Автономное солнечное освещение на улице, во дворе, на даче. Распределение солнечного света и тепла

КУХНЯ - НА СЕВЕР, СПАЛЬНЯ - НА ВОСТОК

Недостаток естественного освещения в квартире негативно отражается не только на обмене веществ и общем физическом здоровье человека. Отсутствие света также может привести к снижению настроения и даже депрессивным состояниям у жильцов. Если вы чувствуете угнетенность и раздражительность без особых причин, задумайтесь - а правильно ли освещено ваше жилье, достаточно ли солнечных лучей попадает в него?

Портал недвижимости Stopmakler подготовил для читателей небольшой ликбез о правильном расположении комнат разного назначения относительно сторон света, для обеспечения правильной инсоляции жилья.

Конечно, количество комнат в современных квартирах нечасто позволяет выбирать назначение того или иного помещения в зависимости от стороны света. Однако, присматривая для себя новое жилье, обязательно нужно обратить внимание, куда «смотрят» его окна, чтобы потом не мучиться догадками, почему же вам так неуютно в новой квартире.

ПРИНЯТЫЕ НОРМЫ ИНСОЛЯЦИИ

Проектируя новый дом, специалисты всегда проводят расчет инсоляции. Как разъясняет Григорий Алтухов, глава ФСК «Лидер», при вычислении коэффициента инсоляции жилья учитываются многие факторы:

Географическая широта, на которой будет располагаться дом (от нее зависит угол падения лучей солнца, когда оно достигает зенита);
- параметры квартиры (ширина и конструкция оконных проемов);
- наличие затеняющих объектов (рядом стоящие дома) - и т. д.

По принятым санитарным нормам и правилам (СанПиН), инсоляция в жилых помещениях должна соответствовать нормативной продолжительности. Например, для Москвы, входящей в центральную зону, инсоляция жилья должна быть не менее двух часов в день. Такая продолжительность инсоляции для 1-3-комнатных квартир по правилам обеспечивается не менее чем в одной из комнат. Для многокомнатных квартир - не менее чем в двух комнатах.

Коммерческий директор корпорации «Баркли» Екатерина Фонарева поясняет, что различные ограничения по расположению квартир действуют для каждого конкретного случая, но при этом имеется и одно общее ограничение. Оно заключается в том, что при проектировании все окна в квартире нельзя ориентировать только на север.

СЛОВО КОМПАСУ

Северная сторона - самая холодная и темная, поэтому в тех помещениях, где окна выходят на север, необходимо позаботиться об утеплении стен и окон. Кроме того, следует обеспечить и качественное искусственное освещение, которое будет возмещать малую инсоляцию.

Южная сторона - наиболее теплая и светлая, причем вне зависимости от времени года: и летом, и зимой южные комнаты хорошо прогреваются солнцем, получая достаточный объем инсоляции.

Восточная сторона дома хорошо прогревается солнцем в летний период, однако зимой сильно охлаждается. Утром комнаты, выходящие окнами на восток, пронизаны солнечным светом, а во второй половине дня он сменяется тенью.

Западная сторона больше других подвергается воздействию солнечных лучей и «продувается всеми ветрами». При проектировании домов, с западной стороны по возможности предусматриваются заградительные посадки деревьев.


БОЛЬШЕ СОЛНЦА - БОЛЬШЕ ЗДОРОВЬЯ

Правильная инсоляция жилья крайне важна для человеческого организма. При недостатке естественного освещения страдает обмен веществ, снижается острота зрения, замедляется рост детей. Также недостаточная инсоляция является причиной стресса: если в квартире мало света, у жильцов заметно снижается настроение, возникают депрессии и общая подавленность.

Покупатели жилья обращают повышенное внимание на его освещенность. Вкусы расходятся только в том, что кто-то любит свет вечернего солнца, а кто-то - утреннего, но темные квартиры не привлекают практически никого.

РАСПОЛОЖЕНИЕ КОМНАТ ПО СТОРОНАМ СВЕТА С УЧЕТОМ ИНСОЛЯЦИИ


Кабинет или мастерскую ориентируют «по компасу» в зависимости от того, в какое время дня это помещение будет использоваться. Если вы обычно начинаете работу с утра, то лучше, чтобы окна кабинета, как и спальни, выходили на восток или юго-восток. В этом случае мягкие утренние лучи взбодрят вас, а инсоляция от жаркого полуденного солнца будет направлена уже на западную сторону дома. Если же работа происходит в вечернее время, то кабинет или мастерскую лучше сделать с западной или юго-западной стороны: к вечеру солнечный свет становится не таким резким, как в полуденное время, но при этом инсоляция будет достаточной для рабочего места.

