованием факела и интенсивным тепловыделением.

Горение метана происходит по реакции:

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Условия, необходимые для сгорания газа:

· обеспечение необходимого соотношения горючего газа и воздуха,

· нагрев до температуры воспламенения.

Если в газовоздушной смеси газа меньше нижнего предела воспламенения, то она не будет гореть.

Если в газовоздушной смеси больше газа чем верхний предел воспламенения, то она будет сгорать не полностью.

Состав продуктов полного сгорания газа:

· СО 2 – углекислый газ

· Н 2 О – водяные пары

* N 2 – азот (он не реагирует с кислородом во время горения)

Состав продуктов неполного сгорания газа:

· СО – угарный газ

· С – сажа.

Для сгорания 1 м 3 природного газа требуется 9.5м 3 воздуха. Практически расход воздуха всегда больше.

Отношение действительного расхода воздуха к теоретически необходимому расходу называется коэффициентом избытка воздуха: α = L/L t .,

Где: L - действительный расход;

L t - теоретически необходимый расход.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет 1.05 – 1.2.

2. Назначение, устройство и основные характеристики проточных водонагревателей .

Проточные газовые водонагреватели. Предназначены для нагрева воды до определенной температуры при водоразборе.. Проточные водонагреватели делятся по нагрузке тепловой мощности: 33600, 75600, 105000 кДж, по степени автоматизации - на высший и первый классы. К.п.д. водонагревателей 80%, содержание оксида не более 0,05%, температура продуктов сгорания за тягопрерывателем не менее180 0 С. Принцип основан на нагреве воды в период водоразбора.

Основными узлами проточных водонагревателей являются: газогорелочное устройство, теплообменник, система автоматики и газоотвод. Газ низкого давления подается в инжекционную горелку. Продукты сгорания проходят через теплообменник и отводятся в дымоход. Теплота сгорания передается протекающей через теплообменник воде. Для охлаждения огневой камеры служит змеевик, через который циркулирует вода, проходящая через калорифер. Газовые проточные водонагреватели оборудованы газоотводящими устройствами и тягопрерывателями, которые в случае кратковременного нарушения тяги предотвращают погасание пламени газогорелочного устройства. Для присоединения к дымоходу имеется дымоотводящий патрубок.

Газовый проточный водонагреватель –ВПГ. На передней стенке кожуха расположены: ручка управления газовым краном, кнопка включения электромагнитного клапана и смотровое окно для наблюдения за пламенем запальной и основной горелки. Вверху аппарата расположено дымоотводящее устройство, внизу- патрубки для присоединения аппарата к газовой и водяной системе. Газ поступает в электромагнитный клапан, газовый блокировочный кран водогазогорелочного блока осуществляет последовательное включение запальной горелки и подачу газа к основной горелке.

Блокировку поступления газа к основной горелке, при обязательной работе запальника, осуществляет электромагнитный клапан, работающий от термопары. Блокировка подачи газа в основную горелку в зависимости от наличия водоразбора, осуществляется клапаном, имеющим привод через шток от мембраны водяного блок- крана.

Горение газообразного топлива представляет собой сочетание следующих физических и химических процессов: смешение горючего газа с воздухом, подогрев смеси, термическое разложение горючих компонентов, воспламенение и химическое соединение горючих элементов с кислородом воздуха.

Устойчивое горение газовоздушной смеси возможно при непрерывном подводе к фронту горения необходимых количеств горючего газа и воздуха, их тщательном перемешивании и нагреве до температуры воспламенения или самовоспламенения (табл. 5).

Воспламенение газовоздушной смеси может быть осуществлено:

  • нагревом всего объема газовоздушной смеси до температуры самовоспламенения. Такой способ применяют в двигателях внутреннего сгорания, где газовоздушную смесь нагревают быстрым сжатием до определенного давления;
  • применением посторонних источников зажигания (запальников и т. д.). В этом случае до температуры воспламенения нагревается не вся газовоздушная смесь, а ее часть. Данный способ применяется при сжигании газов в горелках газовых приборов;
  • существующим факелом непрерывно в процессе горения.

