Виде обеспечении энергией компания еще. Обеспечение клеток энергией

Из клеток состоят все живые организмы, кроме вирусов. Они обеспечивают все необходимые для жизни растения или животного процессы. Клетка и сама может быть отдельным организмом. И разве может такая сложная структура жить без энергии? Конечно, нет. Так как же происходит обеспечение клеток энергией? Оно базируется на процессах, которые мы рассмотрим ниже.

Обеспечение клеток энергией: как это происходит?

Немногие клетки получают энергию извне, они вырабатывают ее сами. обладают своеобразными "станциями". И источником энергии в клетке является митохондрия — органоид, который ее вырабатывает. В нем происходит процесс клеточного дыхания. За счет него и происходит обеспечение клеток энергией. Однако присутствуют они только у растений, животных и грибов. В клетках бактерий митохондрии отсутствуют. Поэтому у них обеспечение клеток энергией происходит в основном за счет процессов брожения, а не дыхания.

Строение митохондрии

Это двумембранный органоид, который появился в эукариотической клетке в процессе эволюции в результате поглощения ею более мелкой Этим можно объяснить то, что в митохондриях присутствует собственная ДНК и РНК, а также митохондриальные рибосомы, вырабатывающие нужные органоидам белки.

Внутренняя мембрана обладает выростами, которые называются кристы, или гребни. На кристах и происходит процесс клеточного дыхания.

То, что находится внутри двух мембран, называется матрикс. В нем расположены белки, ферменты, необходимые для ускорения химических реакций, а также молекулы РНК, ДНК и рибосомы.

Клеточное дыхание — основа жизни

Оно проходит в три этапа. Давайте рассмотрим каждый из них более подробно.

Первый этап — подготовительный

Во время этой стадии сложные органические соединения расщепляются на более простые. Так, белки распадаются до аминокислот, жиры — до карбоновых кислот и глицерина, нуклеиновые кислоты — до нуклеотидов, а углеводы — до глюкозы.

Гликолиз

Это бескислородный этап. Он заключается в том, что вещества, полученные во время первого этапа, расщепляются далее. Главные источники энергии, которые использует клетка на данном этапе, — молекулы глюкозы. Каждая из них в процессе гликолиза распадается до двух молекул пирувата. Это происходит во время десяти последовательных химических реакций. Вследствие первых пяти глюкоза фосфорилируется, а затем расщепляется на две фосфотриозы. При следующих пяти реакциях образуется две молекулы и две молекулы ПВК (пировиноградной кислоты). Энергия клетки и запасается именно в виде АТФ.

Весь процесс гликолиза можно упрощенно изобразить таким образом:

2НАД+ 2АДФ + 2Н 3 РО 4 + С 6 Н 12 О 6 2Н 2 О + 2НАД. Н 2 +2С 3 Н 4 О 3 + 2АТФ

Таким образом, используя одну молекулу глюкозы, две молекулы АДФ и две фосфорной кислоты, клетка получает две молекулы АТФ (энергия) и две молекулы пировиноградной кислоты, которую она будет использовать на следующем этапе.

Третий этап — окисление

Данная стадия происходит только при наличии кислорода. Химические реакции этого этапа происходят в митохондриях. Именно это и есть основная часть во время которой высвобождается больше всего энергии. На этом этапе вступая в реакцию с кислородом, расщепляется до воды и углекислого газа. Кроме того, при этом образуется 36 молекул АТФ. Итак, можно сделать вывод, что главные источники энергии в клетке — глюкоза и пировиноградная кислота.

Суммируя все химические реакции и опуская подробности, можно выразить весь процесс клеточного дыхания одним упрощенным уравнением:

6О 2 + С 6 Н 12 О 6 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н2О + 38АТФ.

Таким образом, в ходе дыхания из одной молекулы глюкозы, шести молекул кислорода, тридцати восьми молекул АДФ и такого же количества фосфорной кислоты клетка получает 38 молекул АТФ, в виде которой и запасается энергия.

Разнообразие ферментов митохондрий

Энергию для жизнедеятельности клетка получает за счет дыхания — окисления глюкозы, а затем пировиноградной кислоты. Все эти химические реакции не могли бы проходить без ферментов — биологических катализаторов. Давайте рассмотрим те из них, которые находятся в митохондриях — органоидах, отвечающих за клеточное дыхание. Все они называются оксидоредуктазами, потому что нужны для обеспечения протекания окислительно-восстановительных реакций.

Все оксидоредуктазы можно разделить на две группы:

  • оксидазы;
  • дегидрогеназы;

Дегидрогеназы, в свою очередь, делятся на аэробные и анаэробные. Аэробные содержат в своем составе кофермент рибофлавин, который организм получает из витамина В2. Аэробные дегидрогеназы содержат в качестве коферментов молекулы НАД и НАДФ.

Оксидазы более разнообразны. В первую очередь они делятся на две группы:

  • те, которые содержат медь;
  • те, в составе которых присутствует железо.

