Kaip pridėti logaritmus su ta pačia baze. Logaritmas

Pateikiamos pagrindinės natūraliojo logaritmo, grafiko, apibrėžimo srities, reikšmių aibės, pagrindinių formulių, išvestinės, integralo, išplėtimo laipsnių eilutėje savybės ir funkcijos ln x atvaizdavimas kompleksiniais skaičiais.

Apibrėžimas

natūralusis logaritmas yra funkcija y = ln x, atvirkštinis rodikliui x \u003d e y ir kuris yra logaritmas skaičiaus e pagrindui: ln x = log e x.

Natūralusis logaritmas plačiai naudojamas matematikoje, nes jo išvestinė yra paprasčiausia: (ln x)′ = 1/x.

Remiantis apibrėžimai, natūraliojo logaritmo pagrindas yra skaičius e:
e ≅ 2,718281828459045...;
.

Funkcijos y = grafikas ln x.

Natūralaus logaritmo grafikas (funkcijos y = ln x) gaunamas iš eksponento grafiko veidrodiniu atspindžiu apie tiesę y = x .

Natūralusis logaritmas yra apibrėžtas teigiamoms x reikšmėms. Jis monotoniškai didėja savo apibrėžimo srityje.

Kaip x → 0 natūraliojo logaritmo riba yra minus begalybė ( - ∞ ).

Kaip x → + ∞, natūraliojo logaritmo riba yra plius begalybė ( + ∞ ). Didelio x logaritmas didėja gana lėtai. Bet kuri laipsnio funkcija x a su teigiamu eksponentu a auga greičiau nei logaritmas.

Natūralaus logaritmo savybės

Apibrėžimo sritis, reikšmių rinkinys, ekstremumai, padidėjimas, sumažėjimas

Natūralusis logaritmas yra monotoniškai didėjanti funkcija, todėl jis neturi ekstremalių. Pagrindinės natūraliojo logaritmo savybės pateiktos lentelėje.

ln x reikšmės

log 1 = 0

Pagrindinės natūraliųjų logaritmų formulės

Formulės, kylančios iš atvirkštinės funkcijos apibrėžimo:

Pagrindinė logaritmų savybė ir jos pasekmės

Bazės pakeitimo formulė

Bet koks logaritmas gali būti išreikštas natūraliais logaritmais naudojant bazės pokyčio formulę:

Šių formulių įrodymai pateikti skiltyje „Logaritmas“.

Atvirkštinė funkcija

Natūralaus logaritmo atvirkštinė vertė yra eksponentas.

Jei tada

Jei tada .

Išvestinė ln x

Natūralaus logaritmo išvestinė:
.
Modulio x natūraliojo logaritmo išvestinė:
.
n-osios eilės vedinys:
.
Formulių išvedimas >>>

Integralinis

Integralas apskaičiuojamas integruojant dalimis:
.
Taigi,

Išraiškos kompleksiniais skaičiais

Apsvarstykite sudėtingo kintamojo z funkciją:
.
Išreikškime kompleksinį kintamąjį z per modulį r ir argumentas φ :
.
Naudodami logaritmo savybes, turime:
.
Arba
.
Argumentas φ nėra vienareikšmiškai apibrėžtas. Jei įdėtume
, kur n yra sveikas skaičius,
tada jis bus tas pats skaičius skirtingiems n.

Todėl natūralusis logaritmas, kaip sudėtingo kintamojo funkcija, nėra vienareikšmė funkcija.

Galios serijos išplėtimas

Išplėtimas vyksta:

Nuorodos:
I.N. Bronšteinas, K.A. Semendyaev, Matematikos vadovas inžinieriams ir aukštųjų mokyklų studentams, Lan, 2009 m.

Instrukcija

Užrašykite pateiktą logaritminę išraišką. Jei išraiška naudoja 10 logaritmą, tada jo žymėjimas sutrumpinamas ir atrodo taip: lg b yra dešimtainis logaritmas. Jei logaritmo pagrindas yra skaičius e, tada išraiška rašoma: ln b yra natūralusis logaritmas. Suprantama, kad bet kurio rezultatas yra laipsnis, iki kurio turi būti padidintas bazinis skaičius, norint gauti skaičių b.