Кухню , кладовки и прочие подсобные помещения лучше всего ориентировать на север, северо-запад или северо-восток. Эти помещения не жилые, и поэтому интенсивная инсоляция в них не нужна.

ОПРЕДЕЛЯЕМ СТОРОНЫ СВЕТА


Для того чтобы сориентироваться по сторонам света, не обязательно иметь под рукой компас - в большинстве случаев будет достаточно просто посетить будущую квартиру в безоблачный солнечный день. Например, в средней полосе России солнце в семь часов утра находится на восточной стороне, к часу дня оно перемещается на юг, а в семь вечера освещает дом с западной стороны.

Стороны света можно определить и по расположению находящегося рядом с домом православного храма. Нижняя перекладина креста на куполе своим опущенным концом всегда обращена на юг, а поднятым - на север. Алтарь в православном храме всегда располагается на восточной стороне.

Также можно сориентироваться по сторонам света и при помощи обычных часов со стрелками. Такие часы располагают горизонтально, направляя часовую стрелку в сторону солнца. Зимой угол между часовой стрелкой и цифрой 1 делится пополам, и его биссектриса всегда указывает на юг. Летом же необходимо делить пополам угол между часовой стрелкой и цифрой 2 - биссектриса этого угла тоже будет лежать в южном направлении.

Все чаще владельцы загородных домов задумываются о применении бесплатных источников энергии. Сэкономить на электричестве помогает установка светильников на солнечных батареях. При желании можно создать систему освещения всего дома, которая работает от солнечных батарей.

Достоинства автономного солнечного освещения на улице

Перед описанием преимуществ следует отметить, что часто автономное уличное освещение лишь частично зависит от солнечного света, так как некоторые места участка придется освещать стационарно. Это связано с тем, что светильники на солнечных батареях не всегда освещают пространство достаточно ярко.

Светильники, работающие на солнечных батареях, имеют несколько преимуществ:

  1. Описываемые устройства для дачи не нужно никуда подключать, они работают автономно. После установки они готовы к работе и не требуют дополнительных работ. Выключение таких устройств происходит автоматически благодаря датчикам.
  2. Светильники на солнечных батареях не требуют специального ухода. Иногда необходимо протирать фотоэлементы от пыли и загрязнений.
  3. Долговечность. Описываемые устройства могут работать больше 10 лет.
  4. Светильники являются безопасными, так как они работают от низкого напряжения.
  5. Если светильники приобретаются для дачи, можно найти светильники. Которые можно установить временно, а в зимнее время убрать их в помещение.

Таким образом, светильники для дачи, которые работают на солнечных батареях, могут позволить сэкономить большое количество денег, которое могло быть потрачено на освещение.

Недостатки автономного освещения

К минусам описываемых устройств можно отнести:

  1. Уличные светильники на солнечных батареях не дают достаточно яркого света. Именно поэтому их не получится использовать в качестве охранного освещения. Существуют мощные устройства, которые являются достаточно яркими, но они отличаются большой стоимостью, поэтому не все владельцы участков способны их приобрести.
  2. Количество часов работы напрямую зависит от погодных условий. Во время пасмурного дня светильники запасают недостаточно энергии, поэтому ее хватает на несколько часов.
  3. Надежные мощные светильники имеют большую стоимость. При этом такие устройства работают дольше и создают более яркий световой поток.
  4. Солнечные панели могут работать только в определенном диапазоне температур. Такие изделия плохо переносят морозы и высокую температуру в летнее время. Чаще всего они используются в регионах с умеренным климатом.

Несмотря на все описанные минусы, автономное освещение позволяет сэкономить большое количество средств на освещении большого участка.