К первым относятся полифенолоксидазы, аскорбатоксидаза, ко вторым — каталаза, пероксидаза, цитохромы. Последние, в свою очередь, делятся на четыре группы:

  • цитохромы a;
  • цитохромы b;
  • цитохромы c;
  • цитохромы d.

Цитохромы а содержат в своем составе железоформилпорфирин, цитохромы b — железопротопорфирин, c — замещенный железомезопорфирин, d — железодигидропорфирин.

Возможны ли другие пути получения энергии?

Несмотря на то что большинство клеток получают ее в результате клеточного дыхания, существуют также анаэробные бактерии, для существования которых не нужен кислород. Они вырабатывают необходимую энергию путем брожения. Это процесс, в ходе которого с помощью ферментов углеводы расщепляются без участия кислорода, вследствие чего клетка и получает энергию. Различают несколько видов брожения в зависимости от конечного продукта химических реакций. Оно бывает молочнокислое, спиртовое, маслянокислое, ацетон-бутановое, лимоннокислое.

Для примера рассмотрим Его можно выразить вот таким уравнением:

С 6 Н 12 О 6 С 2 Н 5 ОН + 2СО 2

То есть одну молекулу глюкозы бактерия расщепляет до одной молекулы этилового спирта и двух молекул оксида (IV) карбона.

  • Подлежат ли исполнению банком обязательства должника-владельца счета по требованиям кредиторов 1-3 очереди?
  • Руководитель ООО был осужден по ст. 173.1. УК РФ. Какие последствия для сделок, заключенных данным руководителем?
  • Какие особенности приема на работу по совместительству иностранца, с патентом на работу по конкретной профессии?
  • Необходимо ли в учреждении утверждать положение о пропускном режиме?
  • Вправе ли ГБУ для оказания госуслуг закупать другие услуги, если их использование не предусмотрено техрегламентом?

Вопрос

Организация - собственник нежилых помещений сдает эти помещения в аренду. Арендная плата сформирована как постоянная и переменная часть. Переменная часть включает в себя перевыставление коммунальных платежей арендатору. В состав переменной части арендной платы, в том числе, входило перевыставление коммунальных платежей за тепловую энергию. Ранее арендодатель покупал тепловую энергию у энергоснабжающей организации, имеющей утвержденный в установленном порядке тариф на тепловую энергию. Арендодатель перевыставлял арендаторам затраты на тепловую энергию исходя из тарифа поставщика тепловой энергии, плюс повышающий коэффициент "на обслуживание внутренних сетей". В настоящее время, арендодатель построил собственную газовую котельную и сам обеспечивает теплом свои здания. Тепловая энергия, получаемая от построенной газовой котельной, используется только для отопления собственных зданий. Предоставление тепловой энергии кому-либо за рамками обеспечения собственных зданий теплом, не будет. Арендодатель хочет продолжить перевыставлять свои затраты на теплоснабжение, обслуживание сетей и газовой котельной арендаторам в составе переменной части арендной платы. Вопросы:1) Имеется ли в данном случае поставка тепловой энергии арендаторам? 2) Обязан ли в данном случае арендодатель получать утвержденные в установленном порядке тарифы на отпуск тепловой энергии арендаторам? 3) Есть ли возможности при наличии своей газовой котельной перевыставлять затраты на теплоснабжение, обслуживание сетей и газовой котельной своим арендаторам в составе переменной части арендной платы, не утверждая тариф на тепловую энергию?

Ответ

Первое. Для ответа на вопрос о поставке не имеет значения, чьи здания обслуживаются. Значение имеет то, кому предоставляются услуги. Под теплоснабжением понимается обеспечение потребителей тепловой энергией ( ст. 2 Федерального закона от 27.07.2010 № 190-ФЗ). Осуществляется теплоснабжение на основании договора ( ст. 13 Федерального закона).

Второе. С учетом сказанного выше, арендодатель обязан получить тарифы ( Федерального закона).

Третье. Формально закон не запрещает перевыставлять затраты арендаторам. Но так как отношения между арендатором и арендодателем в рассматриваемой ситуации будут регулироваться договором теплоснабжения, что прямо предусмотрено законом, перевыставить

затраты нельзя. Такие затраты будут компенсировать арендатором при оплате за тепло по установленным тарифам.

Обоснование данной позиции приведено ниже в материалах «Системы Юрист» .

2. Потребители, подключенные (технологически присоединенные) к системе теплоснабжения, заключают с теплоснабжающими организациями договоры теплоснабжения и приобретают тепловую энергию (мощность) и (или) теплоноситель по регулируемым ценам (тарифам) или по ценам, определяемым соглашением сторон договора теплоснабжения, в случаях, предусмотренных настоящим Федеральным законом, в порядке, установленном *.

