Влияние на организм пониженного парциального давления кислорода в воздухе и процессы приспособления. Определение парциального давления газов в атмосфере Парциальное давление кислорода в артериальной крови

Парциальное давление или напряжение углекислого газа (рСО2) – давление СО2 в газовой смеси, находящейся в равновесии с плазмой артериальной крови при температуре 38°С. Показатель является критерием концентрации углекислоты в крови.

Изменение показателя рСО2 играет ведущую роль при респираторных нарушениях кислотно-основного состояния (респираторного ацидоза и респираторного алкалоза)

При респираторном ацидозе рСО2 увеличивается из-за нарушения вентиляции легких, что и вызывает накопление угольной кислоты,

При респираторном алкалозе рСО2 снижается в результате гипервентиляции легких, которая приводит к повышенному выведению из организма углекислоты и перещелачиванию крови.

При нереспираторных (метаболических) азидозах/алкалозах показатель рСО2 не изменяется.
Если налицо такие сдвиги рН и показатель pCO2 не в норме, то имеются вторичные (или компенсаторные) изменения.
При клинической оценке сдвига показателя рСО2 важно установить, являются ли изменения причинными или компенсаторными!

Таким образом, повышение показателя pCO2 происходит при респираторных ацидозах и компенсированном метаболическом алкалозе, а снижение– при респираторных алкалозах и компенсации метаболического ацидоза.

Колебания величины рСО2 при патологических состояниях находятся в диапазоне от 10 до 130 мм рт.ст.

При респираторных нарушениях направление сдвига величины рН крови противоположно сдвигу рСО2, при метаболических нарушениях – сдвиги однонаправлены.


Концентрация бикарбонат-ионов


Концентрация бикарбонатов (ионов HCO3-) в плазме крови является третьим основным показателем кислотно-основного состояния.

На практике различают показатели актуальных (истинных) бикарбонатов и стандартных бикарбонатов.

Актуальные бикарбонаты (AB, АБ) – это концентрация ионов HCO3– в исследуемой крови при 38°С и реальных значениях pH и pCO2.

Стандартные бикарбонаты (SB, СБ) – это концентрация ионов HCO3– в исследуемой крови при приведении ее в стандартные условия: полное насыщение кислородом крови, уравновешивание при 38°С с газовой смесью, в которой pCO2 равно 40 мм рт.ст.

У здоровых людей концентрация актуальных и стандартных бикарбонатов практически одинакова.


Диагностическое значение концентрации бикарбонатов в крови состоит, прежде всего, в определении характера нарушений кислотно-основного состояния (метаболического или респираторного).

Показатель в первую очередь изменяется при метаболических нарушениях:

При метаболическом ацидозе показатель HCO3– снижается, т.к. расходуется на нейтрализацию кислых веществ (буферная система)

При метаболическом алкалозе – повышается

Так как угольная кислота очень плохо диссоциирует и ее накопление в крови практически не отражается на концентрации HCO3–, то при первичных респираторных нарушениях изменение бикарбонатов невелико.

При компенсации метаболического алкалоза бикарбонаты накапливаются вследствие урежения дыхания, при компенсации метаболического ацидоза – в результате усиления их почечной реабсорбции.



Концентрация буферных оснований


Еще одним показателем, характеризующим состояние кислотно-основного состояния, является концентрация буферных оснований (buffer bases, ВВ), отражающая сумму всех анионов цельной крови, в основном анионов бикарбоната и хлора, к другим анионам относятся ионы белков, сульфаты, фосфаты, лактат, кетоновые тела и т.п.

Этот параметр почти не зависит от изменения парциального давления углекислого газа в крови, но отражает продукцию кислот тканями и частично функцию почек.

По величине буферных оснований можно судить о сдвигах кислотно-основного состояния, связанных с увеличением или уменьшением содержания нелетучих кислот в крови (т.е. всех, кроме угольной кислоты).

На практике используемым параметром концентрации буферных оснований является параметр "остаточные анионы" или "неопределяемые анионы" или "анионное несоответствие" или "анионная разница".

В основе использования показателя анионной разницы лежит постулат об электронейтральности, т.е. количество отрицательных (анионов) и положительных (катионов) в плазме крови должно быть одинаковым.
Если же экспериментально определить количество наиболее представленных в плазме крови ионов Na+, K+, Cl–, HCO3–, то разность между катионами и анионами составляет примерно 12 ммоль/л.

Увеличение величины анионной разницы сигнализирует о накоплении неизмеряемых анионов (лактат, кетоновые тела) или катионов, что уточняется по клинической картине или по анамнезу.

Показатели общих буферных оснований и анионной разницы особенно информативны при метаболических сдвигах кислотно-основного состояния, тогда как при респираторных нарушениях его колебания незначительны.


Избыток буферных оснований

Избыток оснований (base excess, BE, ИО) – разница между фактической и должной величинами буферных оснований.
По значению показатель может быть положительным (избыток оснований) или отрицательным (дефицит оснований, избыток кислот).

Показатель по диагностической ценности выше, чем показатели концентрации актуальных и стандартных бикарбонатов. Избыток оснований отражает сдвиги количества оснований буферных систем крови, а актуальные бикарбонаты – только концентрацию.

Наибольшие изменения показателя отмечаютcя при метаболических нарушениях: при ацидозе выявляется нехватка оснований крови (дефицит оснований, отрицательные значения), при алкалозе – избыток оснований (положительные значения).
Предел дефицита, совместимый с жизнью, 30 ммоль/л.

При респираторных сдвигах показатель меняется незначительно.


Величина рН формирует активность клеток


Кислотно-основное равновесие – это состояние, которое обеспечивается физиологическими и физико-химическими процессами, составляющими функционально единую систему стабилизации концентрации ионов Н+.
Нормальные величины концентрации ионов Н+ около 40 нмоль/л, что в 106 раз меньше, чем концентрация многих других веществ (глюкоза, липиды, минеральные вещества).

Совместимые с жизнью колебания концентрации ионов Н+ располагаются в пределах 16-160 нмоль/л.