Для начала реакции горения газообразного топлива следует затратить определенное количество энергии, необходимой для разрыва молекулярных связей и создания новых.

Химическая формула сгорания газового топлива с указанием всего механизма реакции, связанного с возникновением и исчезновением большого количества свободных атомов, радикалов и других активных частиц, сложна. Поэтому для упрощения пользуются уравнениями, выражающими начальное и конечное состояния реакций горения газа.

Если углеводородные газы обозначить С m Н n , то уравнение химической реакции горения этих газов в кислороде примет вид

C m H n + (m + n/4)O 2 = mCO 2 + (n/2)H 2 O ,

где m - количество атомов углерода в углеводородном газе; n - количество атомов водорода в газе; (m + n/4) - количество кислорода, необходимое для полного сгорания газа.

В соответствии с формулой выводятся уравнения горения газов:

  • метана СН 4 + 2O 2 = СO 2 + 2Н 2 O
  • этана С 2 Н 6 + 3,5O 2 = 2СO 2 + ЗН 2 O
  • бутана С 4 Н 10 + 6,5O 2 = 4СO 2 + 5Н 2 0
  • пропана C 3 H 8 + 5O 3 = ЗСO 2 + 4Н 2 O.

В практических условиях сжигания газа кислород берется не в чистом виде, а входит в состав воздуха. Так как воздух состоит по объему на 79 % из азота и на 21 % из кислорода, то на каждый объем кислорода требуется 100: 21 = 4,76 объема воздуха или 79: 21 = = 3,76 объема азота. Тогда реакцию горения метана в воздухе можно записать следующим образом:

СН 4 + 2O 2 + 2*3,76N 2 = CO 2 + 2H 2 O + 7,52N 2 .

Из уравнения видно, что для сжигания 1 м 3 метана требуется 1 м 3 кислорода и 7,52 м 3 азота или 2 + 7,52 = 9,52 м 3 воздуха.

В результате сгорания 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 водяных паров и 7,52 м 3 азота. В таблице ниже приведены эти данные для наиболее распространенных горючих газов.

Для процесса горения газовоздушной смеси необходимо, чтобы количество газа и воздуха в газовоздушной смеси было в определенных пределах. Эти пределы называются пределами воспламеняемости или пределами взрываемости. Различают нижний и верхний пределы воспламеняемости. Минимальное содержание газа в газовоздушной смеси, выраженное в объемных процентах, при котором происходит воспламенение, называется нижним пределом воспламеняемости. Максимальное содержание газа в газовоздушной смеси, выше которого смесь не воспламеняется без подвода дополнительной теплоты, называется верхним пределом воспламеняемости.

Количество кислорода и воздуха при сжигании некоторых газов

Для сжигания 1 м 3 газа требуется, м 3

При сжигании 1 м 3 газа выделяется, м 3

Теплота сгорания Он,кДж/м 3

кислорода

диоксида

углерода

Оксид углерода

Если в газовоздушной смеси содержится газа меньше нижнего предела воспламеняемости, то она не будет гореть. Если в газовоздушной смеси недостаточно воздуха, то горение протекает не полностью.

Большое влияние на величины пределов взрываемости оказывают инертные примеси в газах. Увеличение содержания в газе балласта (N 2 и СO 2) сужает пределы воспламеняемости, а при повышении содержания балласта выше определенных пределов газовоздушная смесь не воспламеняется при любых соотношениях газа и воздуха (таблица ниже).

Количество объемов инертного газа на 1 объем горючего газа, при котором газовоздушная смесь перестает быть взрывоопасной

Наименьшее количество воздуха, необходимое для полного сжигания газа, называется теоретическим расходом воздуха и обозначается Lt, то есть если низшая теплота сгорания газового топлива 33520 кДж/м 3 , то теоретически необходимое количество воздуха для сжигания 1 м 3 газа

L T = (33 520/4190)/1,1 = 8,8 м 3 .

Однако действительный расход воздуха всегда превышает теоретический. Объясняется это тем, что очень трудно достигнуть полного сгорания газа при теоретических расходах воздуха. Поэтому любая газовая установка для сжигания газа работает с некоторым избытком воздуха.