2.1. Потребители, которым поставка горячей воды осуществляется с использованием открытой системы теплоснабжения (горячего водоснабжения), заключают с теплоснабжающими организациями договоры теплоснабжения и поставки горячей воды в порядке, установленном .

3. Потребители, подключенные (технологически присоединенные) к системе теплоснабжения, но не потребляющие тепловой энергии (мощности), теплоносителя по договору теплоснабжения, заключают с теплоснабжающими организациями договоры оказания услуг по поддержанию резервной тепловой мощности и оплачивают указанные услуги по регулируемым ценам (тарифам) или по ценам, определяемым соглашением сторон договора, в случаях, предусмотренных настоящим Федеральным законом, в порядке, установленном .

4. Теплоснабжающие организации самостоятельно производят тепловую энергию (мощность), теплоноситель или заключают договоры поставки тепловой энергии (мощности) и (или) теплоносителя с другими теплоснабжающими организациями и оплачивают тепловую энергию (мощность), теплоноситель по регулируемым ценам (тарифам) или по ценам, определяемым соглашением сторон договора, в случаях, предусмотренных настоящим Федеральным законом, в порядке, установленном .

5. Теплосетевые организации или теплоснабжающие организации компенсируют потери в тепловых сетях путем производства тепловой энергии, теплоносителя источниками тепловой энергии, принадлежащими им на праве собственности или ином законном основании, либо заключают договоры поставки тепловой энергии (мощности) и (или) теплоносителя с другими теплоснабжающими организациями и оплачивают их по регулируемым ценам (тарифам) в порядке, установленном .

6. Теплоснабжающие организации заключают с теплосетевыми организациями договоры оказания услуг по передаче тепловой энергии, теплоносителя и оплачивают указанные услуги по регулируемым ценам (тарифам) в порядке, установленном .»

Профессиональная справочная система для юристов, в которой вы найдете ответ на любой, даже самый сложный вопрос.

Современное промышленное производство связано с потреблением в больших объемах электроэнергии, топлива и других энергоносителей (пара, сжатого воздуха, горячей воды, газообразного, твердого и жидкого топлива и т.п.).

Основной задачей энергетического хозяйства является надежное и бесперебойное обеспечение предприятия всеми видами энергии установленных параметров при минимальных затратах. Объем и структура потребляемых энергоресурсов зависят от мощности предприятия, вида выпускаемой продукции, характера технологических процессов, а также связей с районными энергосистемами.

В задачу энергетического хозяйства входят также выполнение правил эксплуатации энергетического оборудования, организация его технического обслуживания и ремонта, проведение мероприятий, направленных на экономию энергии и всех видов топлива, а также мероприятий по совершенствованию и развитию энергохозяйства предприятия.

Как правило, потребление энергии в производстве по часам суток, дням недели и календарным периодам происходит неравномерно. Исходя из этого, режимы производства всех видов энергии непосредственно зависят от режимов ее потребления. Потребность предприятий в энергии может покрываться за счет полного обеспечения энергией всех видов от собственных установок. Этот способ энергоснабжения можно назвать централизованным.

Другим способом энергоснабжения — децентрализованным пользуются небольшие, а иногда и средние промышленные предприятия, которые получают все виды энергии, например, от районных систем, соседних предприятий или объединенных цехов.

Больше всего распространен комбинированный вариант, при котором отдельные виды энергии предприятия получают от районных энергосистем, а другие виды энергии производятся на заводских установках. В практике организации энергетического хозяйства этот вариант считается наиболее рациональным.

Структура энергетического хозяйства предприятия

В состав энергетического хозяйства входят:

  • электрическая и тепловая станции;
  • высоковольтные подстанции, питающие предприятие от централизованной системы;
  • паросиловой цех;
  • газогенераторная, кислородная, компрессорная, водонасосная станции;
  • подстанция инертных газов и кислорода;
  • цех ремонта электрооборудования;
  • телефонная станция.

Энергохозяйство предприятия подразделяется на две части: общезаводскую и цеховую.

К общезаводскому подразделению энергохозяйства относятся генерирующие преобразовательные установки и общезаводские сети, которые объединяются в ряд специальных цехов: электросиловой, теплосиловой, газовый, слаботочный и электромеханический. Состав цехов зависит от энергоемкости производства и связей завода с внешними энергосистемами. На небольших предприятиях все энергохозяйство может быть объединено в один, два цеха.

Цеховую часть энергохозяйства образуют первичные энергоприемники (потребители энергии — печи, станки, подъемно- транспортное оборудование), цеховые преобразовательные установки и внутрицеховые распределительные сети.

На крупных и средних промышленных предприятиях (рис. 10.1) энергетическое хозяйство возглавляет главный энергетик. На небольших и малых предприятиях оно может находиться в ведении главного механика, который совмещает функции по обеспечению предприятия энергоресурсами и поддержания оборудования в работоспособном состоянии.

