Проект прокладки подземной бесканальной сети теплоснабжения. Рассчитать стоимость бесканальной прокладки теплосетей за Вас

ГОСУДАРСТВЕННЫЙ АГРОПРОМЫШЛЕННЫЙ КОМИТЕТ СССР

ОТДЕЛ ПО КАПИТАЛЬНОМУ СТРОИТЕЛЬСТВУ И РЕКОНСТРУКЦИИ

ЦНИИЭПсельстрой

ИНСТРУКЦИЯ
НА СТРОИТЕЛЬСТВО ТЕПЛОВЫХ СЕТЕЙ
БЕСКАНАЛЬНЫМ СПОСОБОМ С ИЗОЛЯЦИЕЙ ПОРОПЛАСТОМ
НА ОСНОВЕ СМОЛЫ СФЖ-5М

ВСН 36-86

МОСКВА-1987

РАЗРАБОТАНЫ И ВНЕСЕНЫ: Центральным научно-исследовательским, экспериментальным и проектным институтом по сельскому строительству (ЦНИИЭПсельстроем) Госагропрома СССР Директор института Л.Н. Ануфриев Заведующий лабораторией КБМ инженерного оборудования и индустриализации спецмонтажных работ Г.С. Хмелевский СОГЛАСОВАНЫ: Заместитель начальника подотдела подрядных организаций и хозспособа Госагропрома СССР В.И. Резников Начальник сектора планирования и координации научно-технических и конструкторских работ Г.Н. Злобин УТВЕРЖДЕНЫ: Отделом по строительству и реконструкции Госагропрома СССР

Заместитель начальника Ю.Б. Котов

«Инструкция на строительство тепловых сетей бесканальным способом с изоляцией поропластом на основе смолы СФЖ-514» предназначена для организаций системы Госагропрома СССР. Разработана впервые ЦНИИЭПсельстроем. Инструкцию разработали канд.техн.наук Г.С. Хмелевский, инженеры Г.С. Минченко, В.Э. Мочалкина при участии кандидатов технических наук А.А. Гаспаряна, В.И. Новгородского, инженеров Э.И. Берлина, А.В. Машлыкиной.

1. Общие указания

1.1. Инструкция предназначена для организаций Госагропрома СССР при монтаже тепловых сетей из трубопроводов диаметром до 219 мм, рабочим давлением до 16 кгс/см 2 и температурой теплоносителя до 15 ° С, изолированных фенольным поропластом на основе смолы СФЖ-514 (поропласт). 1.2. Изоляция теплопроводов осуществляется способом холодного формования в соответствии с ТУ 10-69-363-86 «Теплопроводы с изоляцией из поропласта на основе смолы СФЖ-514 и изделия» (опытная партия) и Рекомендациями по выпуску теплопроводов с изоляцией на основе смолы СФЖ-514 (технологический регламент)». 1.3. При бесканальной прокладке тепловых сетей следует использовать стальные электросварные прямошовные трубы по ГОСТ 10704-76*, бесшовные горячекатаные ГОСТ 8732-78*, ГОСТ 8731-74*, удовлетворяющие требованиям «Правил устройства и безопасной эксплуатации трубопроводов пара и горячей воды» Госгортехнадзора СССР и СНиП II -Г.10-73* (СНиП II -36-73*) Ч. II . Раздел Г, гл. 10 «Тепловые сети. Нормы проектирования» 1.4. При бесканальной прокладке трубопроводов, изолированных фенольной изоляцией обязательной составной частью конструкции теплопровода является противокоррозионное покрытие стальных труб. 1.5. Проектирование и строительство бесканальных тепловых сетей осуществляются согласно СНиП II .-Г.10-73* (СНиП II -36-73*) «Тепловые сети. Нормы проектирования, СНиП 3.05.03-85 «Тепловые сети» и настоящей Инструкции. 1.6. Тепловые сети с изоляцией из фенольного поропласта прокладываются в сухих, маловлажных и в насыщенных водой грунтах с устройством попутного дренажа. Бесканальная прокладка в набухающих от размокания грунтах, в грунтах II типа просадочности и в районах сейсмичностью 8 баллов и выше не допускается.

2. Конструкции теплопроводов, изолированных фенольным поропластом.

2.1. Для индустриального строительства тепловых сетей заводы должны выпускать: - трубы стальные, изолированные поропластом; - скорлупы прямые для изоляции сварных стыков; - скорлупы изогнутые для углов поворота (отводы); - изолированные вкладыши с опорными фланцами для неподвижной опоры. 2.2. Конструкция теплопровода состоит из стальной трубы с нанесенным на нее противокоррозионным покрытием, теплоизоляционного слоя, гидроизоляционного и защитно-механического покрытия (исключая торцы труб), (рис. 1)

Рис. 1. Конструкция теплопровода

Масса 1 м трубы с изоляцией, кг

2.3. В качестве противокоррозионного покрытия рекомендуются 4 варианта, из которых варианты I и II наиболее долговечны: I вариант - стеклоэмалевое покрытие марок 105Т, 64,/64, 596, 13-Ш, толщиной 500-600 мкм по ТУ ВНИИСТ; II вариант - металлизационно-лакокрасочное покрытие из алюминия марок АТ, АТП, АМ, СВ-А5 с толщиной 200 мкм по ТУ 69-220-82 с пропит кой лакокрасочным материалом ЭП-969, ТУ 10-1985-84 или К0-835, ТУ 6-02-867-75 (приложение 2); III вариант - эпоксидное покрытие на основе эмали ЭП-969, 2 слоя толщиной не менее 100 мкм (приложение 1); IV вариант - при конструкции «труба в трубе» с толщиной полиэтилена 4-5 мм и надежной герметизации стыков - покрытие на основе эпоксидной шпатлевки ЭП-0010 (ГОСТ 10277-76) или краски ВТ-1 77 (ОСТ 6-10-426-79) толщиной не менее 60 мкм, 2 слоя. 2.4. Для изготовления тепловой изоляции применяют: фенолформальдегидные жидкие смолы резольного типа марок СФЖ-514 «Н» и СФЖ-514 «А», ТУ 6-05-1934-82; вспенивающе-отверждающие агенты I вариант - продукт ВАГ-3, ТУ 6-05-1116-78; II вариант - бензосульфокислота (БСК), ТУ6-14-25-78; ортофосфорная кислота (ОФК), ГОСТ 10678-76; этиленгликоль (ЭГ) марок А, Б, В ГОСТ 10164-75 и ГОСТ 19710-83; поверхностно-активное вещество ОП-7 или ОП-10 ГОСТ 8433-81; алюминиевая пудра ПАП-1, ПАП-2 ГОСТ 5454-71. После отверждения поропласта величина водородного показателя рН жидкой фазы (при полном водопоглощении 25-30% по массе) не должна быть ниже 2. 2.5. Для защиты изоляционной конструкции теплопровода от проникновения влаги и механических повреждений используют следующие варианты гидроизоляционного и защитного покрытий: I вариант - полиэтилен высокого давления марок 102-02К и 153-02К ГОСТ 16337-77; II вариант - полиэтилен высокого давления марок 102-02К и 1 53-02К ГОСТ 15337-77; порофор марки 107-ОВАС, ТУ 6-05-361-6-80; III вариант - битумно-резиновая мастика ГОСТ 15836-79; стеклоткань ГОСТ 19170-73 или стеклосетка СС-1, СС-2, ТУ 6-11-99-75, полимерная липкая лента ПВХ, ТУ 51-456-72, ТУ 6-19-103-78 (теплоноситель не выше 90 ° С). IV вариант - битумополимерная мастика, ТУ 401-01-6-83.

Таблица 1

Состав на основе битумополимерной мастики

Наименование компонентов

Состав, % по массе

Битум 70/30

ГОСТ 6617-76

Битум 90/10

ГОСТ 6617-76

Крошка резиновая

ТУ 38-10436-82

Гранулы полиэтилена

ТУ 6-05-041-76

Полиизобутилен П-20

ТУ 38-103257-80

2.6. Прямая скорлупа из поропласта представляет собой полый полуцилиндр длиной 400 мм (рис. 2). 2.7. Изогнутая скорлупа - отвод представляет собой крутоизогнутый под углом 90 ° полый цилиндр. Размеры представлены в табл. 3. 2.8. Изолированный вкладыш неподвижной опоры представляет собой отрезок изолированной поропластом трубы длиной 100 см с приваренным посередине опорным фланцем, оклеенным сверху пленкой ПИЛ. Опорный фланец должен выступать над изоляцией для того, чтобы можно было надежно заделать элемент в опоре. Размеры см. в табл. 3 (рис. 2).

Рис. 2. Изолированные элементы тепловых сетей:

1 - стальная труба с антикоррозионным покрытием; 2 - поропластовая теплоизоляция; 3 - гидроизоляционное покрытие; 4 - опорный фланец

2.9. Основные физико-механические показатели поропласта на основе смолы СФЖ-514 представлены в табл. 2

Таблица 2

Наименование показателей

Плотность в сухом состоянии, кг/м 3

не более 150

Предел прочности при 10% деформации сжатия М па (кгс/см 2), не менее
Сорбционное увлажнение за 24 часа при относительной. влажности воздуха 98+2% по массе, не более
Водопоглощение при полном погружении образца в воду за 24 часа, %, не более
Коэффициент теплопроводности в сухом состоянии при температуре 20°С, Вт/(м,К) в (ккал/(м.ч. ° С), не более

Таблица 3

Наружный диаметр трубы, мм

Размеры отводов, мм

Размеры изолированных элементов для неподвижных опор, мм

радиус изгиба осевой линии

длина изолированной части по оси

упорного фланца

длина изолированной части

3. КОМПЕНСАЦИЯ ТЕМПЕРАТУРНЫХ УДЛИНЕНИЙ

3.1. При проектировании бесканальной теплосети с фенольной теплоизоляцией следует избегать компенсации температурных удлинений с помощью П-образных компенсаторов; 3.2. Компенсация тепловых удлинений должна осуществляться за счет естественной компенсации (изгибов трассы) и осевыми компенсаторами типа КСО или КМ с учетом требований СНиП II .Г.10-73 (СНиП II -36-73*) «Тепловые сети», «Указаний по применению осевых волнистых компенсаторов на тепловых сетях в условиях сельского строительства» и «Альбома узлов для прокладки теплосетей с применением осевых волнистых компенсаторов» (ЦНИИЭПсельстрой, 1983 г.) 3.3. Осевые компенсаторы при бесканальной прокладке устанавливаются по двум схемам. Расстояние между неподвижными опорами устанавливается расчетом. Максимально допустимые расстояния между неподвижными опорами, исходя из условий прочности трубопровода, рекомендуется принимать по табл. 4 (рис. 3). Расчет трубопроводов на прочность производить по справочнику «Бесканальные теплопроводы» под редакцией Р.М. Сазонова, Киев, 1985г.

Таблица 4

Схема I, м

Схема II , м

Рис. 3 Схемы установки осевых компенсаторов

3.4. При установке компенсатора по схеме I направляющую опору между компенсатором и неподвижной опорой не устанавливают. При установке по схеме II необходимо дополнительно поставить направляющую опору.

Рис. 4. Узел примыкания трубопровода с фенольной теплоизоляцией к каналу с подвесной изоляцией

3.5. Места присоединения компенсаторов к трубопроводу и сами компенсаторы устанавливаются с подвесной изоляцией. Узел примыкания подвесной изоляции к фенольной показан на рис. 4. 3.6. При вынужденном применении П-образных компенсаторов расчет производить согласно типовой серии 4.903-4 «Бесканальная прокладка тепловых сетей с изоляцией из битумоперлита при диаметре трубопроводов Д у 50-500 мм» (приложение 3).

4. ОПРЕДЕЛЕНИЕ ТОЛЩИН ОСНОВНОГО СЛОЯ ТЕПЛОИЗОЛЯЦИОННОЙ КОНСТРУКЦИИ

4.1. Расчет требуемой толщины тепловой изоляции для бесканальной прокладки тепловых сетей производится в соответствии с ВСН 399/79 ММСС СССР «Нормы тепловых потерь при бесканальной прокладке тепловых сетей», разработанных ВНИПИ Теплопроект с учетом технических условий на прокладку тепловых сетей. 4.2. Расчетные потери тепла определяются в зависимости от района строительства, среднегодовой температуры грунта, температуры теплоносителя в подающем и обратном трубопроводах, глубин заложения и числа часов работы трубопроводов. 4.3. Теплотехнические характеристики грунтов определяются по климатологическим справочникам СССР. В данном случае они обобщенно представлены в табл. 5, в которую включены все основные виды грунтов, встречающихся на территории СССР. Для расчета принят тип грунта средней влажности. 4.4. Стоимость тепловой энергии следует принимать от 11 до 21 руб/Гкал, в соответствии с указаниями Госстроя СССР ИИ-4448-1 9/5 от 06.09.84г. «О расчетах стоимостных показателей топливно-энергетических ресурсов на период до 2000 года» (табл. 6).