Так как реакции обмена веществ часто связаны с окислением и восстановлением молекул, то в этих реакциях обязательно принимают участие соединения, выступающие в качестве акцептора или донора ионов водорода. Участие других соединений сводится к обеспечению неизменности концентрации ионов водорода в биологических жидкостях.

Стабильность внутриклеточной концентрации Н+ необходима для:

Оптимальной активности ферментов мембран, цитоплазмы и внутриклеточных органелл

Формирования электро-химического градиента мембраны митохондрий на должном уровне и достаточную наработку АТФ в клетке.

Сдвиги концентрации ионов Н+ приводят к изменению активности внутриклеточных ферментов даже в пределах физиологических значений.
Например, ферменты глюконеогенеза в печени более активны при закислении цитоплазмы, что актуально при голодании или мышечной нагрузке, ферменты гликолиза – при обычных рН.

Стабильность внеклеточной концентрации ионов Н+ обеспечивает:

Оптимальную функциональную активность белков плазмы крови и межклеточного пространства (ферменты, транспортные белки),

Растворимость неорганических и органических молекул,

Неспецифическую защиту кожного эпителия,

Отрицательный заряд наружной поверхности мембраны эритроцитов.

При изменении концентрации ионов Н+ в крови активируется компенсационная деятельность двух крупных систем организма:

1. Система химической компенсации

Действие внеклеточных и внутриклеточных буферных систем,

Интенсивность внутриклеточного образования ионов Н+ и НСО3–.

2. Система физиологической компенсации

Легочная вентиляция и удаление СО2,

Почечная экскреция ионов Н+ (ацидогенез, аммониегенез), реабсорбция и синтез НСО3–.

Основными параметрами воздуха, определяющими физиологи­ческое состояние человека, являются:

    абсолютное давление;

    процентное содержание кислорода;

    температура;

    относительная влажность;

    вредные примеси.

Из всех перечисленных параметров воздуха решающее значение для человека имеют абсолютное давление и процентное содержа­ние кислорода. Абсолютное давление определяет парциальное давление кислорода.

Парциальное давление любого газа в газовой смеси представляет собой часть общего давления газовой смеси, приходящаяся на долю этого газа в соответствии с его процентным содержанием.

Так для парциального давления кислорода имеем

где
− процентное содержание кислорода в воздухе (
);

Р H давление воздуха на высоте Н;

−парциальное давление водяных паров в легких (противодав­ление для дыхания
).

Парциальное давление кислорода имеет особое значение для физиологического состояния человека, так как оно определяет про­цесс газообмена в организме.

Кислород, как и всякий газ, стремится перейти из пространства, в котором его парциальное давление больше, в пространство с меньшим давлением. Следовательно, процесс насыщения организ­ма кислородом происходит лишьв том случае, когда парциальное давление кислорода в легких (в альвеолярном воздухе) будет больше парциального давления кислорода в крови, притекающей к альвеолам, а это последнее будет больше парциального давле­ния кислорода в тканях организма.

Для удаления из организма углекислого газа необходимо иметь соотношение его парциальных давлений, обратное описанному, т.е. наибольшее значение парциального давления углекислого газа должно быть в тканях, меньшее − в венозной крови и еще мень­шее − в альвеолярном воздухе.

На уровне моря при Р H = 760 мм рт. ст. парциальное давление ки­слорода равно ≈150 мм рт. ст. При таком
обеспечивается нор­мальное насыщение крови человека кислородом в процессе дыхания. При увеличении высоты полета
уменьшается в связи с уменьше­ниемP H (рис. 1).

Специальными физиологическими исследованиями установлено, что минимальное парциальное давление кислорода во вдыхаемом воздухе
Эту цифру принято называть физиологи­ческой границей пребывания человека в отрытой кабине по величине
.

Парциальному давлению кислорода 98 мм рт. ст. соответствует высота Н = 3 км. При
< 98 мм рт. ст. возможно нарушение зрения, слуха, замедление реакции и потеря человеком сознания.

Для предотвращения этих явлений на ЛA используются системы кислородного питания (СКП), обеспечивающие
> 98 мм рт. ст. во вдыхаемом воздухе на всех режимах полета и в аварийных ситуациях.

Практически в авиации принята высота Н = 4 км в качестве гра­ницы полетов без кислородных приборов, то есть ЛA, имеющие прак­тический потолок менее 4 км могут не иметь СКП.

      1. Парциальное давление кислорода и углекислого газа в организме человека в наземных условиях

При изменении указанных в таблице значений
и
на­рушается нормальный газообмен в легких и во всем организме че­ловека.

Из Ливерпульской гавани всегда по четвергам Суда уходят в плавание к далеким берегам.

Редьярд Киплинг

2 декабря 1848 года, в пятницу, а совсем не в четверг (согласно утверждению Р. Киплинга), пароход Лондоидери отправился из Ливерпуля в Слиго с двумястами пассажиров, по большей части эмигрантов.

Во время плавания случилась буря и капитан велел всем пассажирам сойти с палубы. Общая каюта для пассажиров третьего класса имела длины 18 футов, ширины - 11, высоты 7. В этом тесном пространстве и скучились пассажиры; им было бы только очень тесно, если бы люки оставались открытыми; но капитан велел закрыть их, и по неизвестной причине велел затянуть наглухо клеенкой вход в каюту. Несчастные пассажиры таким образом должны были дышать все одним и тем же, не возобновляющимся воздухом. Это скоро сделалось невыносимым. Воспоследствовала страшная сцена насилия и безумия, при стонах умирающих и проклятиях более сильных: она прекратилась лишь после того, когда одному из пассажиров удалось силой вырваться на палубу и призвать лейтенанта, перед которым открылось страшное зрелище: семьдесят два из пассажиров уже умерли, и многие умирали; их члены были судорожно скорчены, и кровь выступала у них из глаз, из ноздрей и ушей. Спустя 152 года история повторилась и 19 июня 2000 г. в другом английском порту - Дувре таможенная служба обнаружила в кузове голландского грузовика в наглухо закрытом контейнере, предназначенном для перевозки помидоров, 58 трупов и двух живых нелегальных эмигрантов из страны.