Рис. 10.1. Организационная структура службы главного энергетика крупного предприятия

В составе службы главного энергетика крупного предприятия формируются бюро энергоиспользования, энергооборудования, электрические и тепловые лаборатории.

Основной задачей группы энергоиспользования является нормирование расхода энергетических ресурсов, планирование энергоснабжения, составление энергетических балансов, осуществление сводного учета и анализа использования энергоресурсов.

Группа энергооборудования (техническое бюро) осуществляет руководство планово-предупредительными ремонтами установок и энергосетей, контроль над техническим состоянием сетей, оборудования и правил их эксплуатации, разрабатывает мероприятия по совершенствованию энергохозяйства, экономии энергетических ресурсов. Энергетические лаборатории выполняют исследовательские работы по снижению расхода энергии и топлива, проводят различного рода измерения, испытания оборудования и сетей, проверку контрольно-измерительных приборов.

На средних и небольших предприятиях в составе службы главного энергетика предусматриваются энерголаборатория и энергобюро, включающее группы энергооборудования, энергоиспользования.

Персонал энергетических цехов и цеховых энергетических хозяйств подразделяется на дежурный состав, обеспечивающий бесперебойность энергоснабжения, и персонал, занятый выполнением планово-предупредительных ремонтов и монтажных работ.

Показатели, характеризующие работу энергетического хозяйства

Технико-экономические показатели, характеризующие работу энергетического хозяйства, объединяются в четыре группы:

  • показатели производства и распределения энергии — удельные нормы расхода топлива на производство всех видов энергии, кпд генерирующих установок;
  • удельные нормы расхода энергии и топлива (например, на 1 т годных отливок, на 1 т поковок, условную машину и т.д.);
  • показатели себестоимости производства энергии (тепловой, электрической, энергии сжатого воздуха и пара);
  • показатели энерговооруженности труда.

Порядок нормирования расхода энергоресурсов

Режим экономии энергетических ресурсов предопределяет необходимость нормирования расхода электроэнергии, сжатого воздуха, пара, газа и воды. Нормы устанавливаются с учетом рациональных условий производства и оптимальных режимов эксплуатации оборудования.

Нормы подразделяются на дифференцированные и укрупненные. Дифференцированные (удельные) нормы устанавливают расход энергии по отдельным агрегатам, деталям, на выполнение определенных операций, на 1 м 2 покрытия и на другие единицы измерения продукции; укрупненные — расход по участку, цеху и предприятию на единицу или условную единицу продукции.

К укрупненным нормам относится, например, расход энергии на 1 т поковок, годных отливок, машинокомплект деталей (по раскройным, прессовым и механическим цехам), на сборочную единицу или изделие (в сборочных цехах); по предприятию может устанавливаться норма на условное изделие или на 1000 руб. продукции.

Технически обоснованные нормы определяются расчетно-ана- литическим методом. Применение этого метода связано с проведением замеров расхода энергии технологическим оборудованием на разных режимах его работы.

Удельная норма расхода электроэнергии на 1 т деталей, например, при термической обработке рассчитывается по удельной теплоемкости металла, температуре нагрева деталей, коэффициенту полезного действия нагревательной печи и потерям тепла в системе. При расчете расхода тепла учитывается вид оборудования, используемого для термической обработки.

Норма расхода электроэнергии

Норма расхода электроэнергии на операцию штамповки на механических прессах

  • Р э — расход электроэнергии на один ход ползуна (без выполнения операции штамповки), кВт-ч;
  • К др — поправочный коэффициент, учитывающий дополнительный расход электроэнергии на один ход ползуна при штамповке (К др = 1,2 — 2);
  • Р эх — расход электроэнергии за 1 мин холостой работы пресса, кВт-ч;
  • Т в — вспомогательное время на одну деталь, мин.

Для энергетических цехов устанавливаются удельные нормы расхода энергоносителей: твердого, жидкого и газообразного топлива и электроэнергии.

Рациональная организация энергетического хозяйства основывается на планировании производства и потребления всех видов энергии. Потребность определяют по каждому виду энергии с учетом мероприятий, направленных на ее экономию, и мероприятий по снижению себестоимости производства.

Суммарный расход энергии по предприятию условно делится на две части — зависящую (переменную) и не зависящую (постоянную) от объемов выпускаемой продукции. В общем случае переменную часть составляет расход всех видов энергии на выполнение основных технологических операций, постоянную — расход на освещение, привод вентиляционных устройств, покрытие утечек сжатого воздуха, отопление, кондиционирование воздуха и др.

Общий расход энергии

Общий расход энергии по предприятию (Р о) или цеху на календарный период определяется по формуле

  • Р з — зависящая (переменная) составляющая расхода энергии, кВт-ч, м 3 ;
  • Р н — независящая (постоянная) составляющая расхода энергии.

Расход энергии по переменной части расхода энергии может быть определен укрупненно по времени работы оборудования или точно рассчитан по сводным нормам.