Таблица 5

Значения коэффициента теплопроводности грунтов в зависимости от его вида, объемной массы и влажности

Вид грунта

Объёмная масса сухого грунта, кг/см З

Классификация грунтов по влажности

Коэффициент теплопроводности грунта с учетом влажности. Вт (м. о С)

Глинистые и суглинки (W = 5%) Относительно сухой
Глинистые и суглинки (W = 10-20%) Влажный
Глинистые и суглинки (W = 23,8%) Водонасыщенный
Пески и песчаные (W = 5%) Относительно сухой
Пески и песчаные (W = 15%) Влажный
Пески и песчаные (W = 23,8%) Водонасыщенный
Примечание. Так как на большей части территории страны почвы песчаные, глинистые и суглинки (сухие и влажные), для практических расчетов принят средний коэффициент теплопроводности грунтов l = 1,74 Вт/(м. ° С). 4.5. Тепловую изоляцию на основа фенолформальдегидной смолы СФЖ-514 с коэффициентом теплопроводности 0,052-0,058 Вт/(м. ° С) рекомендуется применять в северных и северо-восточных регионах с траны, где использование других утеплителей потребует большого увеличения толщин теплоизоляции теплопроводов, расхода материалов, средств и трудозатрат. 4.6. Требуемая толщина утеплителя из фенольного поропласта для изоляции трубопроводов в зависимости от района строительства и диаметра трубопровода определяется по таблице 7. 4.7. Определение требуемой толщины тепловой изоляции для районов, не указанных в таблице, или иных параметров следует производить по методике, приведенной в примере расчета.

Таблица 6

Значения стоимостных оценок топлива и тепловой энергии по основным экономическим зонам страны на период до 2000 года для расчетов термического сопротивления ограждающих конструкций и тепловой изоляции

Зоны страны

Стоимость котельно-печного топлива, руб/тут

Стоимость тепловой энергии

1. Европейские районы СССР
2. Урал
3. Казахстан
4. Средняя Азия
8. Западная Сибирь
6. Восточная Сибирь
7. Дальний Восток

Пример расчета

Требуется определить толщину тепловой изоляции трубопроводов d из при бесканальной прокладке тепловых сетей. Район строительства - Пензенская область, территориальный район № 4, материал изоляции - фенольный поропласт с коэффициентом теплопроводности l из = 0,052 Вт/(м × ° С). Среднегодовая температура грунта на глубине заложения труб t гр = 6 ° С. Глубина заложения труб h = 0,8 м, расстояние между трубами b = 0,045м. Себестоимость тепловой энергии составляет для данного района 13 руб/Мвт. Наружный диаметр трубопроводов Д н. = 0,108 м, среднегодовая температура теплоносителя в подающей трубе = 9 °С, в обратной трубе =50 ° С. Расчет толщины изоляции, одинаковой для подающего и обратного трубопроводов, производится по формуле

Где Д из. - диаметр изолированного трубопровода, м; l из. - теплопроводность изоляционного материала, Вт/(м × ° С); l гр. - теплопроводность грунта, Вт/м × ° С); - расчетные нормы тепловых потерь, Вт/м, определяемые по формуле:

, (4.2)

Где - нормированные тепловые потери изолированными трубопроводами при годовом числе часов работы трубопроводов более 5000 Вт/м; К 1 - коэффициент, учитывающий влияние на нормы тепловых потерь изменения стоимости тепло изоляционной конструкции в зависимости от района строительства, принимается по табл. 3 ВСН 399-79 ММСС СССР; К 2 - коэффициент, учитывающий влияние изменения себестоимости тепла на нормы тепловых потерь, принимается по табл. 4 ВСН 399-79 ММСС СССР; K 3 - коэффициент, учитывающий влияние на нормы тепловых потерь изменения себестоимости тепла, принимается по табл. 5 ВСН 399-79 ММСС СССР; - расчетная среднегодовая температура теплоносителя на подающем трубопроводе, ° С; - расчетная среднегодовая температура теплоносителя на обратном трубопроводе, ° С; - среднегодовая температура теплоносителя на подающем т рубопроводе, принятая при расчете норм тепловых потерь; t гр. - расчетная среднегодовая температура грунта на глубине з аложения трубопровода, ° С; Д н. - наружный диаметр подающего трубопровода, м; h - глубина заложения оси трубопроводов от поверхности земли, м; b - расстояние между трубами, м. При определении расчетных норм тепловых потерь для обратного трубопровода в формулу 4.2 подставляем соответствующие температуры для обратного трубопровода и .

Таблица 7

Требуемая толщина тепловой изоляции из фенольного поропласта на основе смолы СФЖ-514 «А» для тепловых сетей, прокладываемых в грунтах с l гр = 1,74 Вт/(м × ° С).

Район строительства

Теплопроводность изоляции Вт/(м. о С)

Стоим. тепла py б/Мвт

Наружный диаметр трубопроводов, мм

Владимирская, Калужская, Курская, Ленинградская, Липецкая, Московская, Новгородская, Пензенская, Тульская в Ярославская области
Ижевская, Курганская, Пермская, Тюменская, Оренбургская и Челябинская области
Омская, Томская, Новосибирская области, Красноярский край
Актюбинская, Карагандинская, Кокчетавская, Кустанайская, Павлодарская, Семипалатинская, Целиноградская области, Алтайский край
Украинская ССР (Киевская, Львовская, Полтавская, Черниговская, Харьковская и др. области)
Архангельская область, Белорусская ССР (Брестская, Гомельская, Гродненская, Витебская и Минская области)
Азербайджанская CCP , Грузинская, Таджикская, Туркменская Узбекская
Литовская, Латвийская союзные республики
Астраханская, Волгоградская, Фрунзенская области, Молдавская ССР и Ставрополь
Благовещенск, Владивосток, Хабаровск
Примечания. 1. При расчете толщин изоляции потери тепла изолированными трубопроводами определялись при годовом числе часов работы трубопроводов более 5000. 2. За расчетную температуру грунта принималась среднегодовая температура грунта на глубине заложения трубопровода. 3. Принималась среднегодовая температура теплоносителя = 90 о С, = 50 о С. После определения диаметра изолированного трубопровода определяем толщину изоляции на подающем и обратном трубопроводах:

Результаты проведенных расчетов сведены в таблицу 7. По таблице 7 находим заданный район строительства, в данном случае Пензенская область, для которой расчетная толщина тепловой изоляции из фенольного поропласта на основе смолы СФЖ-514 для трубопровода с наружным диаметром Д н. = 0,108 м составляет d из. = 60 мм.

5. Технология и организация строительства бесканальной прокладки теплосетей

5.1.1. Прокладку бесканальных тепловых сетей с изоляцией поропластом на основе смолы СФЖ-514 производить согласно СНиП 3.05.03-85 «Тепловые сети» и настоящей Инструкции. 5.1.2. При прокладке в насыщенных водой грунтах и в зоне грунтовых вод обязательно устройство попутного дренажа. Конструкция дренажа состоит из дренажной трубы и двухслойного фильтра: а) гравийного - фракции 3-15 мм (внутренний слой); б) песчаного - крупнозернистый песок. 5.1.3. В качестве дренажных труб могут применяться асбестоцементные трубы по ГОСТ 1839-72 с муфтовыми соединениями. При отсутствии асбестоцементных труб, а также в агрессивных средах следует применять керамические канализационные трубы по ГОСТ 286-74. Попутный дренаж должен осуществляться со стороны притока грунтовых вод. 5.1.4. В сухих грунтах основанием под трубопроводы является грунт, подсыпка из местного грунта, уплотненного до плотности с К = 09; в насыпных, заторфованных грунтах, а также торфах устраивается искусственное основание из утрамбованной щебенки, гравия или тощего бетона М25 толщиной не менее 100 мм. 5.1.5. Заглубление теплопроводов от поверхности земли или дорожного покрытия до верха оболочки бесканальной прокладки должно быть не менее 0,7 м. 5.1.6. Бесканальная прокладка тепловых сетей с трубопроводами полной заводской готовности отвечает требованиям индустриализации и производится по следующим этапам: - разбивка трассы; - разработка траншей; - устройство основания и сопутствующего дренажа; - раскладка и монтаж труб, сварка стыков и их изоляция, засыпка и трамбовка пазух песком; - устройство неподвижных опор; - засыпка траншеи. 5.1.7. Земляные работы производятся после разбивки трассы трубопроводов согласно требованиям главы 8 СНиП III -8-76 «Правил производства и приемки работ. Земляные сооружения», СНиП 3.05.03-85 «Тепловые сети». 5.1.8. Поступающие на трассу теплопроводы могут иметь частичные повреждения теплоизоляционного, защитно-механического и гидроизоляционного покрытий. Их последовательно устраняют, используя материалы, приведенные в пунктах 2.4 и 2.5. Поверхность металла в дефектном месте очищается от грязи, продуктов коррозии, обезжиривается и высушивается. На подготовленную поверхность наносится соответствующее противокоррозионное покрытие. Ремонт повреждений тепловой изоляция следует производить скорлупами из поропласта, вырезанными по форме повреждения, или заливкой готовой композиции теплоизоляционного материала. Для ремонта покровного слоя следует использовать самоклеящиеся полимерные ленты, заплаты из полиэтилена. При этом припуск должен составлять не менее 100 мм в каждую сторону. 5.1.9. Укладку теплопроводов проводят посла проверки соответствия отметок дна траншеи проекту; перед укладкой теплопроводов подготовить основание и песок для подбивки. 5.1.10. Спуск теплопроводов с фенольной изоляцией в траншею производят автокраном с помощью «полотенец» типа ПМ-321 (табл. 8) или других захватных приспособлений, которые обеспечивают сохранность изоляционного покрытия. (рис. 5) Строповка теплопроводов тросом за изолированные участки и концы труб запрещена. От захватных приспособлений трубы освобождают только после закрепления их подбивкой песком.

Таблица 8

Показатели

Грузоподъемность (максимальная), т
Диаметр поднимаемого трубопровода, мм
Запас прочности ленты (кратной максимальной грузоподъемности)
Габаритные размеры, мм:
длина
ширина
толщина
Масса, кг
5.1.11. Во время укладочных работ необходимо следить за целостностью гидротеплоизоляции. Следует учесть, что наиболее опасное сечение возникает в месте соприкосновения изолированного трубопровода с дном траншеи. 5.1.12. Для проведения сварочных работ устраивают приямок длиной 1,0 м и глубиной от нижней грани изоляции трубопроводов 0,7 м на всю длину траншеи. Сварные соединения должны предусматриваться на расстоянии не менее 50 мм от опор и 100 мм от начала изгиба.

Рис. 5. Полотенце мягкое:
1 - пластина; 2 - лента; 3 - трубопровод

5.1.13. Запас вывезенных на трассу теплоизолированных труб должен обеспечивать бесперебойную работу сборочно-монтажного звена. 5.1.14. Процесс сборки и сварки теплотрассы в нитку произв одится по следующим этапам: центровка, прихватка и окончательная сварка стыка (рис. 5а, 6);

Рис. 5а. Технологическая схема сварочных работ бригадой из двух сварщиков:
1, 2 - центровка, прихватка и окончательная сварка стыка; 3 - секция труб; 4 - сварочная установка

Центровка труб с ниткой теплотрассы осуществляется при помощи наружного центратора. Характеристика наружных и внутренних центраторов приведена в табл. 9.

Таблица 9

Марка центратора

Диаметр трубопровода, мл

Масса центратора, кг

Наружные центраторы

Внутренние центраторы

Рис. 6. Технологическая схема сварочных работ бригадой из четырех сварщиков:
1, 3 - центровка и прихватка стыка; 2, 4 - окончательная сварка стыка; 5 - секция труб; 6 - сварочные установки

5.2. Изоляцию стыков проводят после зачистки до блеска сварного шва и проверки качества сварки в соответствии с действующими нормами (контроль 5% стыков физическими методами и опрессовка трубопровода). Оснащенность звена приведена в табл. 10. 5.2.1. Согласно требованиям СНиП II.Г.10-73* «Тепловые сети», теплоизолирующие характеристики мест стыков должны быть равными показателям линейных трубных элементов. Соединения труб должны быть полностью герметичными и выдерживать давление не менее 16 кгс/см. 5.2.2. Поверхность стыка и примыкающие к нему неизолированные концы металлических труб следует очистить от шлака, грязи, пыли, наплывов металла с использованием очистных машинок, шлиф-машины или напильников и щеток. 5.2.3. Перед нанесением на стык теплоизоляции на зачищенную поверхность наносится противокоррозионное покрытие по п. 2.3. Инструкции, соответствующие защитному покрытию линейной части труб.