Конечно, приведенные случаи являются вопиющими, из ряда вон выходящими. Однако та же причина обусловливает бледность людей выходящих из церкви, набитой народом; усталость после нескольких часов, проведенных в театре, в концертном зале, лекционной аудитории, во всякой дурно проветренной комнате. При этом чистый воздух приводит к исчезновению всех неблагопртгятных проявлений.

Древние не представляли себе эту причину; да и ученые шестнадцатого и семнадцатого столетий плохо в ней ориентировались. Толчком к ее расшифровке послужили труды Престлея, который открыл, что кислород, содержащийся в атмосферном воздухе, имеет свойство превращать венозную кровь в артериальную. Лавуазье довершил это открытие и основал химическую теорию дыхания. Гудвин (1788) приложил новые воззрения к асфиксии (удушению) и доказал рядом опытов, что когда атмосфера остается неизменной, неминуемо наступает смерть. Биша заключил из множества разительных опытов, что между дыханием, кровообращением и нервной деятельностью существует тесная связь; он показал, что прилив венозной крови к мозгу останавливает его деятельность и затем деятельность сердца. Легал- луа распространил эти наблюдения и на спинной мозг. Клод Бернар доказал, что венозная кровь не ядовита, хотя и лишена свойства поддерживать жизнь.

ГИПОКСИЯ (hypoxia; греч. hypo - под, ниже, мало + лат. oxygenium - кислород) или «кислородное голодание», «кислородная недостаточность» - типовой патологический процесс, который вызывают недостаточное поступление кислорода в ткани и клетки организма или нарушения его использования при биологическом окислении.

Наряду с гипоксией выделяют «аноксию» - т.е. полное отсутствие кислорода или полное прекращение окислительных процессов (реально такое состояние не встречается) и «гипоксемию» - пониженное напряжение и содержание кислорода в крови.

По причинам гипоксии она может быть экзогенной, обусловленной внешними факторами (это прежде всего недостаток кислорода во вдыхаемом воздухе - гипоксическая гипоксия, и наоборот, избыток кислорода во вдыхаемом воздухе- гипероксическая гипоксия) и эндогенной, обусловленной патологией организма.

Экзогенная гипоксическая гипоксия в свою очередь может быть нормобарической, т.е. развивающейся при нормальном барометрическом давлении, но сниженном парциальном давлении кислорода во вдыхаемом воздухе (например, при нахождении в замкнутых помещениях малого обьема, как это имело место в описанном выше случае, работах в шахтах, колодцах при неисправных системах кислородообеспечения, в кабинах летательных аппаратов, подводных лодках, в медицинской практике при неисправностях наркозо-дыхательной аппаратуры), и гипобарической, обусловленной общим снижением барометрического давления (при подъеме в горы - «горная болезнь» или в негерметизированных летательных аппаратах без индивидуальных кислородных систем - «высотная болезнь»).

Эндогенную же гипоксию можно подразделить на

Респираторную (вариант гипоксической гипоксии): затруднение поступления кислорода в организм, нарушение альвеолярной вен гиляции;

Гемическую как результат патологии переносчика кислорода - гемоглобина, приводящей к уменьшению кислородной емкости крови: а - дефицит гемоглобина при кровопотере, гемолизе эритроцитов, нарушении кроветворения, б - нарушение связывания 0 2 с гемоглобином (угарный газ или окись углерода СО имеет сродство к гемоглобину в 240 раз больше, чем кислород, и при отравлении этим газом он блокирует временное соединение кислорода с гемоглобином, образуя стойкое соединение- карбоксигемоглобин (при содержании СО в воздухе порядка 0,005 до 30% гемоглобина превращается в НЬСО, а при 0,1% СО образуется уже около 70% НЬСО, что для организма смертельно); при действии на гемоглобин сильных окислителей (нитратов, нитритов, окислов азота, производных анилина, бензола, некоторых инфекционных токсинов, лекарственных веществ: фенацитина, амидопирина, сульфаниламидов - метгемоглобинообразователей, превращающих двухвалентное железо гема в трехвалентную форму) образуется метгемоглобин; в- замена нормального гемоглобина на патологические формы - гемоглобинопатии; г - разведение крови - гемодилюции;

Циркуляторную: а - застойный тип - снижение минутного объема сердца, б - ишемический тип - нарушение микроциркуляции;

Тканевую (гистотоксическую - в результате нарушения утилизации кислорода тканями): блокада окислительных ферментов (а - специфическое связывание активных центров- цианистый калий; б- связывание функциональных групп белковой части молекулы - соли тяжелых металлов, алкилирующие агенты; г - конкурентное торможение - ингибирование сукцинатдегидрогеназы малоновой и другими дикарбоновыми кислотами), авитаминозы (группы «В»), дезинтеграция биологических мембран, гормональные расстройства;

Связанную с уменьшением проницаемости гематопаренхиматозных барьеров: ограничение диффузии 0 2 через капиллярную мембрану, ограничение диффузии 0 2 через межклеточные пространства, ограничение диффузии 0 2 через клеточную мембрану.

Смешанный тип гипоксии.

По распространенности гипоксии различают а) местную (часто при локальном нарушении гемодинамики) и б) общую.

По скорости развития: а) молниеносную (развивается до тяжелой и даже смертельной степени в течение нескольких секунд, б) острую (в течение нескольким минут или десятков минут, в) подострую (несколько часов или десятков часов), г) хроническую (длится неделями, месяцами, годами).

По степени тяжести: а) легкая, б) умеренная, в) тяжелая, г) критическая (смертельная).

В патогенезе гипоксии можно выделить несколько основополагающих механизмов: развитие энергетического дефицита, нарушение обновления белковых структур, нарушение структуры мембран клеточных и органоид- ных, активация протеолиза, развитие ацидоза.

Метаболические нарушения ранее всего развиваются в энергетическом и углеводном обмене, в результате чего уменьшается в клетках содержание ΛΤΦ при одновременном возрастании продуктов его гидролиза - АДФ и АМФ. Кроме того, в цитоплазме накапливается НАД Н 2 (Из-

быток «собственного» внутримитохондриального НАД*Н? , формирующийся при выключении дыхательной цепи, гормозит работу челночных механизмов и цитоплазматический НАДН 2 теряет возможность передавать гидрид-ионы в дыхательную цепь митохондрий). В цитоплазме НАД-Н 2 может окисляться, восстанавливая пируват до лактата, а именно этот процесс инициируется при недостатке кислорода. Следствием его является избыточное образование в тканях молочной кислоты. Увеличение содержания АДФ как следствие недостаточности аэробного окисления активирует гликолиз, что также ведет к увеличению в тканях количества молочной кислоты. Недостаточность окислительных процессов приводит и нарушению других видов обмена: липидного, белкового, электролитного, обмена нейромедиаторов.