Surandant dviejų funkcijų sumą, tereikia jas atskirti po vieną ir sudėti rezultatus: (u+v)" = u"+v";

Surandant dviejų funkcijų sandaugos išvestinę, reikia padauginti pirmosios funkcijos išvestinę iš antrosios ir pridėti antrosios funkcijos išvestinę, padaugintą iš pirmosios funkcijos: (u*v)" = u"* v+v"*u;

Norint rasti dviejų funkcijų dalinio išvestinę, reikia iš dividendo išvestinės sandaugos, padauginto iš daliklio funkcijos, atimti daliklio išvestinės sandaugą, padaugintą iš daliklio funkcijos, ir padalyti visa tai daliklio funkcija kvadratu. (u/v)" = (u"*v-v"*u)/v^2;

Jei duota kompleksinė funkcija, tai reikia padauginti vidinės funkcijos išvestinę ir išorinės išvestinę. Tegul y=u(v(x)), tada y"(x)=y"(u)*v"(x).

Naudodami aukščiau pateiktą informaciją galite atskirti beveik bet kurią funkciją. Taigi pažvelkime į keletą pavyzdžių:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2) *x));
Taip pat yra užduočių, skirtų išvestinei taške apskaičiuoti. Tegul funkcija y=e^(x^2+6x+5) duota, reikia rasti funkcijos reikšmę taške x=1.
1) Raskite funkcijos išvestinę: y"=e^(x^2-6x+5)*(2*x +6).

2) Apskaičiuokite funkcijos reikšmę duotame taške y"(1)=8*e^0=8

Susiję vaizdo įrašai

Naudingas patarimas

Išmok elementariųjų išvestinių lentelę. Taip sutaupysite daug laiko.

Šaltiniai:

  • pastovi išvestinė

Taigi, kuo skiriasi neracionali lygtis nuo racionalios? Jei nežinomas kintamasis yra po kvadratinės šaknies ženklu, tada lygtis laikoma neracionalia.

Instrukcija

Pagrindinis tokių lygčių sprendimo būdas yra abiejų pusių pakėlimo metodas lygtysį aikštę. Tačiau. tai natūralu, pirmiausia reikia atsikratyti ženklo. Techniškai šis metodas nėra sunkus, tačiau kartais gali kilti problemų. Pavyzdžiui, lygtis v(2x-5)=v(4x-7). Padalinus abi puses kvadratu, gaunama 2x-5=4x-7. Tokią lygtį nesunku išspręsti; x=1. Bet numeris 1 nebus suteiktas lygtys. Kodėl? Vietoj x reikšmės lygtyje pakeiskite vienetą, o dešinėje ir kairėje pusėje bus išraiškos, kurios neturi prasmės, tai yra. Tokia reikšmė negalioja kvadratinei šakniai. Todėl 1 yra pašalinė šaknis, todėl ši lygtis neturi šaknų.

Taigi, neracionali lygtis išspręsta naudojant abiejų jos dalių kvadratūros metodą. Ir išsprendus lygtį, reikia nupjauti pašalines šaknis. Norėdami tai padaryti, pakeiskite rastas šaknis į pradinę lygtį.

Apsvarstykite kitą.
2x+vx-3=0
Žinoma, šią lygtį galima išspręsti naudojant tą pačią lygtį kaip ir ankstesnė. Perkėlimo junginiai lygtys, kurie neturi kvadratinės šaknies, į dešinę pusę ir tada naudokite kvadrato metodą. išspręskite gautą racionaliąją lygtį ir šaknis. Bet kitas, elegantiškesnis. Įveskite naują kintamąjį; vx=y. Atitinkamai gausite tokią lygtį kaip 2y2+y-3=0. Tai yra įprasta kvadratinė lygtis. Raskite jo šaknis; y1=1 ir y2=-3/2. Tada išspręskite du lygtys vx=1; vx \u003d -3/2. Antroji lygtis neturi šaknų, iš pirmosios matome, kad x=1. Nepamirškite apie būtinybę patikrinti šaknis.

Išspręsti tapatybes yra gana paprasta. Tam reikia atlikti identiškas transformacijas, kol bus pasiektas tikslas. Taigi, paprasčiausių aritmetinių veiksmų pagalba bus išspręsta užduotis.

Jums reikės

  • - popierius;
  • - rašiklis.

Instrukcija

Paprasčiausios tokios transformacijos yra algebrinės sutrumpintos daugybos (pavyzdžiui, sumos kvadratas (skirtumas), kvadratų skirtumas, suma (skirtumas), sumos (skirtumo) kubas). Be to, yra daug trigonometrinių formulių, kurios iš esmės yra tos pačios tapatybės.