Таблица 10

Оснащенность звена по изоляции стыков

Наименование

Количество

Кран-трубоукладчик (автокран)
Мягкое полотенце
Передвижной котел
Электрошлифовальная машина

Ш-230 или Ш-178

Лейка для разлива заливочной смеси
Баллон пропановый

ГОСТ 15860-70

Редуктор пропановый

ГОСТ 51780-73

Шланги резиновые

ГОСТ 9356-75

Горелка пропановая или паяльная лампа
Огнетушитель
Материалы
Молоток слесарный

А5, ГОСТ 2310-70

Напильник

ГОСТ 4796-64

Нож
Щетка металлическая
Шкурка шлифовальная

ГОСТ 50009-75

Ткань хлопчатобумажная
Рукавицы
5.2.4. Для теплоизоляции стыка рекомендуется использовать сборные скорлупы из поропласта той же объемной массы, что и для прямолинейных участков труб. Допускается применение заливной теплоизоляции во временной опалубке или надвигаемой защитной полиэтиленовой, металлической или асбестоцементной муфте, в которой просверливается заливочное отверстие, закрываемое после заливки. Муфта должна заходить на заводскую изоляцию трубы не менее чем на 10-15 см. Скорлупы (полуцилиндры) подгоняют и подрезают так, чтобы зазор не превышал 1 - 2 мм. Закрепляют скорлупы (полуцилиндры) с помощью липкой ленты, бандажами из тонкой проволоки или другими материалами, не имеющими выступающих частей. 5.2.5. Гидроизоляционное покрытие стыка выполняют тем же гидроизоляционным материалом, что и линейную часть теплопровода (по п. 2.5 Инструкции) с перекрытием линейных участков (внахлест) не менее чем на 150 мм. Кроме того, рекомендуется применять соединительные термоусаживающиеся манжеты СТУМ (ТУ 95-1378-85). В этом случае выполняются следующие операции: на концы каждого стыка должны быть надеты по одной защитной полиэтиленовой неусаживающейся муфте и две термоусаживающиеся муфты. Диаметр защитной полиэтиленовой муфты должен быть на 2 - 6 мм больше наружного диаметра линейной полиэтиленовой трубы, длина её на 100 - 200 мм больше длины стыка, толщина стенок не менее 2 мм. Диаметр термоусаживающихся муфт должен быть на 3-10% больше диаметра линейной полиэтиленовой трубы, длина муфт должна составлять не менее 150 мм(рис. 7). Нахлест на линейную часть трубы должен быть для защитной муфты 50-100 мм, для термоусаживающейся - 75 мм. Затем производится прогрев и тармоусадка муфт, предварительно сняв антиадгезионную внутреннюю пленку.

Рис. 7. Изоляция сварного стыка:
1 - стальная труба; 2 - сварной стык; 3 - поропластовая скорлупа; 4 - защитная полиэтиленовая труба; 5 - муфта СТУМ

Прогрев и усадку термоусаживающихся муфт производят пламенем ручной горелки. Горелку следует держать на расстоянии не ближе 200 мм от муфты и перемещать пламя возвратно-поступательным движением горелки, не останавливаясь на одном месте и избегая перегрева, загорания и перелома муфты. Пламя горелки сначала должно равномерно прогреть среднюю часть муфты, начиная снизу трубы, далее прогрев перемещается по обе стороны трубы и к её верхней части до тех пор, пока муфта не прижмется своей: средней частью к стыку. Затем прогрев продолжают от середины к краям муфты, избегая появления воздушных пузырей под муфтой. Если на муфте образуются гофры, нагрев этих мест следует прекратить и прогревать соседние участки до натяжения муфты и ликвидации гофр. В случае загорания муфты, прогрев прекращают и загораемое место разравнивают брезентовой рукавицей или прикатывают роликом, желательно из фторопласта. Допускается применение широких термоустанавливающихся муфт и лент (длиной 600-700 мм), герметизизирующих всю длину стыка; в этом случае защитная полиэтиленовая муфта может быть исключена. Правильно приваренная муфта или лента обеспечивают плотное, равномерное обжатие стыка. Из-под нахлестов муфты на линейный участок трубы должен выступить клей-герметик, муфта не должна иметь вздутий, гофр, матовых пятен, свидетельствующих о перегреве. Качество сварки определяется визуально. 5.2.6. При выполнении изоляционных работ по соединению элементов теплопровода необходимо соблюдать требования, изложенные в СНиП III-4-80 «Техника безопасности в строительстве» и в «Правилах по технике безопасности при строительстве магистральных трубопроводов» (М., Недра, 1972г.). 5.3. В качестве основной конструкции неподвижной опоры принимается щитовая конструкция, которая представляет собой прямоугольный щит с круглыми отверстиями для пропуска теплопроводов. 5.3.1. Неподвижные опоры следует монтировать из щитовых опор полной заводской готовности либо бетонированием изолированных элементов опор, которые поставляют вместе с трубами (рис. 8, 9).

Рис. 8. Конструкция неподвижной опоры с изолированным элементом:
1 - стальная труба; 2 - фенольная теплоизоляция; 3 - опорный фланец; 4 - арматура; 5 - бетонная стена

Конструкция щитовой опоры определяется проектом в зависимости от заглубления трубопровода и воспринимаемых опорой усилий. 5.3.2 В местах прохода трубопровода через стенки щитовых неподвижных опор, входы в канал и камеры оставляется зазор для осадки трубопроводов диаметрами 50-100 мм - 30 мм, для диаметров трубопровода 100-200 мм - зазор - 50-70 мм. Отверстия в плитах, а также гильзы, предусмотренные для прохождения через стенки камер, должны быть надежно заделаны для предотвращения попадания в каналы и камеры грунта и влаги. Деталь заделки трубопроводов в неподвижной опоре и узел примыкания к каналу и камере представлены на рис. 9 и 4. 5.4. Испытание смонтированных теплопроводов производят согласно СНиП 3.05.03-85 в два этапа: предварительным пробным и окончательным давлением гидравлическим или пневматическим способом. Пневматический способ испытания применяется, как правило, в зимнее время.

Рис. 9. Узел прохода трубопровода через железобетонную щитовую опору

6. Транспортные и погрузочно-разгрузочные работы

6.1. При производстве погрузочно-разгрузочных и транспортных работ, а также при складировании теплоизолированных труб необходимо соблюдать ряд дополнительных требований, обусловленных свойствами теплоизоляционных покрытий и направленных на обеспе чение полной сохранности. Погрузку, разгрузку и складирование труб следует производить избегая их соударения, волочения по земле, а также по нижележащим трубам. 6.2. Погрузка и разгрузка труб, а также складирование должны осуществляться с помощью стреловых кранов или кранов-трубоукладчиков, оснащенных траверсами с мягкими полотенцами (ПМ) или клещевыми захватами (КЗ). Поверхности захватов, контактирующие с теплоизолированной трубой, должны быть оборудованы вкладышами или накладками из эластичного материала. Для предохранения от повреждения кузова всех транспортных средств должны быть оснащены деревянными прокладкам, стойками, увязочными поясами. 6.3. При использовании кранов-трубоукладчиков на погрузочно-разгрузочных работах стрелы облицовываются эластичными накладками. Их изготавливают из утильных автопокрышек, которые разрезают и крепят к стрелам с помощью съемных планок и хомутов в местах возможного контакта с изолированной трубой. 6.4. Выгрузку труб из полувагонов целесообразно производить непосредственно на автотранспорт, минуя промежуточное складирование. 6.5. При перевозке теплоизолированных труб автотранспортом (трубовозами) следует крепить их стопорными тросами с обоих торцов во избежание продольных перемещений. Необходимо также тщательно закрепить трубы на кониках с помощью увязочных поясов, снабженных прокладочными ковриками. Коники трубовозов по поверхности опирания на них труб должны быть оборудованы резиновыми прокладками. 6.6. Перевозка труб малого диаметра (57-108 мм) из-за их гибкости осуществляется на автомобилях с удлиненной платформой ОДАЗ-885, К A З-717, МАЗ-5245, М A 3-5205 A , ОДАЗ-9370 и др.). 6.7. Теплоизолированные трубы следует складировать на ровной площадке, специально оборудованной для их складирования. Не допускается укладывать в один штабель трубы различных диаметров, толщин стенок, а также изолированные вместе с неизолированными. 6.8. Перечень специального оборудования для производства погрузочно-разгрузочных, транспортных и складских работ из расчета на одну комплексную бригаду (табл. 11).

Таблица 11

6.9. Теплоизолированные трубы с автотранспорта разгружаются в штабель автокранами. Схема штабеля с использованием опорных разделительных стоек, упоров и подкладок приведена рис. 10. Схема складирования труб с внутренней увязкой нижнего яруса с помощью троса и талперов приведена на рис. 11.

Рис. 10. Схема штабеля труб разных диаметров с применением опорных разделительных стоек:
1 - разделительные стойки (2 шт.); 2 - подкладки (8 шт.); 3 - упор (4 шт.)

Рис. 11. Схема внутренней увязки труб:
1 - трос с талрепом; 2 - мягкие прокладки; 3 - упорный клин; 4 - увязочный трос; 5 - талреп; 6 - мягкие прокладки

6.10. В случае, если изолированные трубы поступают сразу на трассу, разгрузка производится автокранами или кранами-трубоукладчиками типа Т 612, Т0 1224, Т 1530В с помощью мягких полотенец.

Приложение 1

Технология нанесения эмали ЭП-969 в заводских и трассовых условиях на трубы теплосетей бесканальной прокладки

Эпоксидная эмаль ЭП-969 (ТУ 10-1985-84) - двухкомпонентная. Основа и отвердитель смешиваются перед употреблением в соотношении 73:27 по массе. Жизнеспособность готовой композиции - 8 часов при температуре 20 ° С. До рабочей вязкости эмаль разбавляется растворителем Р-5 (ГОСТ 7827-74). На рис. 12 показана принципиальная схема механизированной линии по нанесению на трубы эмали ЭП-969 в заводских условиях.

Рис. 12. Принципиальная схема механизированной линии по нанесению противокоррозионного покрытия на основе эмали ЭП-969 на стальные трубы теплосетей бесканальной прокладки:
1 - накопитель труб; 2 - изолируемая труба; 3 - печь для сушки труб; 4 - приводная станция; 5 - камера механической очистки труб; 6-7 - окрасочная и сушильная камеры; 8 - окрашенная труба; 9 - накопитель труб, готовых к нанесению теплоизоляции.

Трубы подаются в специальную печь, где проводится их нагрев с целью удаления снега, наледи и влаги. Расположенная за сушильной печью приводная станция осуществляет вращение и подачу труб вдоль линии по рольгангу. Далее трубы проходят последовательно камеры щеточной и дробеструйной очистки, затем с помощью кран-балки подаются на накопитель очищенных труб. С накопителя трубы поступают на специальное приспособление по нанесению эмали на трубы валковым методом (рис. 13). Все три валка - подающий, калибрующий и наносящий - смонтированные в емкости, в которую заливается эмаль, приводятся в действие одним электродвигателем через ступенчатую клиноременную передачу.