Светильники на солнечных батареях

Уличные светильники могут отличаться по многим параметрам, но все они состоят из следующих компонентов:

  1. Солнечная панель. Данное устройство необходимо для переработки солнечной энергии в электрическую. Панель всегда обращена вверх, чтобы лучше улавливать солнечный свет.
  2. Аккумулятор, необходимый для накопления энергии в светлое время суток.
  3. Осветительный блок, который состоит из плафона, лампы и корпуса.
  4. Контроллер, необходимый для включения и отключения лампы. Это происходит благодаря датчикам освещенности окружающего пространства.
  5. Крепление, необходимое для подвешивания светильника или его установки.

Автономное освещение для дома

Освещение для дома создается по принципу гелиостанции. На крыше дома размещаются фотомодули. Дополнительное оборудование обычно располагается в техническом помещении.

Во время работы системы в солнечных батареях происходит выработка электроэнергии, которая затем накапливается в аккумуляторах. После этого она расходуется на осветительные приборы.

В устройстве имеется контроллер заряда, который следит за состоянием аккумулятора. Благодаря этому элементу систему не происходит перезаряд и обратный разряд. В устройстве имеется инвертор, который преобразует постоянный ток в переменный, подающийся в электросеть. При использовании солнечных батарей лампы в доме заменяются на светодиодные.

Если используются светильники на 12 В, то инвертор не требуется. Следует отметить, что освещение на 12 В является более безопасным и не требует использования качественной проводки. Электроснабжение на солнечных батареях можно использовать и для фонарей, которые расположены на участке. Но во время создания системы освещения необходимо учитывать, что энергопотребление всех устройств не должно превышать вырабатываемой мощности.

При отсутствии знаний многим будет сложно организовать качественное освещение. Но если знать несколько основных правил, провести такие работы может даже неопытный человек.

Сначала необходимо составить проект, в котором будет отображено расположение всех светильников. На этапе подготовки также важно определиться с типом солнечных батарей. Благодаря плану можно выбрать наиболее подходящее место для расположения фонарей. Это позволит равномерно распределить светильники.

Если устанавливаются газонные фонари, лучше всего делать это вдоль тротуара или дороги. Такие светильники не только освещают пространство, но и способствуют созданию определенного стиля участка. Но при этом не стоит забывать и о

Если вы желаете создать систему освещения в саду, лучше всего использовать специальные садовые устройства, которые работают автономно, не подключаясь при помощи проводов.

Как выбрать светильник для уличного освещения

При желании купить устройство, работающее благодаря солнечному свету, необходимо подробно рассмотреть технические характеристики светильников. В первую очередь необходимо обратить внимание на мощность. Во время приобретения фонаря важно узнать, на какое расстояние светит прибор. От этого будет зависеть количество покупаемых изделий. Следует отметить, что в случае со светодиодными светильниками мощность мало о чем говорит.

Чтобы понять, насколько ярким будет определенный прибор, следует сравнить мощность изделий с мощностью стандартных ламп накаливания, но перевести этот параметр в Люмы. После этого можно будет понять. Какой мощности светильники вам нужны.

Модели мощностью 1 Вт дают примерно столько же света, как лампы накаливания мощностью 20 Вт. Именно поэтому такие устройства обычно используются для освещения садовых дорожек и подсветки беседки.

Кроме этого, следует обратить внимание на класс защиты и материал, из которого изготовлен корпус. Чтобы уличное освещение работало долго и надежно, необходимо выбирать изделия в корпусе, который защищен от попадания влаги и пыли. Благодаря этому, фонари будут использоваться в течение длительного времени и не потребуют замены компонентов.

Желательно выбирать световые приборы, имеющие класс защиты не менее IP44. Кроме этого, следует обратить внимание на материал корпуса. Чаще всего светильники изготавливаются из ударопрочного пластика и металла.

Виды светильников по способу монтажа

Во время приобретения приборов, работающих благодаря солнечному свету, следует рассмотреть все виды таких изделий по типу монтажа. Это поможет понять, какие приборы удобнее установить на участке и в доме. Устройства, приобретаемые для уличного освещения, разделяются на следующие виды:

  1. Изделия, устанавливаемые в грунт. Такие светильники обычно создаются на ножках высотой от 20 см до метра. Для их установки достаточно воткнуть ножку в грунт.
  2. Светильники-столбы. Такие модели отличаются большей высотой и требуют более серьезной работы по установке. Для этого необходимо выкапывать лунку и уплотнять грунт после установки. Некоторые изделия предназначены для установки на такие покрытия, как асфальт и плитка.
  3. Настенные светильники. Такие устройства могут быть установлены как на стену дома, так и на заборные столбы.
  4. Подвесные. Чаще всего закрепляются в беседках и на крыльце. Некоторые владельцы участков развешивают такие приборы на ветвях больших деревьев.
  5. Встраиваемые в грунт или другие материалы. Такие светильники позволяют осветить дорожки и лестницы. Свет от подобных приборов не слепит глаза, а уровень освещенности остается достаточно хорошим.
  6. Декоративные приборы. Подобные светильники в дневное время выглядят как декоративные элементы сада, а в ночное время излучают свет. Они могут быть размещены в любом месте сада. Но при установке нужно учитывать, что они сильно влияют на оформление сада, поэтому важно установить их в определенных местах.

Учитывая особенности всех описываемых светильников можно правильно подобрать изделия для собственного участка и не только сделать его освещенным в ночное время, но еще и украсить пространство.

Световые ловушки

Желая создать систему солнечного освещения в доме, стоит приобрести ловушки для света - именно так называют изделия, которые состоят из нескольких зеркал и направляют солнечные лучи в наименее освещенные участки комнаты. Правильно установив их в доме, можно значительно увеличить уровень освещенности в дневное время.

Качественная подсветка территории дачного участка может заметно ударить по бюджету, если использовать только уличные фонари, работающие от сети. Чтобы хоть как-то и в то же время быстро провести свет на даче, рекомендуется использовать уличное освещение на солнечных батареях. Что это за система, какой у нее принцип работы и преимущества над стационарным освещением, читайте далее!

Устройство и принцип работы

Первое, о чем Вы должны знать – как работает уличное освещение на солнечных батареях и из чего оно состоит. На примере обыкновенного солнечного светильника рассмотрим эти два вопроса.

Конструкция светильника довольно простая и состоит из следующих элементов:

  • осветительный блок (обычно это светодиод, закрепленный в корпусе);
  • солнечная батарея (фотоэлектрический модуль, который преобразовывает энергию Солнца в электричество);
  • контроллер (управляет освещением – включает и отключает в нужное время);
  • встроенный аккумулятор (накапливает электроэнергию в светлое время суток для ее потребления ночью);
  • опора либо крепление.

Исходя из предназначений каждого элемента, можно понять принцип работы освещения на солнечных батареях: днем аккумулятор заряжается, а ночью его заряд расходуется светодиодной лампой. Также в конструкцию могут входить дополнительные устройства, к примеру, датчик движения, который будет включать светильник только при обнаружении человека в определенной зоне.

Преимущества и недостатки

Второй, не менее интересный вопрос – какие преимущества и недостатки уличного освещения на солнечных батареях. Как плюсы, так и минусы системы довольно весомые и заставляют задуматься, стоит ли проводить такую подсветку у себя на даче.

Итак, среди основных преимуществ выделяют:

  • Светильники и фонари можно быстро установить своими руками. Не нужно тянуть электропроводку под землей к каждой опоре, тем самым разрушая ландшафтный дизайн участка. В то же время не нужно понимать в электрике, по сравнению с вариантом, когда необходимо подключить прожектор или уличный фонарь на столбе
  • Свет от солнечных светильников не бьет по глазам и мягко заливает поверхность по всему радиусу действия.
  • Значительная экономия электроэнергии, т.к. на подсветку дачи потребуется не менее 3-5 ламп, мощностью от 50 Вт. Путем несложных арифметических расчетов можно узнать ежемесячный расход электроэнергии, который можно полностью сократить, сделав автономное уличное освещение на солнечных батареях своими руками.
  • Система будет полностью автоматической, что очень удобно, если Вы приезжаете на загородный участок только по выходным. В остальное время светильники будут своеобразной охраной территории от злоумышленников.
  • Освещение на солнечных батареях не представляет угрозы окружающей среде и человеку. Что касается последнего, это значит, что в заземлении светильников нет необходимости, т.к. они работают от безопасного напряжения.
  • Уход за системой сводится к минимуму – нужно изредка протирать рассеивающий плафон и саму батарею от грязи и пыли.
  • Длительный срок эксплуатации системы. К примеру, срок службы светодиодов достигает 50 тыс. часов, аккумулятора – до 25 лет (в зависимости от производителя и качества), солнечной батареи – до 15 лет. Итого, раз в 15 лет придется заменять устройства на новые.
  • Имеют высокую от 44 до 65, поэтому не боятся дождя и других неблагоприятных погодных условий.