Итак, практический расход воздуха

L n = αL T ,

где L n - практический расход воздуха; α - коэффициент избытка воздуха; L T - теоретический расход воздуха.

Коэффициент избытка воздуха всегда больше единицы. Для природного газа он составляет α = 1,05 - 1,2. Коэффициент α показывает, во сколько раз действительный расход воздуха превышает теоретический, принимаемый за единицу. Если α = 1, то газовоздушная смесь называется стехиометрической .

При α = 1,2 сжигание газа производится с избытком воздуха на 20 %. Как правило, сжигание газов должно проходить с минимальным значением а, так как с уменьшением избытка воздуха снижаются потери теплоты с уходящими газами. Воздух, принимающий участие в горении, бывает первичным и вторичным. Первичным называется воздух, поступающий в горелку для смешения в ней с газом; вторичным — воздух, поступающий в зону горения не в смеси с газом, а отдельно.

Характеристика метана

§ Бесцветный;

§ Нетоксичный (не ядовитый);

§ Без запаха и вкуса.

§ В состав метана входит 75% углерода, 25% водорода.

§ Удельный вес составляет 0,717кг/м 3 (легче воздуха в 2 раза).

§ Температура воспламенения – это минимальная начальная температура, при которой начинается горение. Для метана она равна 645 о.

§ Температура горения – это максимальная температура, которая может быть достигнута при полном сгорании газа, если количество воздуха, необходимого для горения, точно отвечает химическим формулам горения. Для метана она равна 1100-1400 о и зависит от условий сжигания.

§ Теплота сгорания – это количество тепла, которое выделяется при полном сгорании 1 м 3 газа и она равна 8500 ккал/м 3 .

§ Скорость распространения пламени равна 0,67 м/сек.

Газовоздушная смесь

В которой газа находится:

До 5% не горит;

От 5 до 15% взрывается;

Свыше 15% горит при подаче дополнительного воздуха (все это зависит от соотношения объема газа в воздухе и называется пределами взрываемости )

Горючие газы не имеют запаха, для своевременного определения их в воздухе, быстрого и точного обнаружения мест утечки, газ одорируют, т.е. дают запах. Для этого используют ЭТИЛМЕРКОПТАН. Норма одоризации 16 гр на 1000 м 3 . При наличии в воздухе 1% природного газа должен ощущаться его запах.

Газ, используемый в качестве топлива, должен соответствовать требованиям ГОСТа и содержать вредных примесей на 100м 3 не более:

Сероводорода 0,0 2 г/м.куб

Аммиака 2 гр.

Синильной кислоты 5 гр.

Смолы и пыли 0,001 г/м.куб

Нафталина 10 гр.

Кислорода 1%.

Использование природного газа имеет ряд преимуществ:

· отсутствие золы и пыли и выноса твердых частиц в атмосферу;

· высокая теплота сгорания;

· удобство транспортировки и сжигания;

· облегчается труд обслуживающего персонала;

· улучшаются санитарно-гигиенические условия в котельных и прилегающих районах;

· широкий диапазон автоматического регулирования.

При использовании природного газа требуются особые меры осторожности, т.к. возможна утечка через неплотности в местах соединения газопровода и арматуры. Наличие в помещении более 20% газа вызывает удушье, скапливание его в закрытом объеме свыше 5% до 15% приводит к взрыву газовоздушной смеси. При неполном сгорании выделяется угарный газ, который даже при небольшой концентрации (0,15%) является отравляющим.

Горение природного газа

Горением называется быстрое химическое соединение горючих частей топлива с кислородом воздуха, происходит при высокой температуре, сопровождается выделением тепла с образованием пламени и продуктов сгорания. Горение бывает полным и неполным.


Полное горение – происходит при достаточном количестве кислорода. Нехватка кислорода вызывает неполное сгорание , при котором выделяется меньшее количество тепла, чем при полном, угарный газ (отравляюще действует на обслуживающий персонал), образуется сажа на поверхности котла и увеличиваются потери тепла, что приводит к перерасходу топлива, снижению КПД котла, загрязнению атмосферы.