Iš tiesų, dviejų narių sumos kvadratas yra lygus pirmojo kvadratui plius dvigubai pirmojo ir antrojo sandaugai plius antrojo kvadratui, tai yra (a+b)^2= (a+b )(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

Supaprastinkite abu

Bendrieji sprendimo principai

Pakartokite iš matematinės analizės arba aukštosios matematikos vadovėlio, kuris yra neabejotinas integralas. Kaip žinote, apibrėžtojo integralo sprendimas yra funkcija, kurios išvestinė duos integrandą. Ši funkcija vadinama antiderivatine. Pagal šį principą konstruojami pagrindiniai integralai.
Pagal integrando formą nustatykite, kuris iš lentelės integralų tinka šiuo atveju. Ne visada tai įmanoma iš karto nustatyti. Dažnai lentelės forma tampa pastebima tik po kelių transformacijų, siekiant supaprastinti integrandą.

Kintamojo pakeitimo metodas

Jei integrandas yra trigonometrinė funkcija, kurios argumentas yra koks nors polinomas, pabandykite naudoti kintamųjų keitimo metodą. Norėdami tai padaryti, pakeiskite daugianarį integrando argumente nauju kintamuoju. Remdamiesi naujojo ir senojo kintamojo santykiu, nustatykite naujas integracijos ribas. Išskirdami šią išraišką, raskite naują skirtumą . Taigi gausite naują senojo integralo formą, artimą ar net atitinkančią bet kurią lentelę.

Antrosios rūšies integralų sprendimas

Jei integralas yra antrosios rūšies integralas, vektoriaus integrando forma, tuomet turėsite naudoti taisykles, kaip pereiti nuo šių integralų prie skaliarinių. Viena iš tokių taisyklių yra Ostrogradskio ir Gauso santykis. Šis dėsnis leidžia pereiti nuo tam tikros vektorinės funkcijos rotoriaus srauto į trigubą integralą per tam tikro vektoriaus lauko divergenciją.

Integracijos ribų pakeitimas

Radus antidarinį, būtina pakeisti integracijos ribas. Pirma, viršutinės ribos reikšmę pakeiskite antidarinio išraiška. Jūs gausite tam tikrą numerį. Tada iš gauto skaičiaus atimkite kitą skaičių, gautą apatinę antidarinio ribą. Jei viena iš integravimo ribų yra begalybė, tai pakeičiant ją į antiderivatinę funkciją, reikia pereiti prie ribos ir rasti, į ką linksta išraiška.
Jei integralas yra dvimatis arba trimatis, tuomet turėsite pavaizduoti geometrines integravimo ribas, kad suprastumėte, kaip apskaičiuoti integralą. Juk, tarkime, trimačio integralo atveju, integravimo ribos gali būti ištisos plokštumos, kurios riboja integruojamą tūrį.

Teigiamo skaičiaus b logaritmas bazei a (a>0, a nelygus 1) yra skaičius c, kad a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Atkreipkite dėmesį, kad neteigiamojo skaičiaus logaritmas nėra apibrėžtas. Taip pat logaritmo pagrindas turi būti teigiamas skaičius, nelygus 1. Pavyzdžiui, jei kvadratu -2 gauname skaičių 4, bet tai nereiškia, kad 4 bazinis -2 logaritmas yra 2.

Pagrindinė logaritminė tapatybė

a log a b = b (a > 0, a ≠ 1) (2)

Svarbu, kad šios formulės dešiniosios ir kairiosios dalių apibrėžimo sritys būtų skirtingos. Kairioji pusė apibrėžiama tik b>0, a>0 ir a ≠ 1. Dešinė pusė apibrėžiama bet kuriam b ir visiškai nepriklauso nuo a. Taigi pagrindinio logaritminio „tapatumo“ taikymas sprendžiant lygtis ir nelygybes gali lemti DPV pasikeitimą.

Dvi akivaizdžios logaritmo apibrėžimo pasekmės

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Išties, keldami skaičių a į pirmą laipsnį, gauname tą patį skaičių, o pakeldami iki nulinio laipsnio – vienetą.