Что касается недостатков, их не так много, но они весомые:

  • Использовать только освещение на солнечных батареях на даче не получится, т.к. светильники не дадут яркую подсветку территории. К тому же, заряда хватает не больше, чем на 8 часов, если целый день была солнечная погода. Все равно важные участки территории придется освещать фонарями, работающими от электросети – ворота на улице, вход в дом, зону парковки и т.д.
  • Стоимость мощных светильников высока – от 12000 рублей и выше. Далеко не каждый может себе позволить такую роскошь, тем более для установки на даче.
  • Существуют отзывы покупателей о том, что в плохую погоду лампы уличного освещения на солнечных батареях плохо работают или не работают вообще. Сразу же следует отметить, что в пасмурную погоду зарядка будет происходить чуть ли не в 2 раза медленнее, то есть ночью свет проработает всего лишь 4-5 часов.

Как Вы видите, преимущества и недостатки системы действительно весомые и тут уже Вы сами должны решить, стоит ли приобретать такой вариант для своего дома. Обычно все упирается в материальные возможности.

Разнообразие осветительных приборов

А вот информация, предоставленная ниже все-таки может повлиять на то, что Вы закроете глаза на некоторые недостатки уличного освещения на солнечных батареях. Дело в том, что на сегодняшний день существует широкий ассортимент осветительных приборов, которые могут быть различной мощности, формы, предназначения и даже способа установки.

  • Солнечные светильники на коротких ножках. Идеально подходят для и к тому же имеют самую низкую стоимость. Установка изделий довольна простая – острая ножка вдавливает в газон, там, где Вы захотите.
  • Светодиодные прожекторы. Такие устройства могут быть мощностью свыше 10 Вт, что является аналогом лампы накаливания мощностью 100 Вт. Идеально подойдут для , крыльца загородного дома и даже сада.
  • Подвесные фонарики. Могут быть закреплены на ветках деревьев, в беседке, на ограждении. Используются для ландшафтного дизайна участка и для создания разноцветного праздничного освещения, как показано на втором фото.

  • Уличные фонари на столбах либо ножке. Подойдут для подсветки большой территории – парковки, передней части двора, сада. Существуют устройства, мощностью до 60 Вт, однако их чаще применяют для автономного освещения дорог.
  • Настенные светильники на солнечных батареях. Могут быть задействованы для , а также для освещения зоны отдыха – открытой террасы, беседки, патио.

Как Вы видите, существует множество современных осветительных приборов различной конструкции, назначения и мощности. Для дачи можно запросто подобрать наиболее подходящий вариант по стоимости, дизайну и качеству!

Видеообзор садовых фонариков на солнечных батареях

Как еще можно использовать батареи?

Более дорогостоящая, но мощная система – солнечная электростанция для дома. Такой вариант позволит генерировать электроэнергию не только для уличного освещения, но и для функционирования электроприборов в доме, как показано на картинке.

1. Световой поток

Световой поток - мощность лучистой энергии, оцениваемая по производимому ею световому ощущению. Энергия излучения определяется количеством квантов, которые излучаются излучателем в пространство. Энергию излучения (лучистую энергию) измеряют в джоулях. Количество энергии, излучающейся в единицу времени называется потоком излучения или лучистым потоком. Измеряется поток излучения в ваттах. Световой поток обозначается Фе.

где: Qе - энергия излучения.

Поток излучения характеризуется распределением энергии во времени и в пространстве.

В большинстве случаев, когда говорят о распределении потока излучения во времени, не учитывают квантового характера возникновения излучения, а понимают под этим функцию, дающую изменение во времени мгновенных значений потока излучения Ф(t). Это допустимо, поскольку число фотонов, излучаемых источником в единицу времени, очень велико.

По спектральному распределению потока излучения источники разбивают на три класса: с линейчатым, полосатым и сплошным спектрами. Поток излучения источника с линейчатым спектром состоит из монохроматических потоков отдельных линий:

где: Фλ - монохроматический поток излучения; Фе - поток излучения.