Вместе с тем развитие ацидоза влечет за собой гипервентиляцию легких, формирование гипокапнии и как следствие - газовый алкалоз.

Основную роль в развитии необратимых повреждений клетки при гипоксии на основании данных электронной микроскопии приписывают изменениям клеточных и митохондриальной мембран, причем, вероятно, именно мембраны митохондрий страдают в первую очередь.

Блокирование энергозависимых механизмов поддержания ионного баланса и нарушение проницаемости клеточных мембран в условиях недостаточного синтеза АТФ изменяет концентрацию К\ Na + и Са 2+ , при этом митохондрии теряют способность накапливать ионы Са~ + и в цитоплазме его концентрация возрастает. Непоглощенный митохондриями и находящийся в цитоплазме Са~ + в свою очередь является активатором деструктивных процессов в мембранах митохондрий, действующим опосредованно через стимуляцию фермента фосфолипазы А 3 , которая катализирует гидролиз митохондриальных фосфолипидов.

Метаболические сдвиги в клетках и тканях имеют следствием нарушения функций органов и систем организма.

Нервная система. Прежде всего страдают сложные аналитико-синтетические процессы. Нередко первоначально наблюдаются своеобразная эйфория, потеря способности адекватно оценивать обстановку. При нарастании гипоксии развиваются грубые нарушения ВНД вплоть до утраты способности к простому счету, помрачения и полной потери сознания. Уже на ранних этапах наблюдаются расстройства координации вначале сложных (не может вдернуть нитку в иголку), а затем и простейших движений, а затем отмечается адинамия.

Сердечно-сосудистая система. При нарастающей гипоксии выявляются тахикардия, ослабление сократительной способности сердца, аритмия вплоть до фибрилляции предсердий и желудочков. Артериальное давление после первоначального подъема прогрессивно падает вплоть до развития коллапса. Выражены и расстройства микроциркуляции.

Дыхательная система. Стадия активации дыхания сменяется диспноэ- тическими явлениями с различными нарушениями ритма и амплитуды дыхательных движений (дыхание Чейна-Сгокса, Куссмауля). После нередко на-

ступающей кратковременной остановки появляется терминальное (агональное) дыхание в виде редких глубоких судорожных «вздохов», постепенно ослабевающих вплоть до полного прекращения. В конечном счете, смерть наступает от паралича дыхательного центра.

Механизмы адаптации организма к гипоксии можно разделить, во-первых, на механизмы пассивной, а во-вторых, активной адаптации. По длительности эффекта их можно подразделить на срочные (экстренные) и долговременные.

Под пассивной адаптацией обычно подразумевают ограничение подвижности организма, а значит снижение потребности организма в кислороде.

Активная адаптация включает в себя реакции четырех порядков:

Реакции I порядка - реакции, направленные на улучшение доставки кислорода к клеткам: увеличение альвеолярной вентиляции за счет учащения и углубления дыхательных движений - тахипноэ (одышка), а также мобилизации резервных альвеол, тахикардия, увеличение легочного кровотока, уменьшение радиуса тканевого цилиндра, увеличение массы циркулирующей крови за счет ее выхода из депо, централизация кровообращения, активация эритропоэза, изменение скорости отдачи 0 2 гемоглобином.

Реакции II порядка - реакции на тканевом, клеточном и субклеточном уровнях, направленные на увеличение способности клеток утилизировать кислород: активация работы дыхательных ферментов, активация биогенеза митохондрий (при гипоксии функция отдельной митохондрии падает на 20%, что компенсируется возрастанием их количества в клетке), снижение критического уровня р0 2 (т.е. уровня, ниже которого скорость дыхания зависит от количества кислорода в клетке).

Реакции III порядка - изменение типа обмена в клетке: увеличивается доля гликолиза в энергетическом обеспечении клетки (гликолиз уступает дыханию в 13-18 раз).

Реакции IV порядка - повышение резистентности ткани к гипоксии за счет мощности энергосистем, активации гликолиза и снижения критического уровня р0 2 .

Долговременная адаптация характеризуется стойким увеличением диффузионной поверхности легочных альвеол, более совершенной корреляцией вентиляции и кровотока, компенсаторной гипертрофией миокарда, увеличением содержания гемоглобина в крови, активацией эритропоэза, а также увеличением количества митохондрий на единицу массы клетки.

ГОРНАЯ БОЛЕЗНЬ представляет собой вариант экзогенной гипобарической гипоксической гипоксии. Давно известно, что подъем на большую высоту вызывает болезненное состояние, типичными симптомами которого являются тошнота, рвота, желудочно-кишечные расстройства, физическая и умственная депрессия. Индивидуальная устойчивость к кислородному голоданию имеет широкий диапазон колебаний, на что обращали внимание многие исследователи при изучении горной болезни. Некоторые люди страдают от горной болезни уже на относительно небольших высотах (2130-

2400 м над уровнем моря), в то время как другие бывают сравнительно устойчивы и к большим высотам. Указывалось, что подъем на 3050 м может вызывать у некоторых людей симптомы горной болезни, в то время как другие могут достичь высоты 4270 м без каких бы то ни было проявлений горной болезни. Однако на высоту 5790 м очень немногие люди могут подняться без проявления заметных симптомов горной болезни.

Ряд авторов наряду с горной болезнью выделяют еще и высотную болезнь, возникающую при быстрых (за несколько минут) подъемах на большие высоты, которая часто протекает без каких-либо неприятных ощущений - субъективно бессимптомно. И в этом ее коварство. Она возникает при полетах на больших высотах без применения кислорода.