Продуктами сгорания природного газа являются – диоксид углерода, водяные пары, некоторое количество избыточного кислорода и азот. Избыточный кислород содержится в продуктах горения только в тех случаях, когда горение происходит с избытком воздуха, а азот в продуктах сгорания содержится всегда, т.к. является составной частью воздуха и не принимает участие в горении.

Продуктами неполного сгорания газа могут быть оксид углерода, несгоревшие водород и метан, тяжелые углеводороды, сажа.

Реакция метана:

СН 4 + 2О 2 = СО 2 + 2Н 2 О

Согласно формуле для сгорания 1 м 3 метана необходимо 10 м 3 воздуха, в котором находится 2 м 3 кислорода. Практически для сжигания 1 м 3 метана необходимо больше воздуха с учетом всевозможных потерь, для этого применяется коэффициент К избытка воздуха, который = 1,05-1,1.

Теоретический объем воздуха = 10 м 3

Практический объем воздуха = 10*1,05=10,5 или 10*1,1=11

Полноту сгорания топлива можно определить визуально по цвету и характеру пламени, а так же с помощью газоанализатора.

Прозрачное голубое пламя – полное сгорание газа;

Красное или желтое с дымными полосами – сгорание неполное.

Горение регулируется увеличением подачи воздуха в топку или уменьшением подачи газа. В этом процессе используют первичный и вторичный воздух.

Вторичный воздух – 40-50% (смешивается с газом в топке котла в процессе горения)

Первичный воздух – 50-60% (смешивается с газом в горелке до горения)на горение идет газовоздушная смесь

Горение характеризует скорость распределения пламени – это скорость, с которой элемент фронта пламени распространяется относительно свежей струю газовоздушной смеси.

Скорость горения и распространения пламени зависит от:

· от состава смеси;

· от температуры;

· от давления;

· от соотношения газа и воздуха.

Скорость горения определяет одно из основных условий надежной эксплуатации котельной и его характеризует отрыв пламени и проскок.

Отрыв пламени – происходит если скорость газовоздушной смеси на выходе из горелки больше скорости горения.

Причины отрыва : чрезмерное увеличение подачи газа или чрезмерное разряжение в топке (тяга). Отрыв пламени наблюдается при розжиге и при включении горелок. Отрыв пламени приводит к загазованности топки и газоходов котла и к взрыву.

Проскок пламени – происходит если скорость распространения пламени (скорость горения) будет больше скорости истечения газовоздушной смеси из горелки. Проскок сопровождается горением газовоздушной смеси внутри горелки, горелка раскаляется и выходит из строя. Иногда проскок сопровождается хлопком или взрывом внутри горелки. При этом может быть разрушена не только горелка, но и фронтовая стенка котла. Проскок происходит при резком снижении подачи газа.

При отрыве и проскоке пламени обслуживающий персонал должен прекратить подачу топлива, выяснить и устранить причину, провентилировать топку и газоходы в течение 10-15 минут и снова разжечь огонь.

Процесс горения газообразного топлива можно разделить на 4 стадии:

1. Вытекание газа из сопла горелки в горелочное устройство под давлением с увеличенной скоростью.

2. Образование смеси газа с воздухом.

3. Зажигание образовавшейся горючей смеси.

4. Горение горючей смеси.

Газопроводы

Газ к потребителю подается по газопроводам – наружным и внутренним – на газораспределительные станции, размещенные за городом, а с них по газопроводам на газорегуляторные пункты ГРП или газорегуляторный устройства ГРУ промышленных предприятий.

Газопроводы бывают:

· высокого давления первой категории свыше 0,6 Мпа до 1,2 Мпа включительно;

· высокого давления второй категории свыше 0,3 Мпа до 0,6 Мпа;

· среднего давления третьей категории свыше 0,005 Мпа до 0,3 Мпа;

· низкого давления четвертой категории до 0,005Мпа включительно.

· МПа - означает Мега Паскаль

В котельной прокладывают газопроводы только среднего и низкого давления. Участок от распределительного газопровода сети (городской) к помещению вместе с отключающим устройством называют вводом.

Вводным газопроводом считают участок от отключающего устройства на вводе, если он установлен снаружи помещения к внутреннему газопроводу.