Produkto logaritmas ir koeficiento logaritmas

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Norėčiau perspėti moksleivius dėl neapgalvoto šių formulių naudojimo sprendžiant logaritmines lygtis ir nelygybes. Kai jie naudojami „iš kairės į dešinę“, ODZ susiaurėja, o nuo logaritmų sumos arba skirtumo pereinant prie sandaugos ar koeficiento logaritmo, ODZ plečiasi.

Iš tiesų, išraiška log a (f (x) g (x)) apibrėžiama dviem atvejais: kai abi funkcijos yra griežtai teigiamos arba kai f (x) ir g (x) yra mažesnės už nulį.

Pavertę šią išraišką į sumą log a f (x) + log a g (x) , esame priversti apsiriboti tik tuo atveju, kai f(x)>0 ir g(x)>0. Leistinų verčių diapazonas susiaurėja, ir tai kategoriškai nepriimtina, nes gali būti prarasti sprendimai. Panaši problema yra su (6) formule.

Laipsnį galima paimti iš logaritmo ženklo

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Ir vėl norėčiau paraginti tikslumo. Apsvarstykite šį pavyzdį:

Log a (f (x) 2 = 2 log a f (x)

Kairioji lygybės pusė aiškiai apibrėžta visoms f(x) reikšmėms, išskyrus nulį. Dešinė pusė skirta tik f(x)>0! Išimdami galią iš logaritmo, vėl susiauriname ODZ. Atvirkštinė procedūra leidžia išplėsti leistinų verčių diapazoną. Visos šios pastabos galioja ne tik 2 galiai, bet ir bet kuriai lyginei galiai.

Persikėlimo į naują bazę formulė

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Tas retas atvejis, kai konvertuojant ODZ nepasikeičia. Jei bazę c pasirinkote išmintingai (teigiama ir nelygu 1), perkėlimo į naują bazę formulė yra visiškai saugi.

Jei pasirinksime skaičių b kaip naują bazę c, gausime svarbų konkretų (8) formulės atvejį:

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Keletas paprastų logaritmų pavyzdžių

1 pavyzdys Apskaičiuokite: lg2 + lg50.
Sprendimas. lg2 + lg50 = lg100 = 2. Naudojome logaritmų sumos formulę (5) ir dešimtainio logaritmo apibrėžimą.


2 pavyzdys Apskaičiuokite: lg125/lg5.
Sprendimas. lg125/lg5 = log 5 125 = 3. Naudojome naują bazinio perėjimo formulę (8).

Su logaritmais susijusių formulių lentelė

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Logaritminės išraiškos, pavyzdžių sprendimas. Šiame straipsnyje mes apsvarstysime problemas, susijusias su logaritmų sprendimu. Užduotys kelia klausimą, kaip rasti išraiškos vertę. Reikia pažymėti, kad logaritmo sąvoka naudojama daugelyje užduočių ir labai svarbu suprasti jos reikšmę. Kalbant apie USE, logaritmas naudojamas sprendžiant lygtis, atliekant taikomąsias problemas, taip pat atliekant užduotis, susijusias su funkcijų tyrimu.

Štai pavyzdžiai, kaip suprasti pačią logaritmo reikšmę:


Pagrindinė logaritminė tapatybė:

Logaritmų savybės, kurias visada turite atsiminti:

*Darbos logaritmas lygus faktorių logaritmų sumai.

* * *

* Dalinio (trupmens) logaritmas lygus faktorių logaritmų skirtumui.

* * *

* Laipsnio logaritmas lygus eksponento sandaugai ir jo bazės logaritmui.

* * *

*Perėjimas prie naujos bazės

* * *

Daugiau savybių:

* * *

Logaritmų skaičiavimas yra glaudžiai susijęs su eksponentų savybių naudojimu.

Mes išvardijame kai kuriuos iš jų:

Šios savybės esmė ta, kad perkeliant skaitiklį į vardiklį ir atvirkščiai, rodiklio ženklas pasikeičia į priešingą. Pavyzdžiui:

Šios savybės pasekmė:

* * *

Didinant laipsnį į laipsnį, bazė išlieka ta pati, tačiau rodikliai dauginami.

* * *

Kaip matote, pati logaritmo sąvoka yra paprasta. Svarbiausia, kad reikia geros praktikos, kuri suteikia tam tikrų įgūdžių. Žinoma, formulių išmanymas yra privalomas. Jei įgūdis konvertuoti elementarius logaritmus nesusiformuoja, tai sprendžiant paprastas užduotis galima nesunkiai suklysti.