Систематические опыты по расшифровке патогенеза горной (высотной) болезни были выполнены Полем Бэром, который пришел к заключению, что понижение давления окружающей животное атмосферы действует лишь постольку, поскольку при этом уменьшается напряжение находящегося в этой атмосфере кислорода, т.е. наблюдаемые изменения в организме животного при разряжении атмосферы оказываются во всех отношениях совершенно тождественными с теми, что наблюдаются при уменьшении количества кислорода во вдыхаемом воздухе. Отмечается параллелизм между тем и другим состоянием не только качественный, но и количественный, если только в основание сравнения положить не процентное содержание кислорода во вдыхаемой смеси, а лишь исключительно напряжение в ней этого газа. Так, уменьшение количества кислорода в воздухе, когда его напряжение со 160 мм рт. ст. понижается до 80 мм рт. ст., может быть вполне сравнимо с разряжением воздуха вдвое, когда давление понизится с 760 мм рт. ст. (нормальное атмосферное давление) до 380 мм рт. ст.

Paul Bert помещал животное (мышь, крысу) под стеклянный колокол и откачивал из него воздух. При понижении давления воздуха на 1/3 (при падении давления до 500 мм рт. ст. или при понижении напряжения кислорода приблизительно до 105 мм рт. ст.) не отмечалось со стороны животного никаких ненормальных явлений; при понижении давления на 1/2 (при давлении в 380 мм рт. ст., т.е. при напряжении кислорода около 80 мм рт. ст.), у животных наблюдались лишь несколько апатичное состояние и стремление сохранить неподвижное состояние; наконец при дальнейшем понижении давления развивались все явления, связанные с недостатком кислорода. Наступление смерти наблюдалось обычно при понижении напряжения кислорода до 20-30 мм рт. ст.

В другом варианте опытов Paul Bert помещал животное уже в атмосферу чистого кислорода и затем разряжал ее. Как и следовало ожидать а priori, разряжение можно было доводить до гораздо более значительных степеней, чем воздуха. Так, первые признаки влияния разряжения в виде некоторого учащения дыхания появляются при давлении 80 мм рт. ст. - в случае воздуха 380 мм рт. ст. Таким образом, для получения в разряженном кислороде тех же явлений, что и в воздухе, степень разряжения кислорода должна быть в 5 раз больше, чем степень разряжения атмосферного

воздуха. Принимая во внимание, что атмосферный воздух содержит в своем составе по объему 1/5 часть кислорода, т.е. на долю кислорода приходится лишь пятая часть общего давления, ясно видно, что наблюдаемые явления зависят только от напряжения кислорода, а не от величины давления окружающей атмосферы.

На развитие горной болезни существенно влияет и двигательная активность, что было блестяще доказано Regnard’oM (1884) при помощи следующего демонстративного опыта. Под стеклянный колокол помещались две морские свинки - одной предоставлялась полная свобода поведения, а другая находилась в «беличьем» колесе, приводившемся в движение электромотором, в результате чего животное вынуждено было постоянно бежать. Пока воздух в колоколе оставался под обычным атмосферным давлением, бег свинки проходил вполне беспрепятственно, и она, по-видимому, не испытывала никакой особенной усталости. Если давление доводили до половины атмосферного или несколько ниже, то свинка, не побуждаемая к движению, оставалась неподвижной, не проявляя ни в чем никаких признаков страдания, в то время как находившееся внутри «беличьего» колеса животное обнаруживало явные затруднения в беге, постоянно спотыкалось и, наконец, в изнеможении падало на спину и оставалось без всяких активных движений, позволяя увлекать себя и бросать с места на место вращающимся стенкам клетки. Таким образом, то же самое понижение давления, которое переносится еще очень легко животным, находящимся в состоянии полного покоя, оказывается уже гибельным для животного, принужденного производить усиленные мышечные движения.

Лечение горной болезни: патогенетическое - спуск с горы, дача кислорода или карбогена, дача кислых продуктов; симптоматическое- воздействие на симптомы заболевания.

Профилактика - оксигенопрофилактика, кислые продукты и возбуждающие средства.

Повышенное поступление кислорода в организм получило название ГИПЕРОКСИИ. В отличие от гипоксии гипероксия всегда носит экзогенный характер. Она может быть получена: а) при росте содержания кислорода во вдыхаемой газовой смеси, б) увеличении давления (барометрического, атмосферного) смеси газов. В отличие от гипоксии гипероксия в значительной степени в природных условиях не встречается и животный организм не мог приспособиться к ней в процессе эволюции. Однако все же адаптация к гипероксии существует и в большинстве случаев проявляется уменьшением легочной вентиляции, уменьшением кровообращения (урежение пульса), уменьшении количества гемоглобина и эритроцитов (пример: кессонная анемия). Человек может достаточно длительный период дышать смесью газов с повышенным содержанием кислорода. Первые полеты американских астронавтов осуществлялись на аппаратах, в кабинах которых создавалась атмосфера с избыточным содержанием кислорода.

При вдыхании кислорода под повышенным давлением развивается ГИ- ПЕРОКСИЧЕСКАЯ ГИПОКСИЯ, на которой следует остановиться особо.

Без кислорода жизнь невозможна, но сам он способен оказывать токсический эффект, сравнимый со стрихнином.

При гипероксической гипоксии высокое напряжение кислорода в тканях ведет к окислительной деструкции (разрушению) митохондриальных структур, инактивации многих энзимов (ферментов), особенно содержащих в своем составе сульфгидрильные группы. Имеет место образование свободных кислородных радикалов, нарушающих образование ДНК и тем самым извращающих синтез белка. Следствием системной ферментной недостаточности является падение в мозге содержанияу-аминобутирата - главного т ор- мозного медиатора серого вещества, что и обусловливает судорожный синдром кортикального генеза.

Токсический эффект кислорода может проявиться при длительном дыхании смесью газов с парциальным давлением кислорода 200 мм рт. ст. При парциальных давлениях менее 736 мм рт. ст. гистотоксический эффект выражен преимущественно со стороны легких и проявляется либо в воспалительном процессе (высокое парциальное давление кислорода в альвеолах, артериальной крови и тканях является патогенным раздражителем, приводящим к рефлекторному спазму микрососудов легких и нарушению микроциркуляции и как результат повреждению клеток, что предрасполагает к воспалению), либо в диффузном микроателектазировании легких из-за разрушения свободнорадикальным окислением системы сурфактанта. Выраженный ателектаз легкого отмечается у летчиков, начинающих дышать кислородом задолго до набора высоты, при которой требуется дополнительная дача газа.