Рис. 13. Схема валкового механизма для нанесения эмали ЭП-969 на трубы тепловых сетей:
1 - тележка; 2 - кулисы; 3-6-4 - подающий, калибрующий и наносящий валки; 5 - окрашиваемая труба; 7-емкость с эмалью; 8 - стойки; 9 - каретка; 10 - пневмоцилиндр; 11 - платформа; 12 - ось; 13 - пружинный демпфер; 14 - стойка

Толщина наносимого на трубу покрытия регулируется установкой калибровочного валка и скоростью вращения трубы. В результате заданного трубе вращательно-поступательного перемещения эмаль наносится на поверхность трубы спирально с небольшим перекрытием. Второй слой эмали наносится при вторичном проходе трубы через валковое устройство. При нанесении покрытия в начале и конце трубы оставляются неокрашенными участки длиной 15-20 мм. Окрашенные трубы подаются на стеллаж-накопитель, откуда поступают на линию по нанесению теплоизоляционного материала и покровного слоя. Валковый механизм может быть заменен двумя последовательно расположенными камерами нанесения эмали пневмораспылением, являющимися продолжением механизированной линии очистки труб. Камеры должны быть снабжены специальными устройствами для улавливания красочного тумана. Допустимо также нанесение эмали на трубы на специальном стеллаже с нижним гидроотсосом и местной вытяжной вентиляцией вручную пневмораспылителем, валиком или кистью. Ориентировочная рабочая вязкость должна соответственно находиться в пределах 20-25, 40-50 и 30-45 сек. по ВЗ-4. Температура в помещении, где наносится эмаль, должна быть положительной. В трассовых условиях эмаль ЭП-969 рекомендуется наносить в два слоя кистью на поверхность труб, зачищенную в зоне сварных швов и прилегающих участков до металлического блеска шлифовальной машинкой типа ИП-2009А с применением щеточной микрофрезы, переносных электрических машинок с гибким валом, металлическими щетками и др. Разрыв во времени между подготовкой поверхности трубы и окраской должен составлять не более 3-х часов в сухую погоду и не более 0,5 часа под навесом в сырую погоду. Работы могут проводиться, при температуре окружающего воздуха от +35 до -20 ° С, время выдержки между нанесением второго слоя, а также нанесением на стык теплоизоляционного материала составляет от 20 мин. до 2-х часов в зависимости от температуры воздуха и труб. Контроль качества готового защитного покрытия должен осуществляться по следующим показателям: внешнему виду - визуально; толщине покрытия - с помощью магнитных или электромагнитных толщиномеров типа МТ-41 НЦ; прочности сцепления покрытия с поверхностью трубы (адгезия) - по ГОСТ 15140-78 методом параллельных надрезов.

Приложение 2

Технология нанесения металлизационного алюминиевого покрытия в заводских и трассовых условиях на трубы теплосетей бесканальной прокладки

Металлизационное алюминиевое покрытие труб должно удовлетворять требованиям ТУ 69-220-82 «Трубы стальные с противокоррозионным алюминиевым покрытием для тепловых сетей бесканальной прокладки». Нанесение покрытия в заводских условиях осуществляется на экспериментальной линии, разработанной институтом Гипрооргсельстрой при техническом содействии института ВНИИСТ (ТУ 69-198-82). Очистка поверхности труб осуществляется дробеструйным способом, нанесение металлизационного алюминиевого покрытия - электродуговыми или газопламенными металлизаторами. Ориентировочный расход дроби составляет 87 г/м 2 , расход проволоки - 554 г/м 2 . Число одновременно работающих аппаратов определяется по формуле:

,

Где N - число аппаратов; S - часовая программа выпуска, м 2 /ч; d - толщина наносимого слоя, мм; g o - плотность покрытия, кг/м 3 ; h - коэффициент использования металла металлизатором; g - производительность металлизационного аппарата, кг/ч. Определение расчетной скорости осевого перемещения трубы для получения покрытия заданной толщины производится по формуле:

Где V - скорость осевого перемещения трубы, м/мин; D н - диаметр трубы, мм; W - коэффициент, учитывающий годовую производительность, условный диаметр труб, режим работ. При вращательно-поступательном движении трубы покрытие накосится каждым металлизатором в виде спиральной полосы шириной 17-21 мм. Толщина однослойного покрытия может составлять от 50 до 200 мкм. При металлизации труб остаются незащищенными концы труб длиной 15 - 20 мм с двух сторон под монтажную сварку. Нанесение металлизационного алюминиевого покрытия в трассовых условиях осуществляется с помощью ручных металлизационных аппаратов газопламенного типа МГИ-4 или электродугового марки ЭМ-14. Расстояние от металлизатора до поверхности трубы должна составлять 70-100 мм, толщина покрытия - 200 мкм. Перед нанесением металлизационного алюминиевого покрытия в монтажных условиях подготовка поверхности дробеструйным способом должна осуществляться с той же тщательностью, что и в заводских условиях. Разрыв во времени между подготовкой поверхности и металлизацией этой поверхности должен составлять не более 0,5 ч в сырую погоду (работы проводятся под навесом) и 3 ч в сухую погоду. В качестве источника сжатого воздуха для дробеструйного аппарата и металлизатора могут быть использованы передвижные компрессорные станции. При проведении работ в монтажных условиях при температуре ниже +5 ° С необходимо поверхность металлизируемого участка трубы предварительно прогреть до 80-100 ° С открытым пламенем горелки, после чего немедленно наносить металлизационное покрытие. Контроль качества металлизационного алюминиевого покрытия должен осуществляться в соответствии с ТУ 69-220-82.

Приложение 3

Условные обозначения к расчету компенсаторов и номограмм, помещенных на листах 43-51

Д н - наружный диаметр трубопровода, мм; d - толщина стенки трубы, мм; L - ра c стояние между неподвижными опорами, м; l 1 , l 2 , l 3 - длины канального участка, м; Н - вылет компенсатора, м; В - створ компенсатора, м; D t - разность между максимальной расчетной температурой теплоносителя и расчетной температурой наружного воздуха, принимаемая при проектировании систем отопления, ° С; D - расчетное тепловое удлинение, мм; a - коэффициент линейного расширения трубной стали, мм/м.гр.; Р - сила упругой деформации, кг; s - допускаемое изгибающее компенсационное напряжение, кг/см 2 ; 1/ b - коэффициент приведения длины, м.

Примеры расчетов П-образных компенсаторов (рис. 14 - 21)

I . П-образный компенсатор

Д н = 57 мм; d = 3 мм. Температура теплоносителя 150 ° С. Температура наружного воздуха 20 ° С. D t = 170 ° С. L = 20 м. s = 1100 кг/см 2 . 1. Определяем расчетное тепловое удлинение:

2. Принимаем вылет компенсатора равным створу В = Н. 3. По соответствующей кривой на рис. 14 находим Н = 1,25 м. 4. По кривой Р определяем силу упругой деформации Р = 118 кг. 5. Размер створа компенсатора по условию В = Н = 1,25 м. 6. Длину канальных участков, примыкающих к компенсатору, определяем по формуле

.

Конструктивно принимаем канальный участок длиной 1,5 м.

Таблица величин 1/ b

Таблица величин 1/ b (продолжение)

Таблица величин 1/ b (продолжение)

Рис. 14. Номограмма для расчета П-образного компенсатора трубопроводов Д у =50 мм

Рис. 15. Номограмма для расчета П-образного компенсатора трубопроводов Д у =70 мм

Рис. 16. Номограмма для расчета П-образного компенсатора трубопроводов Д у =80 мм

Рис. 17. Номограмма для расчета П-образного компенсатора трубопроводов Д у =100 мм

Рис. 18. Номограмма для расчета П-образного компенсатора трубопроводов Д у =125 мм

Рис. 19. Номограмма для расчета П-образного компенсатора трубопроводов Ду=150 мм

Рис. 20. Номограмма для расчета П-образного компенсатора трубопроводов Д у =200 мм

Рис. 21. Номограмма для расчета П-образного компенсатора трубопроводов Д у =250 мм

II . Г-образный поворот трубопроводов

Д н =219 мм, d =7 мм. Температура теплоносителя 150 ° С. Температура наружного воздуха 20 ° С. D t = 170 ° С. L 1 = 20 м. L 2 = 40 м. s = 600 кг/см 2 . Поворот трассы под прямым углом, длины канальных участков приняты разными. 1. Определяем тепловое удлинение первого колена: действительное

Расчетное

.

2. По кривой для Д н = 219 мм на рис. 23 при величине D = 75 мм определяем длину канального участка l 2 =7,5 м. 3. Определяем тепловое удлинение второго колена: действительное

Расчетное

.

4. По кривой для Д н = 219 мм на рис. 23 при величине D = 150 мм определяем длину канального участка l 1 = 11,5 м.

III . Z -образный участок трубопроводов

Д н = 76 мм; d = 3 мм. Температура теплоносителя 150 ° С. Температура наружного воздуха 20 ° С. D t = 170 ° C L = 30 м s = 1100 кг/см 2 1. Определяем тепловое удлинение

Рис. 23. Номограмма для расчета канальных участков Г-образного поворота трубопроводов Д у = 100-250 мм

Рис. 24. Номограмма для расчета канальных участков Z -образного поворота трубопроводов Д у = 50-80 мм

Рис. 25. Номограмма для расчета канальных участков Z -образного поворота трубопроводов Д у = 100-250 мм

Приложение 4

ПАСПОРТ ТЕПЛОВОЙ СЕТИ

Форма № TC -1

Теплосеть_________________________________________________________________

(название энергоуправления или энергосистемы)

Эксплуатационный район____________________________________________________ Магистраль №______________________________________________________________ ________________________________Паспорт №_________________________________ Вид сети__________________________________________________________________

(водяная, паровая)

Источник теплоснабжения____________________________________________________

(ТЭЦ, котельная)

Участок сети от камеры № _____________________ до камеры №__________________ Название проектной организации и номер проекта_______________________________ ___________________________________________________________________________ Общая длина трассы _______________________ м Теплоноситель ________________________________________ Расчетные параметры: дав ление ___________________________ кгс/см 2 , температура __________________ ° С Год постройки ______________________ Год ввода в эксплуатацию________________ Балансовая стоимость ___________________________ руб.

Приложение 5

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Наименование участка трассы

Наружный диаметр и длина трубы

Толщина стенки трубы, мм

ГОСТ и группа трубы

№ сертификата трубы

Емкость трубы, мм

Примечание

подающей

обратной

подающей

обратной

подающей

обратной

падающей

обратной

подающей

обратной

2. Механическое оборудование

№ камеры

Задвижки

Компенсаторы

Дренажные клапаны

Воздушники

Перемычки

Примечание

Количество, шт.

Количество, шт.

Количество, шт.

Количество шт.

Количество, шт.

Электрическая мощность, кВт

Вид запорного органа

Диаметр запорного органа, мм

Чугунных

стальных

с ручным приводом

с электроприводом

с гидроприводом

5. Лицо, ответственное за безопасное действие трубопровода

6. Реконструктивные работы и изменения в оборудовании

7. Записи результатов освидетельствования трубопроводов

8. Контрольные вскрытия

9. Неподвижные опоры в канале

10. Специальные строительные конструкции (щиты, дюкеры, мостовые переходы)

11. Изоляция

12. Эксплуатационные испытания

13. Список приложений

Список литературы

1. СНиП II-Г.10-73* (СНиП II -36-73*) Тепловые сети. Нормы проектирования. 2. СНиП 3.05.03-85 Тепловые сети. 3. СНиП III-4-80 ч. III . Правила производства и приемки работ. Гл.4. Техника безопасности в строительстве. 4. Серия 4.903.4. Бесканальная прокладка тепловых сетей с изоляцией из битумоперлита при диаметре трубопроводов 50-500 мм. 5. Бесканальные теплопроводы. Расчет и проектирование. Справочник под редакцией Р.М. Сазонова. Киев. «Буд i вельник». 1985г. 6. Нормы тепловых потерь при бесканальной прокладке тепловых сетей. ВСН 399-79/ММСС СССР. 7. Рекомендации по совершенствованию басканальной прокладки тепловых сетей. Отчет ЦНИИЭПсельстроя. М., 1983г. 8. Рекомендации по выпуску теплопроводов с изоляцией на основе смолы СФЖ-514 (технологический регламент), ЦНИИЭПсельстрой. 9. Указания по применению осевых волнистых компенсаторов в условиях сельского строительства ЦНИИЭПсельстрой, 1983г. 10. Альбом узлов для прокладки теплосетей с применением волнистых компенсаторов, ЦНИИЭПсельстрой, 1983г. 111. А.А. Лямин, А.А. Скворцов Проектирование и расчет конструкций тепловых сетей М., 1966г. 12. Рекомендации по конструкции и технологии изготовления и монтажа теплоизоляции стыков индустриальных теплопроводов с изоляцией из пенопласта и наружной оболочкой из полиэтиленовых труб. НИИМосстрой Главмосстроя. М., 1963 г. 13. Манжеты соединительные термоусаживающиеся уплотняющие. ТУ 95-1378-85.