При определении расхода энергии по времени работы оборудования необходимо его группировать по условиям работы — времени использования, степени загрузки, значению кпд и другим факторам.

Расходы силовой электроэнергии

Например, расход силовой электроэнергии (Р сэ ) по группе оборудования может быть определен по формуле

  • М уст - суммарная установленная мощность по группе оборудования, кВт;
  • Д ф.вр — действительный фонд времени работы оборудования, ч;
  • К з — коэффициент, учитывающий загрузку оборудования по мощности;
  • К оро — коэффициент одновременности работы оборудования;
  • К 1 , К 2 — коэффициенты, учитывающие кпд двигателей и потери в сети.

По сводным нормам расход энергии (Р эс ) рассчитывается по формуле

  • Н с — сводная норма расхода на 1000 руб.;
  • П в — программа выпуска продукции, тыс. руб.

Постоянная часть расхода энергии может быть определена также расчетным методом по нормативам освещенности, отопления помещений, нормативам и по времени использования двигателей.

Планирование потребности в энергоресурсах

При планировании потребности в энергии необходимо детально анализировать ее расход за период, предшествующий плановому. Плановые показатели по расходу энергии должны обеспечивать нормальный ход производственных процессов, исключать сверхнормативные потери.

Определение потребности в энергии, топливе основывается на использовании балансового метода планирования. Для этих целей составляются сводные балансы, а также по отдельным видам энергии, топлива.

В расходной части баланса представлена расчетная потребность в энергии на всю производственную, хозяйственно-бытовую и непроизводственную деятельность предприятия. В приходной — источники покрытия этой потребности — получение энергии и топлива от районных энергосистем, выработка на собственных генерирующих установках предприятия, использование вторичных энергоресурсов.

Перспективные балансы служат основой для совершенствования и реконструкции энергохозяйства предприятия. Основной формой планирования энергоснабжения в настоящее время являются годовые энергобалансы. Наряду с плановым составляется отчетный баланс, который служит средством контроля выполнения плановых показателей использования энергоресурсов и вскрытия резервов экономии энергоносителей.

Для учета колебаний в спросе на различные виды энергоресурсов на предприятии составляются суточные графики потребления энергии отдельных видов и топлива по календарным периодам (сезонам), которые служат основой для установления максимальных нагрузок на планируемый период и при разработке мероприятий на перспективное развитие энергетического хозяйства.

Основными направлениями совершенствования энергетических хозяйств промышленных предприятий являются:

  • переход на централизованное энергоснабжение;
  • укрупнение энергетических хозяйств промышленных предприятий;
  • использование наиболее экономичных энергоносителей;
  • замена жидкого топлива газообразным;
  • внедрение рациональных методов организации ремонта и технического обслуживания энергетического оборудования и сетей;
  • широкое использование технически обоснованных норм расхода энергоносителей.

Обеспечение строительства энергией и водой. Производство строительно-монтажных и других работ на строительной площадке требует потребления электроэнергии, горячей и холодной воды, пара и сжатого воздуха.

Наилучшим вариантом питания строительной площадки электроэнергией, водой, газом и паром являются постоянные сети действующих или проектируемых систем. Если проектом строительства предприятия, района застройки предусматривается прокладка сетей энерго-, водо-, газоснабжения, канализации, то эта прокладка осуществляется в подготовительный период к строительству.

Менее приемлемым вариантом является временное обеспечение строительной площадки указанными ресурсами на период строительства объектов. Устройство временных сетей водо-, энергоснабжения и других сетей осуществляется также в подготовительный период к строительству.

Потребная электрическая нагрузка на строительство комплекса объектов в составе ПОС определяется по удельной потребной электрической мощности на 1 или 100 млн р. сметной стоимости строительно-монтажных работ. Удельная мощность определяется на основе данных статистики о фактическом потреблении электроэнергии строительно-монтажными организациями. Она различна и зависит от вида строительства и характера возводимых объектов. В жилищно-гражданском строительстве удельная электрическая мощность составляет от 70 до 205 киловольтампер (кВА) на 1 млн р. сметной стоимости строительно-монтажных работ в ценах 1984 г. Для объектов промышленного назначения этот показатель колеблется от 60 до 400 кВА.

Расчет потребности энергии. Расчетная мощность силового трансформатора М тр определяется по формуле

М тр = VmК р ,

где V- годовой объем строительно-монтажных работ, подлежащих выполнению в период наивысшей интенсивности хода работ, млн р.; т - величина удельной электрической мощности, кВА/млн р.; К р - коэффициент, учитывающий район строительства, длительность зимнего периода и уровень низких температур.