При 2500 мм рт. ст. кислородом насыщена не только артериальная и венозная кровь, в силу чего последняя не способна удалять из тканей С0 2 .

Дыхание же газовой смесью, парциальное давление кислорода в которой выше, чем 4416 мм рт. ст., приводит к тонико-клоническим судорогам и потере сознания в течение нескольких минут.

Организм приспосабливается к избытку кислорода, включая на первых парах те же механизмы, что и при гипоксии, но с противоположной направленностью (урежение дыхания и его глубины, урежение пульса, уменьшение массы циркулирующей крови, количества эритроцитов), но при развитии гипероксической гипоксии адаптация идет как и при других видах гипоксий.

ОСТРОЕ ОТРАВЛЕНИЕ КИСЛОРОДОМ клинически протекает в три стадии:

I стадия - учащение дыхания и сердцебиения, повышение артериального давления, расширение зрачков, усиление активности с отдельными подергиваниями мышц.

  • РаО2 наряду с двумя другими величинами (раСО2 и рН) составляют такое понятие как "газы крови" (Arterial blood gases - ABG(s)). Значение рaО2 зависит от многих параметров, главными из которых являются возраст и высота нахождения пациента (парциальное давление О2 в атмосферном воздухе). Таким образом, показатель рО2 должн быть интепретирован индивидуально для каждого пациента.
    Точные результаты для ABGs зависит от сбора, обработки и собственно анализа образца. Клинически важные ошибки могут возникать на любом из этих этапов, но измерение газов крови являются особенно уязвимыми к ошибкам возникающим до проведения анализа. Наиболее распространенные проблемы включают в себя
    - забор не артериальной (смешанной или венозной) крови;
    - наличие воздушных пузырьков в пробе;
    - недостаточное или чрезмерное количество антикоагулянта в образце;
    - задержка проведения анализа и хранение образца всё это время неохлажденным.

    Надлежащий образец крови для анализа ABG содержит, как правило,1-3 мл артериальной крови, взятой пункционно анаэробно из периферической артерии в специальный контейнер из пластика, с помощью иглы малого диаметра. Пузырьки воздуха, которые могут попасть во время отбора пробы, должны быть незамедлительно удалены. Воздух в помещении имеет раО2 около 150 мм рт.ст. (на уровне моря) и раСО2 практически равное нулю. Таким образом, воздушные пузырьки, которые смешиваются с артериальной кровью сдвигают (увеличивают) раО2 к 150 мм рт.ст. и уменьшают (снижают) раСО2.

    Если в качестве антикоагулянта используется гепарин и забор производится шприцем а не специальным контейнером, следует учитывать рН гепарина, который равен приблизительно 7,0. Таким образом, избыток гепарина может изменить все три значения ABG (раО2, раСО2, рН). Очень малое количество гепарина необходимо, чтобы предотвратить свертывание; 0,05 - 0,10 мл разбавленного раствора гепарина (1000 ЕД / мл), будет противодействовать свертыванию приблизительно 1 мл крови, не влияя при этом на рН, раО2, раСО2. После промывки шприца гепарином, достаточное количество его обычно остается в мертвом пространстве шприца и иглы, чего хватает для антикоагуляции без искажения значений ABG.

    После сбора, образец должен быть проанализирован в кратчайшие сроки. Если происходит задержка более 10 минут, образец должен быть погружен в контейнер со льдом. Лейкоциты и тромбоциты продолжают потреблять кислород в образце и после забора, и могут вызвать значительное падение раО2, при хранении в течение долгого времени при комнатной температуре, особенно в условиях лейкоцитоза или тромбоцитоза. Охлаждение позволит предотвратить любые клинически важные изменения, по крайней мере в течение 1 часа, за счёт снижения метаболической активности этих клеток.

    Снижение парциального давления кислорода во вдыхаемом воздухе приводит к еще более низкому уровню его в альвеолах и оттекающей крови. Если жители равнин поднимаются в горы, гипоксия увеличивает у них вентиляцию легких, стимулируя ар­териальные хеморецепторы. Организм реагирует приспособительными реакциями, цель которых – улучшение обеспечения тканей О 2. Изменения дыхания при высотной ги­поксии у разных людей различны. Возникающие во всех случаях реакции внешнего дыхания определяются рядом факторов: 1) ско­рость, с которой развивается гипоксия; 2) степень потребления О 2 (покой или физическая нагрузка); 3) продолжительность гипоксического воздействия.

    Важнейшей компенсаторной реакцией на гипоксию является гипервентиляция. Первоначальная гипоксическая стимуляция дыхания, возникаю­щая при подъеме на высоту, приводит к вымыванию из крови СО 2 и развитию дыхательного алкалоза. Это в свою очередь вызывает увеличение рН внеклеточной жидкости мозга. Центральные хемо­рецепторы реагируют на подобный сдвиг рН в цереброспинальной жидкости мозга резким снижением своей активности, что заторма­живает нейроны дыхательного центра настолько, что он становится нечувствительным к стимулам, исходящим от периферических хеморецепторов. Довольно быстро гиперпноэ сменяется непроизволь­ной гиповентиляцией, несмотря на сохраняющуюся гипоксемию. Подобное снижение функции дыхательного центра увеличивает сте­пень гипоксического состояния организма, что чрезвычайно опасно, прежде всего для нейронов коры большого мозга.

    При акклиматизации к условиям высокогорья наступает адап­тация физиологических механизмов к гипоксии. После пребывания в течение от нескольких дней или недель на высоте, как правило респираторный алкалоз компенсируется за счет выделения почками НСО 3 , благодаря чему часть тормозного влияния на альвеолярную гипервентиляцию выпадает и гипервентиляция усиливается. Акклиматизация вызывает, кроме того рост концентрации гемоглобина вследствие повышения гипоксической стимуляции почками эритропоэтинов. Так, у жителей Анд, постоянно живущих на высоте 5000 м, концентрация гемоглобина в крови составляет 200 г/л. Основными средствами адаптации к гипоксии являются: 1) значительное увеличение легочной вентиляции; 2) увеличение количества эритроцитов; 3) увеличение диффузионной способности легких; 4) увеличение васкуляризации периферических тканей; 5) увеличение способности клеток тканей использовать кислород, несмотря на низкий рО 2 .