1. Общие указания. 1 2. Конструкции теплопроводов, изолированных фенольным поропластом. 2 3. Компенсация температурных удлинений. 4 4. Определение толщин основного слоя теплоизоляционной конструкции. 6 5. Технология и организация строительства бесканальной прокладки теплосетей. 9 6. Транспортные и погрузочно-разгрузочные работы.. 14 Приложение 1 Технология нанесения эмали ЭП-969 в заводских и трассовых условиях на трубы теплосетей бесканальной прокладки. 15 Приложение 2 Технология нанесения металлизационного алюминиевого покрытия в заводских и трассовых условиях на трубы теплосетей бесканальной прокладки. 16 Приложение 3 Условные обозначения к расчету компенсаторов и номограмм.. 17 Примеры расчетов П-образных компенсаторов. 17 Приложение 4 Паспорт тепловой сети. 23 Приложение 5 Техническая характеристика. 23

Канальная прокладка удовлетворяет большинству требований, однако стоимость ее в зависимости от диаметра выше на 10-50% бесканальной. Каналы предохраняют трубопроводы от воздействия грунтовых, атмосфер­ных и паводковых вод. Трубопроводы в них укладывают на подвижные и неподвижные опоры, при этом обеспечивается организованное тепловое удлинение.

Технологические размеры канала принимают исходя из минимального расстояния в свету между трубами и элементами конструкции, которое в зависимости от диаметра труб 25-1400 мм соответственно принимают рав­ным: до стенки 70-120 мм; до перекрытия 50-100 мм; до поверхности изо­ляции соседнего трубопровода 100-250 мм. Глубину заложения канала


принимают исходя из минимального объема земляных работ и равномерно­го распределения сосредоточенных нагрузок от автотранспорта на пере­крытие. В большинстве случаев толщина слоя грунта над перекрытием со­ставляет 0,8-1,2 м, но не менее 0,5 м.

При централизованном теплоснабжении для прокладки тепловых сетей применяют непроходные, полупроходные или проходные каналы. Если глубина заложения превышает 3 м, то для возможности замены труб со­оружают полупроходные или проходные каналы.

Непроходные каналы применяют для прокладки трубопроводов диа­метром до 700 мм независимо от числа труб. Конструкция канала зависит от влажности грунта. В сухих грунтах чаще устраивают блочные каналы с бетонными или кирпичными стенками либо железобетонные одно- и мно­гоячейковые. В слабых грунтах вначале выполняют бетонное основание, на которое устанавливают железобетонную плиту. При высоком уровне грун­товых вод для их отвода в основании канала прокладывают дренажный трубопровод. Тепловую сеть в непроходных каналах по возможности раз­мещают вдоль газонов.

В настоящее время устраивают преимущественно каналы из сборных железобетонных лотковых элементов (независимо от диаметра проклады­ваемых трубопроводов) типов КЛ, КЛс, или стеновых панелей типов КС и др. Каналы перекрывают плоскими железобетонными плитами. Основания каналов всех типов выполняют из бетонных плит, тощего бетона или пес­чаной подготовки.

При необходимости замены труб, вышедших из строя, или при ремонте тепловой сети в непроходных каналах приходится разрывать грунт и разби­рать канал. В некоторых случаях это сопровождается вскрытием мостового или асфальтного покрытия.

Полупроходные каналы. В сложных условиях пересечения трубопрово­дами тепловой сети существующих подземных коммуникаций, под проез­жей частью, при высоком уровне стояния грунтовых вод вместо непроход­ных устраивают полупроходные каналы. Их применяют также при про­кладке небольшого числа труб в тех местах, где по условиям эксплуатации вскрытие проезжей части исключено, а также при прокладке трубопроводов больших диаметров (800-1400 мм). Высоту полупроходного канала прини­мают не менее 1400 мм. Каналы выполняют из сборных железобетонных элементов - плиты днища, стенового блока и плиты перекрытия.

Проходные каналы. Иначе их называют коллекторами; они сооружают­ся при наличии большого числа трубопроводов. Их располагают под мосто­выми крупных магистралей, на территории больших промышленных пред­приятий, на участках, прилегающих к зданиям теплоэлектроцентралей. Со­вместно с теплопроводами в этих каналах размещают и другие подземные коммуникации: электро- и телефонные кабели, водопровод, газопровод низкого давления и т. п. Для осмотра и ремонта в коллекторах обеспечива­ется свободный доступ обслуживающего персонала к трубопроводам и оборудованию.


Коллекторы выполняются из железобетонных ребристых плит, звеньев рамной конструкции, крупных блоков и объемных элементов. Они обору­дуются освещением и естественной приточно-вытяжной вентиляцией с трехкратным воздухообменом, обеспечивающим температуру воздуха не более 30°С, и устройством для удаления воды. Входы в коллекторы преду­сматриваются через каждые 100-300 м. Для установки компенсирующих и запорных устройств на тепловой сети должны быть выполнены специаль­ные ниши и дополнительные лазы.

Бесканальная прокладка. Для защиты трубопроводов от механических воздействий при этом способе прокладки устраивают усиленную тепловую изоляцию - оболочку. Достоинствами бесканальной прокладки теплопро­водов являются сравнительно небольшая стоимость строительно-монтажных работ, небольшой объем земляных работ и сокращение сроков строительства. К ее недостаткам относится повышенная подверженность стальных труб наружной почвенной, химической и электрохимической коррозии.

При таком виде прокладки подвижные опоры не используют; трубы с тепловой изоляцией укладывают непосредственно на песчаную подушку, отсыпанную на предварительно выровненное дно траншеи. Неподвижные опоры при бесканальной прокладке труб, так же, как и при канальной, представляют собой железобетонные щитовые стенки, установленные пер­пендикулярно теплопроводам. Эти опоры при небольших диаметрах тепло­проводов, как правило, применяют вне камер или в камерах с большим диаметром при больших осевых усилиях. Для компенсации тепловых удли­нений труб применяют гнутые или сальниковые компенсаторы, располо­женные в специальных нишах или камерах. На поворотах трассы во избе­жание зажатия труб в грунте и для обеспечения возможного их перемеще­ния сооружают непроходные каналы.

При бесканальной прокладке применяют засыпные, сборные и моно­литные типы изоляции. Широкое распространение получила монолитная оболочка из автоклавного армированного пенобетона.

Надземная прокладка. Этот тип прокладки является наиболее удобным в эксплуатации и ремонте и характеризуется минимальными тепловыми потерями и простотой обнаружения мест аварий. Несущими конструкциями для труб являются отдельно стоящие опоры или мачты, обеспечивающие расположение труб на нужном расстоянии от земли. При низких опорах расстояние в свету (между поверхностью изоляции и землей) при ширине группы труб до 1,5 м принимается 0,35 м и не менее 0,5 м при большей ши­рине. Опоры выполняют обычно из железобетонных блоков, мачты и эста­кады - из стали и железобетона. Расстояние между опорами или мачтами при надземной прокладке труб диаметром 25-800 мм принимают равным 2-20 м. Иногда устраивают по одной или две промежуточные подвесные опоры с помощью растяжек, чтобы сократить число мачт и снизить капи­тальные вложения в тепловую сеть.

Для обслуживания арматуры и другого оборудования, установленного на трубопроводах тепловой сети, устраивают специальные площадки с ог­раждениями и лестницами: стационарные при высоте 2,5 м и более и пере­движные - при меньшей высоте. В местах установки магистральных задви­жек, спускных, дренажных и воздушных устройств предусматривают утеп­ленные ящики, а также приспособления для подъема людей и арматуры.

5.2. Дренаж тепловых сетей

При подземной прокладке теплопроводов во избежание проникновения воды к тепловой изоляции предусматривают искусственное понижение уровня грунтовых вод. Для этой цели совместно с теплопроводами прокла­дывают дренажные трубопроводы ниже основания канала на 200 мм. Дре­нажное устройство состоит из дренажной трубы и фильтрационного мате­риала обсыпки из песка и гравия. В зависимости от условий работы приме­няют различные дренажные трубы: для безнапорных дренажей - раструб­ные керамические, бетонные и асбестоцементные, для напорных - стальные и чугунные диаметром не менее 150 мм.

На поворотах и при перепадах заложений труб устраивают смотровые колодцы по типу канализационных. На прямолинейных участках такие ко­лодцы предусматривают не менее чем через 50 м. Если отвод дренажной воды в водоемы, овраги или в канализацию самотеком невозможен, строят насосные станции, которые размещают вблизи колодцев на глубине, зави­сящей от отметки дренажных труб. Насосные станции строят, как правило, из железобетонных колец диаметром 3 м. Станция имеет два отсека - ма­шинный зал и резервуар для приема дренажной воды.

5.3. Сооружения на тепловых сетях

Теплофикационные камеры предназначены для обслуживания обору­дования, установленного на тепловых сетях при подземной прокладке. Раз­меры камеры определяются диаметром трубопроводов тепловой сети и га­баритами оборудования. В камерах устанавливают запорную арматуру, сальниковые и дренажные устройства и др. Ширину проходов принимают не менее 600 мм, а высоту - не менее 2 м.

Теплофикационные камеры - сложные и дорогостоящие подземные сооружения, поэтому их предусматривают только в местах установки за­порной арматуры и сальниковых компенсаторов. Минимальное расстояние от поверхности земли до верха перекрытия камеры принимают равным 300 мм.

В настоящее время широко применяются теплофикационные камеры из сборного железобетона. В некоторых местах камеры выполняют из кир­пича или монолитного железобетона.


На теплопроводах диаметром 500 мм и выше применяют задвижки с электроприводом, имеющие высокий шпиндель, поэтому над заглубленной частью камеры сооружают надземный павильон высотой около 3 м.

Опоры. Для обеспечения организованного совместного перемещения трубы и изоляции при тепловых удлинениях применяют подвижные и не­подвижные опоры.

Неподвижные опоры, предназначенные для закрепления трубопрово­дов тепловых сетей в характерных точках, используют при всех способах прокладки. Характерными точками на трассе тепловой сети принято счи­тать места ответвлений, места установки задвижек, сальниковых компенса­торов, грязевиков и места установки неподвижных опор. Наибольшее рас­пространение получили щитовые опоры, которые применяют как при бес­канальной прокладке, так и при прокладке трубопроводов тепловых сетей в непроходных каналах.

Расстояния между неподвижными опорами определяют обычно расче­том труб на прочность у неподвижной опоры и в зависимости от величины компенсирующей способности принятых компенсаторов.

Подвижные опоры устанавливают при канальной и бесканальной про­кладке трубопроводов тепловой сети. Существуют следующие типы раз­личных конструкций подвижных опор: скользящие, катковые и подвесные. Скользящие опоры применяют при всех способах прокладки, кроме беска­нальной. Катковые используют при надземной прокладке по стенам зданий, а также в коллекторах, на кронштейнах. Подвесные опоры устанавливают при надземной прокладке. В местах возможных вертикальных перемеще­ний трубопровода используют пружинные опоры.

Расстояние между подвижными опорами принимают исходя из проги­ба трубопроводов, который зависит от диаметра и толщины стенки труб: чем меньше диаметр трубы, тем меньше расстояние между опорами. При прокладке в каналах трубопроводов диаметром 25-900 мм расстояние меж­ду подвижными опорами принимается соответственно 1,7-15 м. При над­земной прокладке, где допускается несколько больший прогиб труб, рас­стояние между опорами для тех же диаметров труб увеличивают до 2-20 м.

Компенсаторы применяют для снятия температурных напряжений, возникающих в трубопроводах при удлинении. Они могут быть гибкими П-образными или омега-образными, шарнирными или сальниковыми (осевы­ми). Кроме того, используют имеющиеся на трассе повороты трубопрово­дов под углом 90-120°, которые работают как компенсаторы (самокомпен­сация). Установка компенсаторов сопряжена с дополнительными капиталь­ными и эксплуатационными затратами. Минимальные затраты получаются при наличии участков самокомпенсации и применении гибких компенсато­ров. При разработке проектов тепловых сетей принимают минимальное число осевых компенсаторов, максимально используя естественную ком­пенсацию теплопроводов. Выбор типа компенсатора определяется конкрет­ными условиями прокладки трубопроводов тепловых сетей, их диаметром и параметрами теплоносителя.

Противокоррозионное покрытие трубопроводов. Для защиты тепло­проводов от наружной коррозии, вызываемой электрохимическими и хими­ческими процессами под воздействием окружающей среды, применяют противокоррозионные покрытия. Высоким качеством обладают покрытия, выполненные в заводских условиях. Тип противокоррозионного покрытия зависит от температуры теплоносителя: битумная грунтовка, несколько слоев изола по изольной мастике, оберточная бумага или шпатлевка и эпок­сидная эмаль.