Потребная электрическая нагрузка на строительстве отдельного объекта в ППР рассчитывается по мощности электроприемников (электродвигателей, осветительных приборов, электроподогревающих установок и т.п.) и мощности, потребной на технологические нужды (электропрогрев бетона и др.). Величина мощности трансформатора М тр определяется по формуле

где 1,1 - коэффициент, учитывающий потери электроэнергии в сети; М м - силовая мощность электродвигателей строительных машин и установок, кВт; М т - потребная мощность на технологические нужды, кВт; М о.в - мощность внутренних установленных приборов освещения, вентиляции и кондиционирования воздуха, кВт; М о.н. - мощность установленных приборов общего и местного наружного освещения, кВт; К 1 К 2 , К 3 , К 4 - коэффициенты, учитывающие одновременность работы электродвигателей, приборов освещения, вентиляции, выполнения работ, требующих расхода энергии на технологические нужды; cos φ - коэффициент мощности, зависящий от характера потребителей электроэнергии.



Значения коэффициентов, учитывающих одновременность работы электродвигателей и электроприборов, а также параметра cos φ приведены в табл. 1.

Показатели потребной мощности приборов освещения рассчитываются путем умножения освещаемой площади на удельные показатели, приведенные в табл. 2.

На основе рассчитанной мощности производится выбор источников энергоснабжения и подбор трансформатора. Наиболее экономичным и удобным способом удовлетворения потребности в электроэнергии является получение ее от районных сетей высокого напряжения на 6 и 10 кВ. В этом случае в подготовительный период к строительству сооружаются ответвление от районной высоковольтной сети и трансформаторная электроподстанция.

Если строительство или реконструкция объектов осуществляется вблизи от городских квартальных подстанций или от действующего предприятия, то на строительных площадках или объектах устанавливаются электрощитовые, которые подключаются к указанным постоянным электроподстанциям. Разрешение на подключение дают служба главного энергетика предприятия или службы квартальных электросетей в соответствии с рассчитанной потребной электрической мощностью.

Таблица 1- Коэффициенты спроса электроэнергии и мощности



При отсутствии возможности получения электроэнергии от районных высоковольтных сетей, квартальных электроподстанций и подстанций промышленных предприятий, а также при строительстве в неосвоенных районах применяются временные передвижные электростанции малой и средней мощности (до 100 кВт) и крупные электростанции мощностью до 1000 кВт. Передвижные электростанции в большей степени применяются при строительстве линейных сооружений (магистральных трубопроводов, железных дорог, линий электропередачи), мостов, когда поблизости нет районных высоковольтных электросетей. Запитка источников электропотребления на строительной площадке производится электрическими кабелями и проводами по воздушной разводке.

Таблица 2 - Показатели удельной мощности осветительных приборов

Кроме электроэнергии на строительных площадках возникает потребность и в других видах энергии, в частности в сжатом воздухе при работе с применением пневмоинструмента (перфораторы, бетоноломы, клепальный инструмент и др.), в паре для термообработки бетонных и железобетонных изделий, изготавливаемых непосредственно на объекте. Для временного отопления временных помещений и строящихся зданий и сооружений также необходим теплоноситель.

Расход сжатого воздуха, м 3 /мин, в целом по крупным стройкам при разработке ПОС определяется ориентировочно по укрупненным нормам на 1 млн. р. сметной стоимости строительно-монтажных работ. По конкретным объектам при разработке ППР этот расход Q с.в. определяется по нормам расхода при работе соответствующих инструментов по формуле

где q t - норма расхода сжатого воздуха i -м инструментом, механизмом; n i - количество применяемых i -х инструментов и механизмов; К i - коэффициенты, учитывающие одновременность работы механизмов и инструментов, принимаемые равными 1 при количестве инструментов и механизмов от 1 до 2 и 0,6 при количестве инструментов или механизмов от 8 до 10.

Источниками получения сжатого воздуха могут быть передвижные и стационарные компрессорные установки разной производительности. При проведении работ на реконструкции объектов действующих предприятий сжатый воздух может быть получен от их сетей. Подведение воздуха к местам его потребления осуществляется по металлическим трубам, а подключение инструментов к трубопроводу - с помощью гибких резиновых шлангов. Диаметр трубопроводов для подачи сжатого воздуха 4в рассчитывается по формуле

Расчет потребности теплоэнергии. Наиболее распространенным теплоносителем для обогрева помещений является горячая вода.

Таблица 3 - Тепловые характеристики зданий и сооружений

Она же используется в душевых установках и умывальных комнатах. При производстве бетонных работ в зимнее время может использоваться горячий пар. Проектирование горячего водо- и пароснабжения начинается с расчета потребности в тепле по отдельным потребителям и по строительной площадке в целом. После этого определяется источник теплоснабжения и проектируются наружные и внутренние сети паропровода и горячего водопровода. Расход тепла, необходимого для отопления временных помещений и временного отопления возводимых зданий и сооружений Q от, кДж/час, рассчитывается по формуле

где - объем i -го отапливаемого здания по наружному обмеру; q i - удельная тепловая характеристика i -го здания; а - коэффициент, зависящий от величины расчетной температуры наружного воздуха; t в и t н - расчетные температуры соответственно внутреннего в помещениях и наружного воздуха.