Praktikuokite, pirmiausia išspręskite paprasčiausius matematikos kurso pavyzdžius, tada pereikite prie sudėtingesnių. Ateityje būtinai parodysiu, kaip sprendžiami „bražūs“ logaritmai, egzamine tokių nebus, bet jie įdomūs, nepraleiskite!

Tai viskas! Sėkmės tau!

Pagarbiai Aleksandras Krutitskichas

P.S. Būčiau dėkingas, jei papasakotumėte apie svetainę socialiniuose tinkluose.

Kaip žinote, dauginant išraiškas su laipsniais, jų rodikliai visada sumuojasi (a b * a c = a b + c). Šį matematinį dėsnį išvedė Archimedas, o vėliau, VIII amžiuje, matematikas Virasenas sukūrė sveikųjų skaičių rodiklių lentelę. Būtent jie pasitarnavo tolesniam logaritmų atradimui. Šios funkcijos naudojimo pavyzdžių galima rasti beveik visur, kur reikia supaprastinti sudėtingą daugybą iki paprasto sudėjimo. Jei skaitydami šį straipsnį skirsite 10 minučių, paaiškinsime, kas yra logaritmai ir kaip su jais dirbti. Paprasta ir prieinama kalba.

Apibrėžimas matematikoje

Logaritmas yra tokios formos išraiška: log a b=c, tai yra, bet kurio neneigiamo skaičiaus (ty bet kurio teigiamo) "b" logaritmas pagal bazę "a" laikomas "c" laipsniu. , iki kurio reikia pakelti bazę "a", kad galiausiai gautumėte reikšmę "b". Išanalizuokime logaritmą naudodami pavyzdžius, tarkime, kad yra išraiška log 2 8. Kaip rasti atsakymą? Labai paprasta, reikia susirasti tokį laipsnį, kad nuo 2 iki reikiamo laipsnio gautum 8. Mintyse atlikę tam tikrus skaičiavimus, gauname skaičių 3! Ir teisingai, nes 2 iki 3 laipsnio atsakyme suteikia skaičių 8.

Logaritmų atmainos

Daugeliui mokinių ir studentų ši tema atrodo sudėtinga ir nesuprantama, tačiau iš tikrųjų logaritmai nėra tokie baisūs, svarbiausia suprasti jų bendrą prasmę ir atsiminti jų savybes bei kai kurias taisykles. Yra trys skirtingos logaritminių išraiškų rūšys:

  1. Natūralusis logaritmas ln a, kur bazė yra Eulerio skaičius (e = 2,7).
  2. Dešimtainė a, kur bazė yra 10.
  3. Bet kurio skaičiaus b logaritmas bazei a>1.

Kiekvienas iš jų sprendžiamas standartiniu būdu, įskaitant supaprastinimą, sumažinimą ir vėlesnį sumažinimą iki vieno logaritmo naudojant logaritmines teoremas. Norint gauti teisingas logaritmų reikšmes, reikia atsiminti jų savybes ir veiksmų eiliškumą priimant sprendimus.

Taisyklės ir kai kurie apribojimai

Matematikoje yra keletas taisyklių-ribojimų, kurie priimami kaip aksioma, tai yra, jie nėra diskutuojami ir yra teisingi. Pavyzdžiui, neįmanoma padalyti skaičių iš nulio, taip pat neįmanoma iš neigiamų skaičių išskirti lyginio laipsnio šaknies. Logaritmai taip pat turi savo taisykles, kuriomis vadovaudamiesi galite lengvai išmokti dirbti net su ilgomis ir talpiomis logaritminėmis išraiškomis:

  • bazė "a" visada turi būti didesnė už nulį ir tuo pačiu metu negali būti lygi 1, kitaip išraiška praras savo reikšmę, nes "1" ir "0" bet kokiu laipsniu visada yra lygūs jų reikšmėms;
  • jei a > 0, tai a b > 0, išeina, kad „c“ turi būti didesnis už nulį.

Kaip išspręsti logaritmus?

Pavyzdžiui, buvo duota užduotis rasti atsakymą į lygtį 10 x \u003d 100. Tai labai paprasta, reikia pasirinkti tokią galią, pakeliant skaičių dešimt, iki kurio gauname 100. Tai, žinoma, yra 10 2 \u003d 100.