У источников с полосатым спектром, излучение происходит в пределах достаточно широких участков спектра - полос, отделенных одна от другой темными промежутками. Для характеристики спектрального распределения потока излучения со сплошным и полосатым спектрами пользуются величиной, которая называется спектральной плотностью потока излучения

где: λ - длина волны.

Спектральная плотность потока излучения - это характеристика распределения лучистого потока по спектру и равняется отношению элементарного потока ΔФeλ соответствующего бесконечно малому участку, к ширине этого участка:

Спектральная плотность потока излучения измеряется в ваттах на нанометр.

В светотехнике, где основным приемником излучения является глаз человека, для оценки эффективного действия потока излучения, вводится понятие светового потока. Световой поток - это поток излучения, оценивающийся его действием на глаз, относительная спектральная чувствительность которого определяется усредненной кривой спектральной эффективности, утвержденной МКО.

В светотехнике используется и такое определение светового потока: световой поток - это мощность световой энергии. Единица светового потока - люмен (лм). 1лм соответствует световому потоку, излучаемому в единичном телесном угле точечным изотропным источником с силой света 1 кандела.

Таблица 1. Типичные световые величины источников света:

Типы ламп Электрическая энергия, Вт Световой поток, лм Световая отдача лм/вт
100 Вт 1360 лм 13,6 лм/Вт
Люминесцентная лампа 58 Вт 5400 лм 93 лм/Вт
Натриевая лампа высокого давления 100 Вт 10000 лм 100 лм/Вт
Натриевая лампа низкого давления 180 Вт 33000 лм 183 лм/Вт
Ртутная лампа высокого давления 1000 Вт 58000 лм 58 лм/Вт
Металлогалогенная лампа 2000 Вт 190000 лм 95 лм/Вт

Световой поток Ф, падая на тело, распределяется на три составные части: отраженную телом Фρ , поглощенную Фα и пропущенную Фτ . При используют коэффициенты: отражения ρ = Фρ /Ф; поглощения α =Фα /Ф; пропускания τ =Фτ /Ф.

Таблица 2. Световые характеристики некоторых материалов и поверхностей

Материалы или поверхности Коэффициенты Характер отражения и пропускания
отражения ρ поглащения α пропускания τ
Мел 0,85 0,15 - Диффузное
Эмаль силикатная 0,8 0,2 - Диффузное
Алюминий зеркальный 0,85 0,15 - Направленное
Зеркало стеклянное 0,8 0,2 - Направленное
Стекло матированное 0,1 0,5 0,4 Направленно-рассеянное
Стекло молочное органическое 0,22 0,15 0,63 Направленно-рассеянное
Стекло опаловое силикатное 0,3 0,1 0,6 Диффузное
Стекло молочное силикатное 0,45 0,15 0,4 Диффузное

2. Сила света

Распределение излучения реального источника в окружающем пространстве не равномерно. Поэтому световой поток не будет исчерпывающей характеристикой источника, если одновременно не определяется распределение излучения по разным направлениям окружающего пространства.

Для характеристики распределения светового потока пользуются понятием пространственной плотности светового потока в разных направлениях окружающего пространства. Пространственную плотность светового потока, определяющуюся отношением светового потока к телесному углу с вершиной в точке размещения источника, в пределах которого равномерно распределен этот поток, называют силой света:

где: Ф - световой поток; ω - телесный угол.

Единицей силы света является кандела. 1 кд.

Это сила света, испускаемая в перпендикулярном направлении элементом поверхности черного тела, площадью 1:600000 м2 при температуре затвердевания платины.
Единица силы света - кандела, кд является одной из основных величин в системе СИ и соответствует световому потоку 1 лм, равномерно распределенному внутри телесного угла 1 стерадиан (ср.). Телесный угол - часть пространства, заключенная внутри конической поверхности. Телесный угол ω измеряется отношением площади, вырезаемой им из сферы произвольного радиуса, к квадрату последнего.

3. Освещенность

Освещенность - это количество света или светового потока, падающего на единицу площади поверхности. Она обозначается буквой Е и измеряется в люксах (лк).

Единица освещенности люкс, лк имеет размерность люмен на квадратный метр (лм/м2).

Освещенность можно определить как плотность светового потока на освещаемой поверхности:

Освещенность не зависит от направления распространения светового потока на поверхность.