Тепловая изоляция. Для тепловой изоляции трубопроводов тепловых се­тей используют различные материалы: минеральную вату, пенобетон, армо-пенобетон, газобетон, перлит, асбестоцемент, совелит, керамзитобетон и др. При канальной прокладке широко применяют подвесную изоляцию из мине­ральной ваты, при бесканальной - из автоклавного армопенобетона, асфаль-тоизола, битумоперлита и пеностекла, а иногда и засыпную изоляцию.

Тепловая изоляция состоит, как правило, из трех слоев: теплоизоляци­онного, покровного и отделочного. Покровный слой предназначен для за­щиты изоляции от механических повреждений и попадания влаги, т. е. для сохранения теплотехнических свойств. Для устройства покровного слоя используют материалы, обладающие необходимой прочностью и влагоне-проницаемостью: толь, пергамин, стеклоткань, фольгоизол, листовую сталь и дюралюминий.

В качестве покровного слоя при бесканальной прокладке теплопрово­дов в умеренно влажных песчаных грунтах применяют усиленную гидро­изоляцию и асбестоцементную штукатурку по каркасу из проволочной сет­ки; при канальной прокладке - асбестоцементную штукатурку по каркасу из проволочной сетки; при надземной прокладке - асбестоцементные полу­цилиндры, кожух из тонколистовой стали, оцинкованную или окрашенную алюминиевую краску.

Подвесная изоляция представляет собой цилиндрическую оболочку на поверхности трубы, изготовленную из минеральной ваты, формованных изделий (плит, скорлуп и сегментов) и автоклавного пенобетона.

Толщину слоя тепловой изоляции принимают согласно расчету. В ка­честве расчетной температуры теплоносителя принимают максимальную, если она не изменяется в течение рабочего периода сети (например, в паро­вых и конденсатных сетях и трубах горячего водоснабжения), и среднюю за год, если температура теплоносителя изменяется (например, в водяных се­тях). Температуру окружающей среды в коллекторах принимают +40°С, грунта на оси труб - среднюю за год, температуру наружного воздуха при надземной прокладке - среднюю за год. В соответствии с нормами проек­тирования тепловых сетей предельная толщина тепловой изоляции прини­мается исходя из способа прокладки:

При надземной прокладке и в коллекторах при диаметре труб 25-1400
мм толщина изоляции 70-200 мм;

В каналах для паровых сетей - 70-200 мм;

Для водяных сетей - 60-120 мм.

Арматуру, фланцевые соединения и другие фасонные части тепловых сетей, так же, как и трубопроводы, покрывают слоем изоляции толщиной, равной 80% толщины изоляции трубы.

При бесканальной прокладке теплопроводов в грунтах с повышенной коррозионной активностью возникает опасность коррозии труб от блуж­дающих токов. Для защиты от электрокоррозии предусматривают меро­приятия, исключающие проникание блуждающих токов к металлическим трубам, либо устраивают так называемый электрический дренаж или ка­тодную защиту (станции катодной защиты).

Завод информационных технологий «ЛИТ» в г. Переславль-Залесский выпускает гибкие теплоизоляционные изделия из вспененного полиэтилена с закрытой поровой структурой «Энергофлекс». Они экологически безопас­ны, так как изготавливаются без применения хлорфторуглеродов (фреона). В процессе эксплуатации и при переработке материал не выделяет в окру­жающую среду токсичных веществ и не оказывает вредных воздействий на организм человека при непосредственном контакте. Работа с ним не требу­ет специальных инструментов и повышенных мер безопасности.

«Энергофлекс» предназначен для теплоизоляции инженерных комму­никаций с температурой теплоносителя от минус 40 до плюс 100 °С.

Изделия «Энергофлекс» выпускаются в следующем виде:

Трубки 73 типоразмеров с внутренним диаметром от 6 до 160 мм и
толщиной стенки от 6 до 20 мм;

Рулоны шириной 1 м и толщиной 10, 13 и 20 мм.

Коэффициент теплопроводности материала при 0°С равен 0,032Вт/(м-°С).

Минераловатные теплоизоляционные изделия производятся предпри­ятиями АО «Термостепс» (г.г. Тверь, Омск, Пермь, Самара, Салават, Яро­славль), АКСИ (г. Челябинск), АО «Тизол», Назаровским ЗТИ, заводом «Комат» (г. Ростов-на-Дону), ЗАО «Минеральная вата» (г. Железнодорож­ный Московской обл.) и др.

Применяются также импортные материалы фирм ROCKWOLL, Рагос, Izomat и др.

Эксплуатационные свойства волокнистых теплоизоляционных мате­риалов зависят от состава используемого различными производителями исходного сырья и технологического оборудования и изменяются в доста­точно широком диапазоне.

Техническая тепловая изоляция из минеральной ваты делится на два типа: высокотемпературная и низкотемпературная. Компанией ЗАО «Ми­неральная вата» выпускается тепловая изоляция «ROCKWOLL» в виде стекловолокнистых минераловатных плит и матов. Более 27% от всех про­изводимых в России волокнистых теплоизоляционных материалов прихо­дится на долю теплоизоляции URSA, выпускаемой ОАО «Флайдерер-Чудово». Эти изделия изготавливаются из штапельного стеклянного волок­на и отличаются высокими теплотехническими и акустическими характери­стиками. В зависимости от марки изделия коэффициент теплопроводности


такой изоляции колеблется от 0,035 до 0,041 Вт/(м-°С), при температуре 10°С. Изделия характеризуются высокими экологическими показателями; их можно применять, если температура теплоносителя находится в преде­лах от минус 60 до плюс 180°С.

ЗАО «Изоляционный завод» (г. Санкт-Петербург) выпускает изолиро­ванные трубы для теплосетей. В качестве изоляции здесь применяется ар-мопенобетон, к преимуществам которого следует отнести:

Высокую предельную температуру применения (до 300°С);

Высокую прочность на сжатие (не менее 0,5 МПа);

Возможность применения при бесканальной прокладке на любой глу­
бине заложения теплопроводов и во всех грунтовых условиях;

Наличие на изолируемой поверхности пассивирующей защитной
пленки, возникающей при соприкосновении пенобетона с металлом трубы;

Изоляция является негорючей, что позволяет использовать ее при всех
видах прокладки (надземно, подземно, канально или бесканально).

Коэффициент теплопроводности такой изоляции равен 0,05-0,06 Вт/(м-°С).

Одним из самых перспективных способов на сегодняшний день явля­ется применение предварительно изолированных трубопроводов беска­нальной прокладки с пенополиуретановой (ППУ) изоляцией в полиэтиле­новой оболочке. Применение трубопроводов типа «труба в трубе» является наиболее прогрессивным способом энергосбережения в строительстве теп­ловых сетей. В США и Западной Европе, особенно в северных регионах, эти конструкции применяются уже с середины 60-х г.г. В России - всего лишь с 90-х г.г.

Основные преимущества таких конструкций:

Повышение долговечности конструкций до 25-30 лет и более, т. е. в
2-3 раза;

Снижение тепловых потерь до 2-3 % по сравнению с существующими
20^40% (и более) в зависимости от региона;

Уменьшение эксплуатационных расходов в 9-10 раз;

Снижение расходов на ремонт теплотрасс не менее чем в 3 раза;

Снижение капитальных затрат при строительстве новых теплотрасс в
1,2-1,3 раза и значительное (в 2-3 раза) снижение сроков строительства;

Значительное повышение надежности теплотрасс, сооружаемых по
новой технологии;

Возможность применения системы оперативного дистанционного
контроля за увлажнением изоляции, что позволяет своевременно реагиро­
вать на нарушение целостности стальной трубы или полиэтиленового гид­
роизоляционного покрытия и заранее предотвращать утечки и аварии.

По инициативе Правительства Москвы, Госстроя России, РАО «ЕЭС России», ЗАО «МосФлоулайн», Корпорации «ТВЭЛ» (г. Санкт-Петербург) и ряда других организаций в 1999 г. была создана Ассоциация производи­телей и потребителей трубопроводов с индустриальной полимерной изоля­цией.


ГЛАВА 6. КРИТЕРИИ ВЫБОРА ОПТИМАЛЬНОГО ВАРИАНТА

Бесканальный способ строительства теплотрасс возник относительно недавно и напрямую связан с развитием производства полимерных материалов и пенополиуретановой (ППУ) теплоизоляции. Трубы, изолированные при помощи пенополиуретана, благодаря высокой стойкости этого материала, можно укладывать непосредственно в траншею отсыпанную соответствующим образом. Таким образом, бесканальный способ строительства теплотрасс не требует строительства дорогостоящих каналов.

При строительстве теплотрассы бесканальным способом трубопровод укладывается непосредственно в грунт. Сначала разрабатывается траншея, дно которой следует выровнять и отсыпать песком, затем на песчаную подушку укладываются трубы теплотрассы. Для бесканальной прокладки используют трубы и фасонные изделия изолированные пенополиуретаном в металической, полиэтиленовой или полимерной оболочке (для защиты ППУ). Стыки стальных труб после сварки и схождения пенополиуретановых скорлуп изолируются жидким ППУ и гидроизолируются при помощи специальных полиэтиленовых муфт. В последнее время для изоляции труб, укладываемых бесканальным методом строительства теплотрасс, применяются также такие материалы как Изопрофлекс, Касафлекс и др. Теплопроводы с пенополиуретановой изоляцией снабжаются системой оперативного дистанционного контроля (СОДК) состояния изоляции. Данная система позволяет с помощью приборов своевременно обнаружить повреждение изоляционного слоя. После укладки труб следует обратная отсыпка песком, установка железобетонных плит или заливка бетонного основания под асфальтировку. Последние нормы предписывают также благоустройство прилегающей территории.

Во многих крупных городах с интенсивной сетью инженерных коммуникаций прокладка трубопроводов различного назначения бесканальным способом является основным, а зачастую и единственно возможным, методом производства работ. Постоянное увеличение количества коммуникаций, распространение уплотнительной застройки, рост транспортного потока, ужесточение требований к экологической безопасности, а в нашей стране и постоянная необходимость замены изношенных инженерных коммуникаций, сокращение сроков строительства привели к тому, что бесканальный метод прокладки теплотрасс прочно вошел в арсенал строителей. И во многих местах полностью вытеснил традиционные способы – канальный и надземный.

Впрочем, бесканальный метод прокладки теплотрасс активно применяется и за пределами больших городов. Способствуют этому интенсивное развитие коммуникационных технологий и связанная с этим необходимость постоянно прокладывать теплотрассы в уже обжитых местах с тесной застройкой, а также непрекращающееся строительство магистральных нефте-, газо- и топливопроводов. В большинстве случаев бесканальный метод прокладки теплотрасс единственно возможный способ работы.

Кроме того, используя бесканальный метод прокладки теплотрасс, можно существенно сократить потери тепла, что кроме прямой экономии увеличит сроки эксплуатации теплотрассы. Трубы в ППУ-изоляции считаются наиболее подходящими для бесканальной прокладки теплотрасс, поскольку надежная герметизация уменьшает влияние коррозии на поверхность трубы. Впрочем, при укладке таких труб следует самым тщательным образом относиться к изоляции сварных швов и в точности придерживаться технологического процесса. Кроме того, для контроля надежности ППУ-изоляции разработана дистанционная сигнализация, которая позволяет принимать меры на ранних стадиях разрушения трубы.

При прокладке бесканальных теплотрасс следует придерживаться специального положения по проектировании теплотрасс. Согласно этому положению бесканальная прокладка трубопроводов должна вестись в непросадочных грунтах с естественной влажностью. Минимальное углубление при бесканальной прокладке должно составлять от 0,5 до 0,7 м от поверхности грунта. Максимальное заглубление трубопровода рассчитывается с учетом прочности труб. Как правило, не больше 3м. Песчаное основание при прокладке теплотрасс бесканальным способом должно быть не менее 100 мм с песчаной обсыпкой не менее 100 мм. Категорически запрещена безканальная прокладка тепловых сетей по территории детских дошкольных, школьных и лечебно-профилактических учреждениях. При прокладке предизолированных трубопроводов в местах подвергающимся динамическим нагрузкам (превышающим 5.0 т/ось), необходимо уложить железобетонную плиту не ближе 30 см от поверхности, или прокладывать трубопровод в защитных трубах или железобетонных каналах. Не далее, чем за 30 см от трубопровода теплотрассы следует проложить предупреждающую ленту.