Тепловые характеристики зданий и сооружений принимаются по справочным данным, часть которых приведена в табл. 3.

Расход тепла на производственные нужды определяется в каждом конкретном случае исходя из объемов работ, требующих расхода тепла, и расчетных норм его расхода в зависимости от температуры наружного воздуха, характера применяемой технологии производства работ. Для этого существуют соответствующие таблицы и графики.

Общий расход тепла Q о б определяется суммированием его затрат на отопление и производственные нужды с учетом возможных его потерь по формуле

Q об = (Q от + Q п.н.)K 1 K 2

где Q от + Q п.н - расчетный расход тепла соответственно на отопление и производственно-технологические нужды; К 1 - коэффициент, учитывающий потери тепла в сети, принимаемый ориентировочно равным 1,15; К 2 - коэффициент, предусматривающий добавку тепла на неучтенные потребности.

При строительстве в городских условиях, а также на территориях действующих предприятий в большинстве случаев имеется возможность получения теплоэнергии от существующих теплоэлектроцентралей (ТЭЦ), центральных котельных. Если проектом строительства крупных предприятий или районов застройки предусматривается строительство котельной, то оно осуществляется в подготовительный период к строительству и в последующем используется в процессе возведения зданий и сооружений. Если указанных возможностей нет, то организуется создание временного источника получения тепла. В качестве источника могут использоваться передвижные котельные установки, старые паровозы и локомобили.

По рассчитанной потребности в теплоэнергии и мощности котельных и других установок, по выработке тепла на строительной площадке определяют потребность в топливе. Она рассчитывается путем деления расчетного количества тепла на теплотворную способность топлива в тех же единицах.

Для подачи тепла к местам его потребления по возможности используют постоянные сети, предусмотренные проектом. Для этого их прокладывают заблаговременно к началу необходимой подачи тепла. Перед сдачей объектов в эксплуатацию использованные сети дополнительно проверяют и при необходимости восстанавливают. В качестве топлива во временных котельных может использоваться не только мазут, каменный уголь, соляровое масло, но и природный газ. В таком случае предусматривают подключение временных котельных к газопроводу, прокладку газопровода.

Расчет потребности воды. Холодная вода на строительных площадках расходуется на производственные (приготовление бетонов и растворов, полив кирпича и др.), хозяйственные (душевые установки, канализованные туалеты, умывальники, питьевые установки) нужды, а также на случай возникновения пожаров.

Общий расчетный часовой расход воды на строительной площадке, л, по которому определяется диаметр временного водопровода, (2 расч принимается равным максимальному из двух следующих значений:

Q расч = Q с.п. + Q с.м. + Q х.п

Q расч = Q пож

где Q cn , Q cm , Q nx , Q пож - максимальный часовой расход воды соответственно на строительные процессы, строительные машины и транспорт (мойка и др.), хозяйственные и питьевые нужды, на пожаротушение, л.

Максимальные часовые расходы воды на строительные процессы, строительные машины, хозяйственные и питьевые нужды рассчитываются по формулам

где V i - объемы выполнения i-x видов строительно-монтажных работ, которые требуют потребления воды, м 3 ; N j - количество машин, транспортных средств j -го типа (марки), которые требуют расхода воды, ед.; Ч см - численность рабочих, руководителей и специалистов, работающих в смену на строительной площадке в самый напряженный период, чел.; q i q j , q - нормы расхода воды соответственно на единицу объема работ, на одну строительную машину или транспортное средство, на одного человека, принимаемые по справочникам, л; К i K j , К - коэффициенты неравномерности потребления воды при производстве строительных работ, мойке и заправке строительных машин и транспортных средств, санитарно-гигиенических процедурах; t - продолжительность смены, ч.

Ниже приведены нормы расхода воды на производственные нужды (средний расход воды) и значения коэффициентов неравномерности потребления воды в течение смены.

Нормы расхода воды в строительстве на производственные нужды, л

Приготовление 1 м 3:
бетонной смеси 200...300
цементного раствора 170...210
известкового и сложного раствора 250...300
Гашение извести на 1т 2500...3500
Механизированная промывка 1 м 3:
гравия или щебня 750... 1000
Песка 750…1250
Поливка:
кирпича на 1 тыс. шт. в сут 200...250
Бетона на 1 м 3 в сут. 200... 250
Штукатурка стен при готовом растворе на 1 м2 2...6
Устройство щебеночной подготовки под полы с поливкой водой на 1 м3 650...700
Заправка и мойка в сут:
на 1 автомобиль 300... 400
на 1 трактор 150...250
на 1 экскаватор с двигателем внутреннего сгорания 5...10
Коэффициенты неравномерности потребления воды в течение смены
производственные расходы 1,6
Подсобные предприятия 1,25
Силовые установки 1,1
Транспортное хозяйство 2,0
Санитарно-бытовые устройства на стройплощадке 2,7

Норма расхода воды на пожаротушение принимается по согласованию с органами пожарного надзора. Обычно эта норма принимается равной 10 л/с при расположении гидрантов через каждые 80 м по трассе водопровода. По данным максимального расчетного расхода воды в смену рассчитывается диаметр водопровода d, мм. Формула расчета имеет следующий вид:

где Q расч - расчетный расход воды, л/с; v - скорость движения воды по трубам, принимаемая равной 1,5...2,0 м/с при большом расходе воды и 0,7... 1,2 м/с - при малом.