Приведем несколько общепринятых показателей освещенности:

4. Отношение между силой света (I) и освещенностью (Е).

Закон обратных квадратов

Освещенность в определенной точке на поверхности, перпендикулярной к направлению распространения света, определяется как отношение силы света к квадрату расстояния от этой точки до источника света. Если данное расстояние мы примем за d, то это отношение можно выразить следующей формулой:

Для примера: если источник света излучает свет силой 1200 кд в направлении, перпендикулярном к поверхности, на расстоянии 3-х метров от этой поверхности, то освещенность (Ер) в точке, где свет достигает поверхности, будет 1200/32 = 133 лк. Если поверхность находится на расстоянии 6м от источника света, освещенность будет 1200/62= 33 лк. Это отношение называется "закон обратных квадратов" .

Освещенность в определенной точке на поверхности, не перпендикулярной направлению распространения света, равняется силе света в направлении точки измерения, разделенной на квадрат расстояния между источником света и точкой на плоскости умноженной на косинус угла γ (γ - угол, образованный направлением падения света и перпендикуляром к этой плоскости).

Следовательно:

Это закон косинуса (рисунок 1.).

Рис. 1. К закону косинуса

Для расчета горизонтальной освещенности целесообразно изменить последнюю формулу, заменив расстояние d между источником света и точкой измерения на высоту h от источника света к поверхности.

На рисунке 2:

Тогда:

Получаем:

По данной формуле рассчитывается горизонтальная освещенность в точке измерения.

Рис. 2. Горизонтальная освещенность

6. Вертикальная освещенность

Освещение той же точки Р в вертикальной плоскости, ориентированной к источнику света, можно представить как функцию высоты (h) источника света и угла падения (γ) силы света (I) (рисунок 3).

светимостью :

Для поверхностей конечных размеров:

Светимость - это плотность светового потока, испускаемого светящейся поверхностью. Единицей светимости служит люмен на метр квадратный светящейся поверхности, что отвечает поверхности площадью 1 м2, которая равномерно излучает световой поток 1 лм. В случае общего излучения вводится понятие энергетической светимости излучающего тела (Me).

Единица энергетической светимости - Вт/м2.

Светимость в этом случае можно выразить через спектральную плотность энергетической светимости излучающего тела Meλ(λ)

Для сравнительной оценки приводим энергетические светимости к светимости некоторых поверхностей:

    Поверхность солнца - Ме=6 107 Вт/м2;

    Нить лампы накаливания - Ме=2 105 Вт/м2;

    Поверхность солнца в зените - М=3,1 109 лм/м2;

    Колба люминесцентной лампы - М=22 103 лм/м2.

Это сила света, излучаемая единицей площади поверхности в определенном направлении. Единица измерения яркости - кандела на метр квадратный (кд/м2).

Поверхность сама по себе может излучать свет, как поверхность лампы, или отражать свет, который поступает из другого источника, например поверхность дороги.

Поверхности с разными свойствами отражения при одинаковой освещенности будут иметь разную степень яркости.

Яркость, излучаемая поверхностью dA под углом Ф к проекции этой поверхности, равняется отношению силы света, излучаемого в данном направлении, к проекции излучающей поверхности (рис. 4).


Рис. 4. Яркость

Как сила света, так и проекция излучающей поверхности, не зависят от расстояния. Следовательно, яркость также не зависит от расстояния.

Несколько практических примеров:

Это уникальное энергосберегающее осветительное оборудование, которое является полноценной зелёной технологией и проводит натуральный солнечный свет по трубе-световоду через крышу во внутренние пространства, где нет возможности поставить окна или недостаточно дневного света. Системы Solatube® являются зенитными фонарями и мансардными окнами нового поколения.

Традиционные способы организации естественного освещения часто не позволяют наполнять помещения комфортным и равномерным освещением без слепящей яркости, а также без нарушения теплофизических свойств ограждающих конструкций. Окна всегда привязаны к сторонам света: так, окно с северной стороны не позволит получить достаточное количество солнечного света, а с южной стороны – мы получим слепящую яркость и высокий теплоприток.

Напротив, световоды Solatube® дают энергоэффективное, равномерное и комфортное освещение помещений естественным солнечным светом в течение всего дня. Особенно, когда диффузор расположен по центру потолка. Системы Solatube® не проводят тепло и холод в помещение, нет протечек и конденсата.