Dabar pavaizduokime šią išraišką kaip logaritminę. Gauname log 10 100 = 2. Sprendžiant logaritmus visi veiksmai praktiškai susilieja, kad būtų nustatytas laipsnis, iki kurio reikia įvesti logaritmo bazę, norint gauti duotą skaičių.

Norėdami tiksliai nustatyti nežinomo laipsnio reikšmę, turite išmokti dirbti su laipsnių lentele. Tai atrodo taip:

Kaip matote, kai kuriuos eksponentus galima atspėti intuityviai, jei turite techninį mąstymą ir išmanote daugybos lentelę. Tačiau didesnėms vertėms reikės maitinimo lentelės. Ją gali naudoti net tie, kurie visiškai nieko nesupranta sudėtingose ​​matematinėse temose. Kairiajame stulpelyje yra skaičiai (bazė a), viršutinėje skaičių eilutėje yra laipsnio c reikšmė, iki kurios pakeliamas skaičius a. Ląstelių sankirtoje nustatomos skaičių reikšmės, kurios yra atsakymas (a c = b). Paimkime, pavyzdžiui, patį pirmąjį langelį su skaičiumi 10 ir padėkite jį kvadratu, gausime reikšmę 100, kuri yra nurodyta mūsų dviejų langelių sankirtoje. Viskas taip paprasta ir lengva, kad supras net pats tikriausias humanistas!

Lygtys ir nelygybės

Pasirodo, tam tikromis sąlygomis eksponentas yra logaritmas. Todėl bet kurios matematinės skaitinės išraiškos gali būti parašytos kaip logaritminė lygtis. Pavyzdžiui, 3 4 =81 galima parašyti kaip logaritmą nuo 81 iki 3 bazės, kuri yra keturi (log 3 81 = 4). Neigiamų galių taisyklės tos pačios: 2 -5 = 1/32 rašome logaritmu, gauname log 2 (1/32) = -5. Viena patraukliausių matematikos skyrių yra „logaritmų“ tema. Lygčių pavyzdžius ir sprendimus svarstysime šiek tiek žemiau, iš karto ištyrę jų savybes. Dabar pažiūrėkime, kaip atrodo nelygybės ir kaip jas atskirti nuo lygčių.

Pateikiama tokios formos išraiška: log 2 (x-1) > 3 - tai logaritminė nelygybė, nes nežinoma reikšmė "x" yra po logaritmo ženklu. Taip pat išraiškoje lyginami du dydžiai: norimo skaičiaus logaritmas bazėje du yra didesnis nei skaičius trys.

Svarbiausias skirtumas tarp logaritminių lygčių ir nelygybių yra tas, kad lygtys su logaritmais (pavyzdžiui, logaritmas 2 x = √9) atsakyme reiškia vieną ar daugiau konkrečių skaitinių reikšmių, o sprendžiant nelygybę, tiek priimtinos reikšmės ir taškai, pažeidžiantys šią funkciją. Todėl atsakymas yra ne paprasta atskirų skaičių rinkinys, kaip lygties atsakyme, o ištisinė skaičių seka arba rinkinys.

Pagrindinės teoremos apie logaritmus

Sprendžiant primityvias užduotis ieškant logaritmo reikšmių, jo savybės gali būti nežinomos. Tačiau kalbant apie logaritmines lygtis ar nelygybes, pirmiausia reikia aiškiai suprasti ir praktiškai pritaikyti visas pagrindines logaritmų savybes. Su lygčių pavyzdžiais susipažinsime vėliau, pirmiausia išanalizuokime kiekvieną savybę išsamiau.

  1. Pagrindinė tapatybė atrodo taip: a logaB =B. Jis taikomas tik tuo atveju, jei a yra didesnis nei 0, nelygus vienetui, o B yra didesnis už nulį.
  2. Produkto logaritmą galima pavaizduoti tokia formule: log d (s 1 * s 2) = log d s 1 + log d s 2. Šiuo atveju būtina sąlyga: d, s 1 ir s 2 > 0; a≠1. Galite pateikti šios logaritmų formulės įrodymą su pavyzdžiais ir sprendimu. Tegu log a s 1 = f 1 ir log a s 2 = f 2, tada a f1 = s 1, a f2 = s 2. Gauname, kad s 1 *s 2 = a f1 *a f2 = a f1+f2 (laipsnio savybės ), o toliau pagal apibrėžimą: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, kurį reikėjo įrodyti.
  3. Dalinio logaritmas atrodo taip: log a (s 1 / s 2) = log a s 1 - log a s 2.
  4. Teorema formulės pavidalu įgauna tokią formą: log a q b n = n/q log a b.