На вводе газа в котельную в освещенном и удобном для обслуживания месте, должна находиться задвижка. Перед задвижкой должен быть изолирующий фланец, для защиты от блуждающих токов. На каждом отводе от распределительного газопровода к котлу, предусматривается не менее 2 отключающих устройств, одно из которых устанавливается непосредственно перед горелкой. Помимо арматуры и КИП на газопроводе, перед каждым котлом, обязательно устанавливается автоматическое устройство, обеспечивающее безопасную работу котла. Для предотвращения попадания газов в топку котла, при неисправных отключающих устройствах, необходимы продувочные свечи и газопроводы безопасности с отключающими устройствами, которые при бездействующих котлах должны быть открыты. Газопроводы низкого давления красят в котельных в желтый цвет, а среднего давления в желтый с красными кольцами.

Газовые горелки

Газовые горелки - газогорелочное устройство, предназначенное для подачи к месту горения, в зависимости от технологических требований, подготовленной газовоздушной смеси или разделенного газа и воздуха, а так же для обеспечения устойчивого сжигания газообразного топлива и регулирования процесса горения.

К горелкам предъявляются следующие требования:

· основные типы горелок должны изготавливаться на заводах серийно;

· горелки должны обеспечивать пропуск заданного количества газа и полноту его сжигания;

· обеспечивать минимальное количество вредных выбросов в атмосферу;

· должны работать без шума, отрыва и проскока пламени;

· должны быть просты в обслуживании, удобны для ревизии и ремонта;

· при необходимости могли бы использоваться для резервного топлива;

· образцы вновь создаваемых и действующих горелок подлежат ГОСТ испытанию;

Главной характеристикой горелок является её тепловая мощность , под которой понимают количество теплоты, способное выделяться при полном сгорании топлива, поданного через горелку. Все данные характеристики можно найти в паспорте горелки.

Александр Павлович Константинов

Главный инспектор по контролю безопасности ядерно и радиационно опасных объектов. Кандидат технических наук, доцент, профессор Российской академии естествознания.

Кухня с газовой плитой часто бывает главным источником загрязнения воздуха всей квартиры. И, что очень важно, это касается большинства жителей России. Ведь в России 90% городских и свыше 80% сельских жителей пользуются газовыми плитамиХата, З. И. Здоровье человека в современной экологической обстановке. - М. : ФАИР-ПРЕСС, 2001. - 208 с. .

В последние годы появились публикации серьёзных исследователей о высокой опасности газовых плит для здоровья. Медики знают, что в домах, где установлены газовые плиты, жители болеют чаще и дольше, чем в домах с электроплитами. Причём речь идёт о множестве разных болезней, а не только о заболеваниях дыхательных путей. Особенно заметно снижение уровня здоровья у женщин, детей, а также у пожилых и хронически больных людей, которые больше времени проводят дома.

Профессор В. Благов не зря назвал применение газовых плит «широкомасштабной химической войной против собственного народа».

Почему использование бытового газа вредит здоровью

Попытаемся ответить на этот вопрос. Есть несколько факторов, которые в сумме делают применение газовых плит опасным для здоровья.

Первая группа факторов

Эта группа факторов обусловлена самой химией процесса горения природного газа. Даже если бы бытовой газ сгорал полностью до воды и углекислого газа, это приводило бы к ухудшению состава воздуха в квартире, особенно на кухне. Ведь при этом из воздуха выжигается кислород, одновременно повышается концентрация углекислого газа. Но это не главная беда. В конце концов, тоже самое происходит с воздухом, которым дышит человек.

Гораздо хуже, что в большинстве случаев сгорание газа происходит не полностью, не на все 100%. Из-за неполного сгорания природного газа образуются гораздо более токсичные продукты. Например, оксид углерода (угарный газ), концентрация которого может многократно, в 20–25 раз превышать допустимую норму. А ведь это ведёт к головным болям, аллергии, недомоганиям, ослаблению иммунитетаЯковлева, М. А. А у нас в квартире газ. - Деловой экологический журнал. - 2004. - № 1(4). - С. 55. .