По полученной согласно формуле (1) величине диаметра трубопровода принимается ближайший больший размер трубы для прокладки временного водопровода. В любом случае по требованиям пожарной безопасности диаметр водопровода не должен быть менее 100 мм.

Водопроводная сеть, если предоставляется возможным, должна быть закольцована, с тем чтобы в случае повреждения трубопровода в каком-либо месте вода могла быть подана с другой стороны. Однако допускается и тупиковая схема подачи воды, или комбинированная, при которой одна часть трубопровода закольцована, а другая часть представляет собой тупиковые ветви.

Источниками водоснабжения могут быть существующие водопроводные коллекторы, артезианские скважины, открытые водоемы. Вода из открытых водоемов используется на производственные нужды и при тушении пожаров. В таких случаях прокладываются раздельные системы водоснабжения - производственная хозяйственно-питьевая.

Для отвода воды со строительной площадки предусматриваете устройство временной канализации. В целях уменьшения сетей временной канализации места мойки строительных машин, транспорта, сброса бытовых стоков желательно располагать как можно ближе к существующей канализационной сети.

Электроэнергетика является одной из наиболее быстро развивающихся отраслей народного хозяйства. Связано это с тем, что уровень её развития является одним из решающих факторов успешного развития экономики в целом. Объясняется это тем, что на сегодняшний день электроэнергия – это наиболее универсальный вид энергии.

Энергетика - область общественного производства, охва­тывающая энергетические ресурсы, выработку, преобразова­ние, передачу и использование различных видов энергии. Энергетика каждого государства функционирует в рамках соз­данных соответствующих энергосистем.

Энергосистемы - совокупность энергетических ресурсов всех видов, методов и средств их получения, преобразования, распределения и использования, обеспечивающих снабжение потребителей всеми видами энергии.

В энергосистемы входят:

Электроэнергетическая система;

Система нефте - и газоснабжения;

Система угольной промышленности;

Ядерная энергетика;

Нетрадиционная энергетика.

По сравнению с серединой прошлого столетия выработка электроэнергии увеличилась более чем в 15 раз и сейчас составляет приблизительно 14,5 млрд. кВ∙ч, причем это происходило вследствие роста потребления крупнейшими развивающимися странами, идущими по пути индустриализации. Так, за последние 5 лет энергопотребление в Китае выросло на 76%, Индии – на 31%, Бразилии – на 18%. В 2007 г. по сравнению с 2002 г. абсолютное энергопотребление снизилось в Германии – на 5,8%, в Великобритании – на 2,7%, Швейцарии – на 2,0,во Франции – на 0,6%. В то же время в США энергопотребление продолжало повышаться.

В то же время в США энергопотребление продолжало повышаться. Сейчас они производят 4 млрд. кВ∙ч ежегодно. В Китае оно составляет 7,7% при ежегодной выработке 1,3 млрд. кВ∙ч, в Индии – 6,8%, в Бразилии – 6,1% (по данным на июнь 2008 года BP Statistical Review of World Energy).

По общей выработке электроэнергии регионы можно расположить таким образом: Северная Америка, Западная Европа, Азия, СНГ, где лидерство удерживает Россия с показателем 800 млн. кВ∙ч в год, Латинская Америка, Африка, Австралия.

В странах первой группы большая доля электроэнергии вырабатывается на ТЭС (работающих на угле, мазуте и природном газе). Сюда можно отнести США, большинство стран Западной Европы и Россию.

Во вторую группу входят страны, где почти вся электроэнергия вырабатывается на ТЭС. Это ЮАР, Китай, Польша, Австралия (использующая в основном уголь в качестве топлива) и Мексика, Нидерланды, Румыния (богатые нефтью и газом).

Третья группа образована странами, в которых велика или очень велика (до 99,5% - в Норвегии) доля ГЭС. Это Бразилия (около 80%) , Парагвай, Гондурас, Перу, Колумбия, Швеция, Албания, Австрия, Эфиопия, Кения, Габон, Мадагаскар, Новая Зеландия (около 90%). Но по абсолютным показателям производства энергии на ГЭС в мире лидируют Канада, США, Россия, Бразилия. Гидроэнергетика значительно расширяет свои мощности в развивающихся странах.

Четвертую группу составляют страны с высокой долей атомной энергии. Это Франция, Бельгия и Республика Корея.