    У некоторых людей при быстром подъеме на большую высоту развивается острое патологическое состояние (острая горная болезнь и высотный отек легких ). Так как из всех органов ЦНС обладает высочайшей чувствительностью к гипоксии, то при подъеме на большие высоты в первую очередь возникают неврологические нарушения. При подъеме на высоту могут остро развиться такие симптомы, как головная боль, усталость, тошнота. Часто наступает отек легких. Ниже 4500 м подобные тяжелые нарушения наступают реже, хотя возникают небольшие функциональные отклонения. В зависимости от индивидуальных особенностей организма и его способности к акклиматизации человек способен достигать большой высоты.

    Контрольные вопросы

    1. Как изменяются параметры барометри­ческого давления и парциального давления кислорода с увеличением высоты над уровнем моря?

    2. Какие приспособительные реакции возникают при подъеме на высоту?

    3. Как происходит акклиматизация к условиям высокогорья?

    4. Как проявляется острая горная болезнь?

    Дыхание при погружении на глубину

    При производстве подводных работ водолаз дышит под давлением выше атмосферного на 1 атм. на каждые 10 м погружения. Около 4/5 воздуха составляет азот. При давлении на уровне моря азот не оказывает на организм никакого существенного влияния, но при высоком давлении он может вызывать различные степени наркоза. Первые признаки умеренного наркоза появляются на глубине около 37 м, если водолаз остается на глубине в течение часа или больше и дышит сжатым воздухом. При длительном пребывании на глубине более 76 м (давление 8,5 атм.) обычно развивается азотный наркоз, проявления которого похожи на алкогольную интоксикацию. Если человек вдыхает воздух обычного состава, то происходит растворение азота в жировой ткани. Диффузия азота из тканей происходит медленно, поэтому подъем водолаза на поверхность должен осуще­ствляться очень медленно. В противном случае возможно внутрисосудистое образование пузырьков азота (кровь «закипает») с тя­желыми повреждениями ЦНС, органов зрения, слуха, сильными болями в области суставов. Возникает так называемая кессонная болезнь . Для лечения пострадавшего необходимо вновь поместить в среду с высоким давлением. Постепенная декомпрессия может продолжаться несколько часов или суток.

    Вероятность возникновения кессонной болезни может быть зна­чительно снижена при дыхании специальными газовыми смесями, например кислородно-гелиевой смесью. Это связано с тем, что рас­творимость гелия меньше, чем азота, и он быстрее диффундирует из тканей, так как его молекулярная масса в 7 раз меньше, чем у азота. Кроме того, эта смесь обладает меньшей плотностью, поэтому уменьшается работа, затрачиваемая на внешнее дыхание.

    Контрольные вопросы

    5. Как изменяются параметры барометри­ческого давления и парциального давления кислорода с увеличением высоты над уровнем моря?

    6. Какие приспособительные реакции возникают при подъеме на высоту?

    7. Как происходит акклиматизация к условиям высокогорья?

    8. Как проявляется острая горная болезнь?

    7.3 Тестовые задания и ситуационная задача

    Выберите один правильный ответ.

    41. ЕСЛИ ЧЕЛОВЕК НЫРЯЕТ БЕЗ СПЕЦИАЛЬНОГО СНАРЯЖЕНИЯ С ПРЕДВАРИТЕЛЬНОЙ ГИПЕРВЕНТИЛЯЦИЕЙ, ПРИЧИНОЙ ВНЕЗАПНОЙ ПОТЕРИ СОЗНАНИЯ МОЖЕТ СТАТЬ НАРАСТАЮЩАЯ

    1) асфиксия

    2) гипоксия

    3) гипероксия

    4) гиперкапния

    42. ПРИ ПОГРУЖЕНИИ ПОД ВОДУ С МАСКОЙ И ТРУБКОЙ НЕЛЬЗЯ УВЕЛИЧИВАТЬ ДЛИНУ СТАНДАРТНОЙ ТРУБКИ (30-35 см) ИЗ-ЗА

    1) возникновения градиента давления между давлением воздуха в альвеолах и давлением воды на грудную клетку

    2) опасности возникновения гиперкапнии

    3) опасности возникновения гипоксии

    4) увеличения объёма мёртвого пространства

    Ситуационная задача 8

    Чемпионы по нырянию погружаются на глубину до 100 м без акваланга и возвращаются на поверхность за 4-5 минут. Почему у них не возникает кессонная болезнь?

    8. Эталоны ответов к тестовым заданиям и ситуационным задачам

    Эталоны ответов к тестовым заданиям:



    Эталоны ответов к ситуационным задачам:


    Решение ситуационной задачи № 1:

    Если речь идет об естественном дыхании, то прав первый. Механизм дыхания всасывающий. Но, если иметь в виду искусственное дыхание, то прав второй, так как здесь механизм нагнетательный.

    Решение ситуационной задачи № 2:

    Для эффективного газообмена необходимо определенное соотношение между вентиляцией и кровотоком в сосудах легких. Следовательно, у этих людей имелись различия в величинах кровотока.

    Решение ситуационной задачи № 3:

    В крови кислород находится в двух состояниях: физически растворенном и связанном с гемоглобином. Если гемоглобин работает плохо, то остается только растворенный кислород. Но его очень мало. Значит необходимо увеличить его количество. Это достигается путем гипербарической оксигенации (пациента помещают в камеру с высоким давлением кислорода).