Помимо угарного газа в воздух выделяются сернистый газ, оксиды азота, формальдегид, а также бензпирен - сильный канцероген. В городах бензпирен попадает в атмосферный воздух от выбросов металлургических предприятий, тепловых электростанций (особенно угольных) и автомобилей (особенно старых). Но концентрация бензпирена даже в загазованном атмосферном воздухе не идёт в сравнение с его концентрацией в квартире. На рисунке показано, насколько больше мы получаем бензпирена, находясь на кухне.


Поступление бензпирена в организм человека, мкг/сут

Сравним первые два столбца. На кухне мы получаем вредных веществ в 13,5 раз больше, чем на улице! Для наглядности оценим поступление бензпирена в наш организм не в микрограммах, а в более понятном эквиваленте - числе выкуриваемых ежедневно сигарет. Так вот, если курильщик выкуривает в день одну пачку (20 сигарет), то на кухне человек получает в день эквивалент от двух до пяти сигарет. То есть хозяйка, имеющая газовую плиту, как бы немного «курит».

Вторая группа факторов

Эта группа связана с условиями эксплуатации газовых плит. Любой водитель знает, что нельзя находиться в гараже одновременно с автомобилем, у которого включён двигатель. Но ведь на кухне мы имеем как раз такой случай: сжигание углеводородного топлива в закрытом помещении! У нас отсутствует то устройство, которое есть у каждого автомобиля, - выхлопная труба. По всем правилам гигиены каждая газовая плита должна быть снабжена зонтом вытяжной вентиляции.

Особенно плохо обстоят дела в случае, если мы имеем маленькую кухню в малогабаритной квартире. Мизерная площадь, минимальная высота потолков, плохая вентиляция и весь день работающая газовая плита. А ведь при низких потолках продукты сгорания газа скапливаются в верхнем слое воздуха толщиной до 70–80 сантиметровБойко, А. Ф. Здоровье на 5+. - М. : Российская газета, 2002. - 365 с. .

Часто труд домохозяйки у газовой плиты сравнивают с вредными условиями труда на производстве. Это не совсем правильно. Расчёты показывают, что если кухня маленькая, при этом отсутствует хорошая вентиляция, то мы имеем дело с особо вредными условиями труда. Типа металлурга, обслуживающего коксохимические батареи.

Как уменьшить вред от газовой плиты

Как же нам быть, если всё настолько плохо? Может быть, действительно стоит избавиться от газовой плиты и установить электрическую или индукционную? Хорошо, если есть такая возможность. А если нет? На этот случай имеется несколько простых правил. Достаточно их соблюдать, и вы сможете уменьшить вред здоровью от газовой плиты в десятки раз. Перечислим эти правила (большая их часть - рекомендации профессора Ю. Д. Губернского)Ильницкий, А. Пахнет газом. - Будь здоров!. - 2001. - № 5. - С. 68–70. .

  1. Необходимо установить над плитой вытяжной зонт с воздухоочистителем. Это самый действенный приём. Но даже если по каким-то причинам вы не можете этого сделать, то остальные семь правил в сумме тоже позволят значительно уменьшить загазованность воздуха.
  2. Следите за полнотой сгорания газа. Если вдруг цвет газа стал не таким, каким должен быть по инструкции, немедленно вызывайте газовиков для регулирования разладившейся горелки.
  3. Не загромождайте плиту лишней посудой. Посуда должна стоять только на работающих горелках. В этом случае будет обеспечиваться свободный доступ воздуха к горелкам и более полное сгорание газа.
  4. Одновременно в работе лучше использовать не более двух горелок или духовку и одну горелку. Даже если у вашей плиты четыре горелки, одновременно лучше включать максимум две.
  5. Максимальное время непрерывной работы газовой плиты - два часа. После этого необходимо сделать перерыв и хорошенько проветрить кухню.
  6. Во время работы газовой плиты двери на кухню должны быть закрыты, а форточка открыта. Это обеспечит удаление продуктов сгорания через улицу, а не через жилые комнаты.
  7. После окончания работы газовой плиты целесообразно проветрить не только кухню, но и всю квартиру. Желательно сквозное проветривание.
  8. Никогда не используйте газовую плиту для обогрева и сушки белья. Вы же не станете для этой цели разжигать костёр посреди кухни, верно?