ПОДЗЕМНАЯ ПРОКЛАДКА

Канальные прокладки предназначены для защиты трубопроводов от механического воздействия грунтов и коррозионного влияния почвы.

4.904-66 Прокладка трубопроводов водяных тепловых сетей в непроходных каналах

Стены каналов облегчают работу трубопроводов.

В бесканальных прокладках трубопроводы работают в более тяжелых условиях, так как они воспринимают дополнительную нагрузку грунта и при неудовлетворительной защите от влаги подвержены наружной коррозии.

Проходные каналы применяются при прокладке в одном направлении не менее пяти труб большого диаметра. Проходные каналы используют часто для прокладки теплопроводов под многоколейными железными дорогами и автострадами с интенсивным движением транспорта, не допускающим вскрытия каналов и нарушения работы узлов на период ремонта сетей.

Полупроходные каналы применяют в стесненных условиях местности, когда невозможно возведение проходных каналов Их используют в основном для прокладки сетей на коротких участках под крупными инженерными узлами, не допускающими вскрытия каналов для ремонта трубопроводов. Высота полупроходных каналов принимается не менее 1,4 м, свободный проход - не менее 0,6 м; при этих габаритах возможно проведение мелкого ремонта труб.

Непроходные каналы имеют наибольшее распространение среди других видов каналов Каждый вид кана-

канала применяется в зависимости от местных условий изготовления, свойств грунта, места прокладки. В непроходные каналы укладывают трубопроводы тепловых сетей, не требующие постоянного надзора.

Глубина заложения каналов принимается исходя из минимального объема земляных работ и надежного укрытия от раздавливания транспортом. Наименьшее заглубление от поверхности земли до верха перекрытия каналов в любом случае принимается не менее 0,5 м.

Бесканальная прокладка - перспективный и экономичный способ строительства тепловых сетей. Перечень строительно-монтажных операций, а следовательно, и объем работ при бесканальной

прокладке значительно уменьшается, благодаря чему стоимость сетей по сравнению с канальной прокладкой снижается на 20- 25%. По этим соображениям тепловые сети с диаметрами трубо-

Камеры устанавливают по трассе подземных теплопроводов для размещения в них задвижек, сальниковых компенсаторов, неподвижных опор, ответвлений, дренажных и воздушных устройств, измерительных приборов.

НАДЗЕМНАЯ ПРОКЛАДКА

Воздушная прокладка имеет ряд положительных эксплуатационных преимуществ:

а) лучшая доступность и обозреваемость сетей, способствующие своевременному устранению неисправностей; б) отсутствие разрушающего влияния грунтовых вод; в) использование более надежных в работе П-образных компенсаторов; г) широкая возможность устройства прямолинейного продольного профиля теплопроводов, при котором уменьшается количество воздушных и спускных вентилей.

Вместе взятые факторы способствуют повышению долговечности и снижению стоимости сетей по сравнению с канальной прокладкой на 30-60%· Использование надземной прокладки снять ограничения параметров теплоносителей, установленных для подземных сетей. Надземная прокладка осуществляется на отдельно стоящих стойках и эстакадах.

Эстакады сооружают для совместной прокладки большого числа трубопроводов различного назначения и диаметров.

31. Тепловая изоляция

Экономическая эффективность систем теплоснабжения при современных масштабах в значительной мере зависит от тепловой изоляции оборудования и трубопроводов. Тепловая изоляция служит для уменьшения тепловых потерь и обеспечения допустимой температуры изолируемой поверхности.

Материалы используемые в качестве теплоизолятора должны обладать высокими теплозащитными свойствами и низким водопоглащением в течение длительного срока эксплуатации.

Высокие требования предъявляются к химической чистоте изоляторов. Изоляционные материалы, содержащие химические соединения агрессивные по отношению к металлу, не допускаются к применению, т.к. при увлажнении эти соединения вымываются, поадая на металлические поверхности, вызывают их коррозию. Например, шлаки и ваты относятся к числу качественных изоляторов, но содержание окислов серы более 3% делает их непригодными во влажных условиях.

Коэффициент теплопроводности большинства сухих изоляционных материалов изменяется в пределах 0,05 – 0,25 Вт/м °C.

Операции по нанесению тепловой изоляции выполняются в определенной технологической последовательности, разделяющейся на этапы: 1) подготовка труб или оборудования; 2) антикоррозийная защита; 3) нанесение основного слоя теплоизоляции; 4) наружная отделка конструкции.

При подготовке наружная поверхность очищается от ржавчины и грязи до металлического блеска. Трубы очищаются электрическими и пневматическими щетками, пескоструйными аппаратами. Затем обезжириваются уайт-спиритом, бензином или другими растворителями.

Для защиты металла от коррозии применяют битумные мастики и пасты.

Основной изоляционный слой выполняют из материалов, отвечающих требованиям изолятора. Толщина слоя принимается в зависимости о теплофизических свойств материала и норм, предъявляемых к поверхности.

Наружная отделка состоит из покровного слоя и защитного покрытия. Покровный слой, толщиной 10-20 мм, служит для предохранения основного слоя от атмосферных осадков, грунтовой влаги и механического повреждения. Защитное покрытие наносят на покровный слой наклеиванием водоотталкивающих рулонов с последующей окраской. Такая защита повышает надежность покровного слоя, улучшает оформление внешнего вида, повышает механическую прочность всей изоляционной конструкции и увеличивает срок ее службы.

32. Пуск тепловых сетей

Пуск систем теплоснабжения в промышленную эксплуатацию производит пусковая бригада по программе, составленной руководителем приемочной комиссии.

За основу пусковой схемы принимается исполнительная схема вновь сооруженной или действующей тепловой сети. Для организованного проведения пусковых операций тепловая сеть разделяется на секционные участки. Для каждого секционного участка на пусковой схеме сетей, указывается емкость, необходимая для расчета времени заполнения участка, отмечается расположение грязевиков, задвижек, П-образных и сальниковых компенсаторов, камер с размещенными в них приборами и дренажной арматурой, неподвижных опор. В плане пуска сетей указывается очередность и правила заполнения секционных участков, а так же продолжительность выдержки давления в различные периоды.

Пуск водяных тепловых сетей начинается с наполнения секционного участка водопроводной водой, нагнетаемой в обратную магистраль под напором подпиточного насоса. В теплое время года сети наполняются холодной водой. При температуре воздуха ниже +1, рекомендуется прогревать воду до +50.

В период заполнения на обратном трубопроводе перекрываются все спускные краны и задвижки на ответвлениях, открытыми остаются лишь воздушники.

После заполнения всей секции производится двух-трехчасовая выдержка для окончательного удаления воздушных скоплений.

Сначала заполняются магистральные трубопроводы, затем распределительные и квартальные сети, и в конце ответвления к зданиям.

Следующий шаг пусковой операции является опрессовка на плотность и прочность, которая производится последовательно на всех секциях. После испытания прочность системы приступают к промывке трубопроводов от грязи, окалины и шлама, занесенных во время монтажных работ. Промывка ведется до полного осветления воды, в конце промывки сети заполняют химически очищенной водой.

Общий расход воды на гидравлические испытания и промывку составляет два-три объема всей теплосети.

После некоторого периода циркуляции воды, необходимого для проверки состояния компенсаторов, опор, арматуры, производится подключение станционных подогревателей для подогрева сетей. Операция подогрева производится медленно, скорость прогрева не больше 30 градус цельсия в час.

Мелкие дефекты (утечки через дренажи, воздушные скопления) устраняются в процессе прогрева. Для исправления крупных неисправностей необходима остановка сети.

После устранения всех неисправностей теплопровод пускается в 72-часовую контрольную эксплуатацию.

Пуск тепловых вводов, пунктов и подстанций сводится к гидравлической опрессовке, выполняемой в теплое время года.

  • БУХТА - часть водоёма, обособленная от открытых вод отрезками берега или островами…
  • Естествознание. Энциклопедический словарь

  • БУХТА - более или менее глубоко вдающийся в сушу участок моря. Б. бывают: абразионные - возникшие вследствие неравномерной абразии берега…

    Геологическая энциклопедия

  • БУХТА - полузамкнутая прибрежная часть водоема, отделенная от открытых вод отрезками берега или островами, с малой циркуляцией водных масс и поэтому особенно подверженная разрушительному действию…

    Способы прокладки трубопроводов тепловых сетей

    Экологический словарь

  • БУХТА - 1) небольшой залив, защищённый от ветра и волнения выступающими в море частями берега или близлежащими островами. Б. используются часто для стоянок лодок, судов…

    Большой энциклопедический политехнический словарь

  • Бухта - длинная труба, смотанная на барабане или бухтосверточной машине…

    Энциклопедический словарь по металлургии

  • БУХТА - небольшой залив, защищенный от ветра, открытый к морю с одной какой-либо стороны и удобный для стоянки судов…

    Морской словарь

  • Бухта - небольшая часть моря, залива, озера, водохранилища, обособленная от открытых вод частями суши. Местные условия определяют гидрологический режим Б., несколько отличающийся от режима прилегающих к ней…
  • Находка бухта (бухта у берега Обской губы) - Находка бухта, бухта у западного берега Обской губы в Ямало-Ненецком национальном округе. Вдаётся в сушу на 9 км, мелководна, при отливе обнажается песчано-илистая полоса дна шириной до 2‒3 км. Вода пресная…

    Большая Советская энциклопедия

  • Находка бухта (бухта у берега Японского моря) - Находка бухта, бухта залива Америка, у северно-западного берега Японского моря, в Приморском крае РСФСР. Длина 4,6 км, ширина 1,8 км. Зимой большая часть бухты замерзает…

    Большая Советская энциклопедия

  • БУХТА - часть водоема, обособленная от открытых вод отрезками берега или островами…

    Большой энциклопедический словарь

  • бухта - I бу́хта I. "залив", из нем. Bucht – то же, связано с biegen "гнуть"; см. Клюге-Гётце. II бу́хта II. "вода, насыщенная снегом на льду", арханг. , также у́хта, у́хка. Согласно Калиме, заимств…

    Этимологический словарь Фасмера

  • бухта - ; мн. бу/хты, Р….

    Орфографический словарь русского языка

  • БУХТА - жен., нем. морской залив, заводь. | Круг укладки якорного каната, на палубе. Команда: Из бухты вон, перед отдачей якоря, остерегает людей, отскочить от разведенного каната…

    Толковый словарь Даля

  • БУХТА - БУ́ХТА, -ы, жен. Небольшой глубокий залив…

    Толковый словарь Ожегова

  • Толковый словарь Ушакова

  • БУХТА - БУ́ХТА, бухты, жен. …

    Толковый словарь Ушакова

  • Теплотехника СВИТ СПБ » Полезные материалы » Канальная и бесканальная прокладка теплотрасс

    Подземная прокладка — это оптимальный способ организации тепловых сетей в условиях населенных пунктов. Используется несколько технологий:

    • канальная (непроходные, полупроходные каналы);
    • туннельная (проходные каналы);
    • с использованием общих подземных инженерных коллекторов;
    • бесканальный способ.

    Выбор варианта определяется конкретными условиями территории, по которой будет проходить тепломагистраль, требованиями к надежности трубопровода, диаметром его труб, соответствием экономических затрат бюджету строительства, используемыми технологиями строительства.

    Канальная прокладка

    Технология прокладки тепломагистралей в специально подготовленных каналах считается наиболее надежной и проверенной. Это универсальный способ обустройства тепловых трасс в грунте любого типа. Такой способ позволяет:

    • использовать железобетонные лотковые конструкционные элементы и плиты перекрытия в качестве каналообразующих конструкций трубопровода;
    • использовать теплоизоляцию (минеральная вата, стекловолокно и пр.) навесного типа;
    • исключить контакт трубопровода с грунтом, который способен оказать на металл разрушительное механическое и электрохимическое воздействие;
    • разгрузить трубопровод от временных транспортных нагрузок;
    • обустраивать камеры на линейных частях трубопроводов для монтажа отводов, запорно-регулирующей и контролирующей аппаратуры;
    • обеспечить свободное деформационное перемещение труб при их нагревании (осевое и поперечное);
    • снизить стоимость прокладки трубопроводов благодаря отсутствию дорогостоящих сальниковых компенсаторов температурного расширения;
    • обеспечить дополнительную защиту граждан от поражения горячей водой в случае повреждения трубопровода.

    Канал может иметь монолитную структуру и заливаться непосредственно на месте монтажа или же собираться из отдельных готовых лотков.

    Способы прокладки тепловых сетей

    Готовые каналы - это общие инженерные тоннели и коллектора.