Ši formulė vadinama „logaritmo laipsnio savybe“. Tai primena įprastų laipsnių savybes, ir tai nenuostabu, nes visa matematika remiasi įprastais postulatais. Pažiūrėkime į įrodymą.

Leiskite įregistruoti a b \u003d t, pasirodo, a t \u003d b. Jei abi dalis pakelsite iki laipsnio m: a tn = b n ;

bet kadangi a tn = (a q) nt/q = b n , vadinasi, log a q b n = (n*t)/t, tai log a q b n = n/q log a b. Teorema įrodyta.

Problemų ir nelygybių pavyzdžiai

Dažniausiai pasitaikančios logaritmų problemos yra lygčių ir nelygybių pavyzdžiai. Jie yra beveik visose probleminėse knygose, taip pat įtraukiami į privalomą matematikos egzaminų dalį. Norint įstoti į universitetą ar išlaikyti stojamuosius matematikos testus, reikia žinoti, kaip teisingai išspręsti tokias užduotis.

Deja, nėra vieno plano ar schemos, kaip išspręsti ir nustatyti nežinomą logaritmo reikšmę, tačiau kiekvienai matematinei nelygybei ar logaritminei lygčiai gali būti taikomos tam tikros taisyklės. Visų pirma turėtumėte išsiaiškinti, ar išraišką galima supaprastinti arba sumažinti iki bendros formos. Galite supaprastinti ilgas logaritmines išraiškas, jei teisingai naudojate jų savybes. Greitai su jais susipažinkime.

Sprendžiant logaritmines lygtis, būtina nustatyti, kokį logaritmą turime prieš mus: išraiškos pavyzdyje gali būti natūralusis logaritmas arba dešimtainis.

Štai pavyzdžiai ln100, ln1026. Jų sprendimas yra susijęs su tuo, kad reikia nustatyti, kokiu laipsniu bazė 10 bus lygi atitinkamai 100 ir 1026. Natūralių logaritmų sprendiniams reikia taikyti logaritminius tapatumus arba jų savybes. Pažvelkime į įvairių tipų logaritminių uždavinių sprendimo pavyzdžius.

Kaip naudoti logaritmo formules: su pavyzdžiais ir sprendimais

Taigi, pažvelkime į pagrindinių logaritmų teoremų naudojimo pavyzdžius.

  1. Produkto logaritmo savybė gali būti naudojama atliekant užduotis, kur reikia išskaidyti didelę skaičiaus b reikšmę į paprastesnius veiksnius. Pavyzdžiui, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Atsakymas yra 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - kaip matote, naudojant ketvirtąją logaritmo laipsnio savybę, mums pavyko išspręsti iš pirmo žvilgsnio sudėtingą ir neišsprendžiamą išraišką. Pakanka tik koeficientuoti bazę ir išimti eksponentų reikšmes iš logaritmo ženklo.

Užduotys iš egzamino

Logaritmai dažnai aptinkami stojamuosiuose egzaminuose, ypač daug logaritminių uždavinių Vieningajame valstybiniame egzamine (valstybinis egzaminas visiems abiturientams). Paprastai šios užduotys pateikiamos ne tik A dalyje (lengviausia egzamino dalis), bet ir C dalyje (sunkiausios ir didžiausios užduotys). Egzaminas reiškia tikslią ir nepriekaištingą temos „Natūralūs logaritmai“ išmanymą.

Pavyzdžiai ir problemų sprendimas paimti iš oficialių egzamino versijų. Pažiūrėkime, kaip tokios užduotys sprendžiamos.

Duotas log 2 (2x-1) = 4. Sprendimas:
perrašykime išraišką, šiek tiek supaprastindami log 2 (2x-1) = 2 2, pagal logaritmo apibrėžimą gauname, kad 2x-1 = 2 4, todėl 2x = 17; x = 8,5.

  • Visus logaritmus geriausia sumažinti iki tos pačios bazės, kad sprendimas nebūtų sudėtingas ir painus.
  • Visos išraiškos po logaritmo ženklu nurodomos kaip teigiamos, todėl išimant reiškinio, esančio po logaritmo ženklą ir kaip jo bazę, rodiklį, po logaritmu likusi išraiška turi būti teigiama.