Кроме того, обеспечение в помещении большего количества естественного света благотворно влияет на самочувствие и здоровье находящихся в помещении людей. Ведь мы получаем 90% информации через органы зрения, и солнечный свет играет в этом процессе огромную роль. Поэтому улучшение организации естественного освещения, способствует повышению работоспособности даже в тех случаях, когда процесс труда практически не зависит от зрительного восприятия.

Более того, санитарными нормами (СанПиН 2.2.1/2.1.1.1278-03) предусмотрено наличие полноценного естественного освещения рабочих мест, на которых человек находится более 4 часов в день. Проведенные за рубежом оценки эффективности применения ССО Solatube® показали увеличение производительности труда персонала на 16%. У работников, которые находятся в условиях естественной освещенности, на 20% меньше проявляются симптомы различных заболеваний и улучшается самочувствие. То есть помимо энергосбережения применение данной технологии освещения позволяет обеспечить такие характеристики экологического строительства, как комфорт и экологичность (так как данное оборудование не оказывает негативного воздействия на окружающую среду).

Элементы системы

Система представляет собой светоприемный купол с линзами, которые улавливают и перенаправляют лучи вниз в световод, который проходит по подкрышному пространству. Многократно отражаясь, свет выходит в помещение через потолочный светильник-рассеиватель и равномерно освещает помещение.

Эффективность

Купол системы способен улавливать не только прямые солнечные лучи, но и собирать свет всей полусферой, обеспечивая исключительное освещение помещений даже в облачные дни, зимние месяцы, раннее утро и к концу дня, когда солнце низко над горизонтом, на что не способны традиционные световые проемы. Установка систем возможна на любом этапе строительства и эксплуатации здания.

Светопередача

Системы освещения Solatube® передают свет на расстояние более 20-ти метров без смещения спектра в диапазоне 400 нм ÷ 830 нм с энергетическими потерями не более 17%. В настоящее время это самый высокий показатель в мире.

Энергосбережение

Системы Solatube® обладают энергосберегающими свойствами, не проводят тепло и холод в помещение и являются элементами капитального строительства. Благодаря своим техническим свойствам, системы Solatube® снижают до 70% энергетические затраты на освещение и кондиционирование зданий, в которых они установлены.

Теплопроводность

Система Solatube® обеспечивает хорошую теплоизоляцию. Ее уникальные характеристики, такие как система двойного купола, технология преломления лучей Raybender® 3000 и покрытие световода Spectralight® Infinity в совокупности дают самую энергоэффективную систему дневного освещения, существующую сегодня на мировом рынке, имеющую коэффициент теплопроводности менее 0,2 Вт/м*С.

Гарантия и срок эксплуатации

Системы Solatube®, благодаря применению современных высоких технологий при их изготовлении, имеют 10-ти летний срок гарантии и неограниченный срок эксплуатации. При установке в любое сооружение они становятся элементами капитального строительства и не подлежат замене в течение всего срока эксплуатации здания.

Применение

Система устанавливается на любые виды кровли в помещения любого назначение (от частного до промышленного и коммерческого). Системы Solatube® успешно работают уже более десяти лет во многих российских городах в зданиях различного назначения. К наиболее значимым пилот-проектам с применением систем Solatube® можно отнести:
* Детские сады (Краснодар, Славянск-на-Кубани, Ижевск, Среднеуральск);
* Средняя школа №35 (Краснодар);
* Нижегородская правовая академия (Нижний Новгород);
* Уральский дом науки и техники (Екатеринбург);
* Лечебно-оздоровительный комплекс «Витязь» (Анапа);
* Больница СКЖД (Ростов-на-Дону);
* Сочинская инфекционная больница (Сочи);
* Вокзальный комплекс «Анапа» (Анапа);
* Здание Морского вокзала (С-Петербург);
* Научно-адаптационный корпус и Океанариум (Владивосток, о.Русский);
* Административное здание и цеха завода «Марс» (Москва, Ульяновск);
* Офисы «ИКЕА» в ТЦ МЕГА (Краснодар, Москва);
* Офисы «Данон» (Московская область);
* Офисы «FASION HOUSE Аутлет Центр» (Московская область);
а также другие объекты в различных регионах России.