    Бесканальная прокладка

    При бесканальной прокладке трубы засыпаются в отсыпанной песком траншее грунтом без применения каких-либо ограждающих конструкций. Этот способ при использовании современных теплоизолирующих материалов имеет ряд преимуществ. Также для него характерны и определенные недостатки… Итак, при бесканальной прокладке:

    • используются предизолированные трубопроводы;
    • снижается стоимость монтажных работ;
    • отсутствуют ограждающие конструкции для труб;
    • обеспечивается нормальная эксплуатация трубопроводов при высоком уровне грунтовых вод;
    • отсутствует свободный доступ персонала к трубам для контроля и ремонта.

    Алгоритм обустройства бесканальных теплотрасс таков:

    • копание траншеи;
    • выравнивание ее основания и отсыпка песком;
    • укладка труб;
    • засыпка и трамбовка грунта;
    • засыпка гравийной прослойки и заливка бетонного перекрытия под асфальтирование;
    • асфальтирование или благоустройство территории.

    Отдельным видом бесканального монтажа трубопроводов теплоснабжения является метод горизонтально-направленного бурения или продавливания. Эта технология позволяет обустраивать трубопроводы под различными препятствиями: полотнами автодорог, железнодорожными путями, руслами рек и каналов.

    Выбор способа для монтажа теплотрассы определяется доступными техническими средствами и особенностями территории, на которой планируется прокладка тепломагистралей, их параметрами и эксплуатационными режимами.

    Канальная и бесканальная прокладка теплотрасс

    Тепловая сеть - это система трубопроводов с круговой циркуляцией теплоносителя (источник тепла - потребитель - источник тепла). Теплотрасса - это часть теплоснабжающей системы, соединяющая потребителя с источником тепла.

    Выбор способа прокладки тепловых сетей

    Монтаж теплотрасс традиционными способами

    Прокладка теплосетей может выполняться в почве или над поверхностью земли на специальных опорах. Традиционно монтаж подземных теплотрасс выполняется канальным и бесканальным методом.

    • Канальная прокладка теплосети предполагает укладку труб в канале, обустроенном в заранее вырытой траншее. Каналы могут быть монолитными (с залитым основанием и армированными стенками) и лотковыми, которые представляют собой готовый железобетонный лоток.
    • Бесканальная прокладка теплосети предполагает установку труб прямо в траншее. Чтобы трубопровод не контактировал с грунтом, используется пенополиуретановая (ППУ) изоляция.

    Бестраншейная прокладка теплосетей

    Традиционные траншейные методы прокладки трубопровода теплосети требуют значительных трудовых и финансовых затрат, а в некоторых местах вырыть траншею вообще невозможно.

    В условиях плотной городской застройки, где трубопровод «встречается» с автодорогами, зданиями и сооружениями, оптимальным решением является прокладка теплотрассы в земле с помощью горизонтально направленного бурения (ГНБ). В этом случае в предварительно подготовленную скважину протягивается футляр из стали или ПНД, который исключает соприкосновение трубопровода с грунтом.

    Прокладка теплосети под дорогой или другим препятствием методом ГНБ включает в себя несколько стадий:

    1. Пилотное бурение. Головка бурильной установки пробуривает в почве предварительную скважину и расширяет ее до нужного диаметра за один или несколько проходов.
    2. Расширение канала. Пилотная скважина расширется до нужного диаметра.
    3. Прокладка футляра. Буровая установка протягивает в канал сваренные секции футляра.
    4. Монтаж трубопровода. В стальной или ПНД-футляр затягиваются трубы теплосети, заключенные в ППУ-изоляцию.

    Преимущества прокладки теплосети методом ГНБ

    В сравнении с традиционными способами устройства трубопроводов горизонтально направленное бурение имеет множество достоинств. Это:

    Бестраншейная прокладка теплотрасс особенно востребована в условиях плотной городской застройки. Профессиональное буровое оборудование позволяет менять изношенные коммуникации в местах с развитой инфраструктурой, прокладывать новые трубопроводы под различными препятствиями - дорогами, зданиями и сооружениями.

    Компания «Системы ДИТЧ ВИТЧ» предлагает буровые установки американского производства под маркой Ditch Witch®. Компактные самоходные агрегаты подходят для прокладки трубопроводов в практически любых, на различной глубине под любыми препятствиями.

    Чтобы заказать буровую установку, позвоните по телефону на сайте или заполните форму обратной связи.

    Выбрать буровую установку ГНБ

    все установки гнб

    Если вам необходимо выполнить однократную работу и приобретение бурового оборудования не оправданно, мы поможем найти субподрядную организацию.

    Компания "Системы ДИТЧ ВИТЧ" сотрудничает с организациями, занимающимися прокладкой коммуникаций методом горизонтально направленного бурения, прокладкой коммуникаций открытым способом, рытьем траншей, разрушением труб (санация коммуникаций) и другими работами по всей России.

    ПОДЗЕМНАЯ ПРОКЛАДКА

    Канальные прокладки предназначены для защиты трубопроводов от механического воздействия грунтов и коррозионного влияния почвы. Стены каналов облегчают работу трубопроводов.

    В бесканальных прокладках трубопроводы работают в более тяжелых условиях, так как они воспринимают дополнительную нагрузку грунта и при неудовлетворительной защите от влаги подвержены наружной коррозии.

    Проходные каналы применяются при прокладке в одном направлении не менее пяти труб большого диаметра. Проходные каналы используют часто для прокладки теплопроводов под многоколейными железными дорогами и автострадами с интенсивным движением транспорта, не допускающим вскрытия каналов и нарушения работы узлов на период ремонта сетей.

    Полупроходные каналы применяют в стесненных условиях местности, когда невозможно возведение проходных каналов Их используют в основном для прокладки сетей на коротких участках под крупными инженерными узлами, не допускающими вскрытия каналов для ремонта трубопроводов. Высота полупроходных каналов принимается не менее 1,4 м, свободный проход - не менее 0,6 м; при этих габаритах возможно проведение мелкого ремонта труб.

    Непроходные каналы имеют наибольшее распространение среди других видов каналов Каждый вид кана-

    канала применяется в зависимости от местных условий изготовления, свойств грунта, места прокладки. В непроходные каналы укладывают трубопроводы тепловых сетей, не требующие постоянного надзора.

    Глубина заложения каналов принимается исходя из минимального объема земляных работ и надежного укрытия от раздавливания транспортом. Наименьшее заглубление от поверхности земли до верха перекрытия каналов в любом случае принимается не менее 0,5 м.

    Бесканальная прокладка - перспективный и экономичный способ строительства тепловых сетей. Перечень строительно-монтажных операций, а следовательно, и объем работ при бесканальной

    прокладке значительно уменьшается, благодаря чему стоимость сетей по сравнению с канальной прокладкой снижается на 20- 25%. По этим соображениям тепловые сети с диаметрами трубо-

    Камеры устанавливают по трассе подземных теплопроводов для размещения в них задвижек, сальниковых компенсаторов, неподвижных опор, ответвлений, дренажных и воздушных устройств, измерительных приборов.

    НАДЗЕМНАЯ ПРОКЛАДКА

    Воздушная прокладка имеет ряд положительных эксплуатационных преимуществ:

    а) лучшая доступность и обозреваемость сетей, способствующие своевременному устранению неисправностей; б) отсутствие разрушающего влияния грунтовых вод; в) использование более надежных в работе П-образных компенсаторов; г) широкая возможность устройства прямолинейного продольного профиля теплопроводов, при котором уменьшается количество воздушных и спускных вентилей.

    Вместе взятые факторы способствуют повышению долговечности и снижению стоимости сетей по сравнению с канальной прокладкой на 30-60%· Использование надземной прокладки снять ограничения параметров теплоносителей, установленных для подземных сетей. Надземная прокладка осуществляется на отдельно стоящих стойках и эстакадах.

    Эстакады сооружают для совместной прокладки большого числа трубопроводов различного назначения и диаметров.


    31. Тепловая изоляция

    Экономическая эффективность систем теплоснабжения при современных масштабах в значительной мере зависит от тепловой изоляции оборудования и трубопроводов. Тепловая изоляция служит для уменьшения тепловых потерь и обеспечения допустимой температуры изолируемой поверхности.

    Материалы используемые в качестве теплоизолятора должны обладать высокими теплозащитными свойствами и низким водопоглащением в течение длительного срока эксплуатации.

    Высокие требования предъявляются к химической чистоте изоляторов. Изоляционные материалы, содержащие химические соединения агрессивные по отношению к металлу, не допускаются к применению, т.к. при увлажнении эти соединения вымываются, поадая на металлические поверхности, вызывают их коррозию. Например, шлаки и ваты относятся к числу качественных изоляторов, но содержание окислов серы более 3% делает их непригодными во влажных условиях.

    Коэффициент теплопроводности большинства сухих изоляционных материалов изменяется в пределах 0,05 – 0,25 Вт/м °C.

    Операции по нанесению тепловой изоляции выполняются в определенной технологической последовательности, разделяющейся на этапы: 1) подготовка труб или оборудования; 2) антикоррозийная защита; 3) нанесение основного слоя теплоизоляции; 4) наружная отделка конструкции.

    При подготовке наружная поверхность очищается от ржавчины и грязи до металлического блеска. Трубы очищаются электрическими и пневматическими щетками, пескоструйными аппаратами. Затем обезжириваются уайт-спиритом, бензином или другими растворителями.

    Для защиты металла от коррозии применяют битумные мастики и пасты.

    Основной изоляционный слой выполняют из материалов, отвечающих требованиям изолятора. Толщина слоя принимается в зависимости о теплофизических свойств материала и норм, предъявляемых к поверхности.

    Наружная отделка состоит из покровного слоя и защитного покрытия. Покровный слой, толщиной 10-20 мм, служит для предохранения основного слоя от атмосферных осадков, грунтовой влаги и механического повреждения. Защитное покрытие наносят на покровный слой наклеиванием водоотталкивающих рулонов с последующей окраской. Такая защита повышает надежность покровного слоя, улучшает оформление внешнего вида, повышает механическую прочность всей изоляционной конструкции и увеличивает срок ее службы.


    32. Пуск тепловых сетей

    Пуск систем теплоснабжения в промышленную эксплуатацию производит пусковая бригада по программе, составленной руководителем приемочной комиссии.

    За основу пусковой схемы принимается исполнительная схема вновь сооруженной или действующей тепловой сети. Для организованного проведения пусковых операций тепловая сеть разделяется на секционные участки. Для каждого секционного участка на пусковой схеме сетей, указывается емкость, необходимая для расчета времени заполнения участка, отмечается расположение грязевиков, задвижек, П-образных и сальниковых компенсаторов, камер с размещенными в них приборами и дренажной арматурой, неподвижных опор. В плане пуска сетей указывается очередность и правила заполнения секционных участков, а так же продолжительность выдержки давления в различные периоды.

    Пуск водяных тепловых сетей начинается с наполнения секционного участка водопроводной водой, нагнетаемой в обратную магистраль под напором подпиточного насоса. В теплое время года сети наполняются холодной водой. При температуре воздуха ниже +1, рекомендуется прогревать воду до +50.

    В период заполнения на обратном трубопроводе перекрываются все спускные краны и задвижки на ответвлениях, открытыми остаются лишь воздушники.

    После заполнения всей секции производится двух-трехчасовая выдержка для окончательного удаления воздушных скоплений.

    Сначала заполняются магистральные трубопроводы, затем распределительные и квартальные сети, и в конце ответвления к зданиям.

    Следующий шаг пусковой операции является опрессовка на плотность и прочность, которая производится последовательно на всех секциях. После испытания прочность системы приступают к промывке трубопроводов от грязи, окалины и шлама, занесенных во время монтажных работ. Промывка ведется до полного осветления воды, в конце промывки сети заполняют химически очищенной водой.

    Общий расход воды на гидравлические испытания и промывку составляет два-три объема всей теплосети.

    После некоторого периода циркуляции воды, необходимого для проверки состояния компенсаторов, опор, арматуры, производится подключение станционных подогревателей для подогрева сетей. Операция подогрева производится медленно, скорость прогрева не больше 30 градус цельсия в час.

    Мелкие дефекты (утечки через дренажи, воздушные скопления) устраняются в процессе прогрева. Для исправления крупных неисправностей необходима остановка сети.

    После устранения всех неисправностей теплопровод пускается в 72-часовую контрольную эксплуатацию.

    Пуск тепловых вводов, пунктов и подстанций сводится к гидравлической опрессовке, выполняемой в теплое время года.