    Решение ситуационной задачи № 4:

    Малат окисляется НАД-зависимым ферментом малатдегидрогеназой (митохондриальной фракцией). Причем при окислении одной молекулы малата образуется одна молекула НАДН·Н + , которая вступает в полную цепь переноса электронов с образованием из трех молекул АДФ трех молекул АТФ. Как известно АДФ является активатором дыхательной цепи, а АТФ - ингибитором. АДФ по отношению к малату взято заведомо в недостатке. Это приводит к тому, что из системы исчезает активатор (АДФ) и появляется ингибитор (АТФ), что, в свою очередь, приводит к остановке дыхательной цепи и поглощению кислорода. Гексокиназа катализирует перенос фосфатной группы с АТФ на глюкозу с образованием глюкозо-6-фосфата и АДФ. Таким образом, при работе этого фермента в системе расходуется ингибитор (АТФ) и появляется активатор (АДФ), поэтому дыхательная цепь возобновила работу.

    Решение ситуационной задачи № 5:

    Фермент сукцинатдегидрогеназа, катализирующий окисление сукцината, относится к ФАД-зависимым дегидрогеназам. Как известно ФАДН 2 обеспечивает поступление водорода в укороченную цепь переноса электронов в ходе которой образуется 2 молекулы АТФ. Амобарбитал блокирует дыхательную цепь на уровне 1-го сопряжения дыхания и фосфорилирования и на окисление сукцината не влияет.

    Решение ситуационной задачи № 6:

    При очень медленном пережатии пуповины соответственно очень медленно будет нарастать содержание углекислого газа в крови и нейроны дыхательного центра не смогут возбудиться. Первый вдох так и не произойдет.

    Решение ситуационной задачи № 7:

    Ведущую роль в возбуждении нейронов дыхательного центра играет углекислый газ. При агональном состоянии возбудимость нейронов дыхательного центра резко снижается и поэтому они не могут возбуждаться при действии обычных количеств углекислого газа. После нескольких дыхательных циклов наступает пауза, во время которой накапливаются значительные количества углекислого газа. Теперь они уже могут возбудить дыхательный центр. Происходит несколько вдохов-выдохов, количество углекислого газа снижается, снова наступает пауза и т.д. Если не удается улучшить состояние больного, неизбежен летальный исход.

    Решение ситуационной задачи № 8:

    Водолаз на большой глубине дышит воздухом под высоким давлением. Поэтому растворимость газов в крови значительно возрастает. Азот в организме не потребляется. Поэтому при быстром поднятии его повышенное давление быстро снижается, и он бурно выделяется из крови в виде пузырьков, что приводит к эмболии. Ныряльщик же во время погружения вообще не дышит. При быстром поднятии ничего страшного не происходит.

    Приложение 1

    Таблица 1

    Наименование показателей легочной вентиляции на русском и английском языках

    Наименование показателя на русском языке Принятое сокращение Наименование показателя на английском языке Принятое сокращение
    Жизненная емкость легких ЖЕЛ Vital capacity VC
    Дыхательный объем ДО Tidal volume TV
    Резервный объем вдоха РОвд Inspiratory reserve volume IRV
    Резервный объем выдоха РОвыд Expiratory reserve volume ERV
    Максимальная вентиляция легких МВЛ Maximal voluntary ventilation MW
    Форсированная жизненная емкость легких ФЖЕЛ Forced vital capacity FVC
    Объем форсированного выдоха за первую секунду ОФВ1 Forced expiratory volume 1 sec FEV1
    Индекс Тиффно ИТ, или ОФВ1/ЖЕЛ % FEV1 % = FEV1/VC %
    Максимальная объемная скорость в момент выдоха 25 % ФЖЕЛ, оставшейся в легких МОС25 Maximal expiratory flow 25 % FVC MEF25
    Forced expiratory flow 75 % FVC FEF75
    Максимальная объемная скорость в момент выдоха 50 % ФЖЕЛ, оставшейся в легких МОС50 Maximal expiratory flow 50 % FVC MEF50
    Forced expiratory flow 50 % FVC FEF50
    Максимальная объемная скорость в момент выдоха 75 % ФЖЕЛ, оставшейся в легких МОС75 Maximal expiratory flow 75 % FVC MEF75
    Forced expiratory flow 25 % FVC FEF25
    Средняя объемная скорость выдоха в интервале от 25 % до 75 % ФЖЕЛ СОС25-75 Maximal expiratory flow 25-75 % FVC MEF25-75
    Forced expiratory flow 25-75 % FVC FEF25-75

    Приложение 2

    ОСНОВНЫЕ ПАРАМЕТРЫ ДЫХАНИЯ

    ЖЕЛ (VC = Vital Capacity) - жизненная ёмкость лёгких (объём воздуха, который выходит из лёгких при максимально глубоком выдохе после максимально глубокого вдоха)

    РOвд (IRV = inspiratory reserve volume) - резервный объём вдоха (дополнительный воздух) - это тот объём воздуха, который можно вдохнуть при максимальном вдохе после обычного вдоха

    РOвыд (ERV = Expiratory Reserve Volume) - резервный объём выдоха (резервный воздух) - это тот объём воздуха, который можно выдохнуть при максимальном выдохе после обычного выдоха

    ЕВ (IC = inspiratory capacity) - емкость вдоха - фактическая сумма дыхательного объёма и резервного объёма вдоха (ЕВ = ДО + РОвд)

    ФОЕЛ (FRC = functional residual capacity) - функциональная остаточная емкость легких . Это объём воздуха в лёгких пациента, находящегося в состоянии покоя, в положении, когда закончен обычный выдох, а голосовая щель открыта. ФОЕЛ представляет собой сумму резервного объёма выдоха и остаточного воздуха (ФОЕЛ = РОвыд + ОВ). Данный параметр можно измерить с помощью одного из двух способов: разведения гелия или плетизмографии тела. Спирометрия не позволяет измерить ФОЕЛ, поэтому значение данного параметра требуется ввести вручную.

    ОВ (RV = residual volume) - остаточный воздух (другое название - ООЛ, остаточный объём лёгких) - это объём воздуха, который остается в лёгких после максимального выдоха. Остаточный объём нельзя определить с помощью одной спирометрии; это требует дополнительных измерений объёма легких (с помощью метода разведения гелия или плетизмографии тела).

    ОЕЛ (TLC = total lung capacity) - общая емкость легких (объём воздуха, находящийся в лёгких после максимально глубокого вдоха). ОЕЛ = ЖЕЛ + ОВ