Статическое давление. Уравнение Бернулли

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Методическое пособие по теме:

Исследование реологических свойств биологических жидкостей.

Методы исследования кровообращения.

Реография.

Составитель: Преподаватель

Ковалева Л.В.

Основные вопросы темы:

  1. Уравнение Бернулли. Статическое и динамическое давления.
  2. Реологические свойства крови. Вязкость.
  3. Формула Ньютона.
  4. Число Рейнольдса.
  5. Ньютоновская и Неньютоновская жидкость
  6. Ламинарное течение.
  7. Турбулентное течение.
  8. Определение вязкости крови с помощью медицинского вискозиметра.
  9. Закон Пуазейля.
  10. Определение скорости кровотока.
  11. Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
  12. Физические основы баллистокардиографии.

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока - воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т. д.

Выделим в потоке идеальной жидкости трубку тока, а в ней - достаточно малый объем жидкости массой , который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h 1 от нуле­вого уровня; в положении В - соот­ветственно . Сечения трубки тока соответственно S 1 и S 2 .

Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия W p измеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S 2 . Совершаемая при этом работа А р равняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы


Жидкости:

Следовательно, А р = A h + A D

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на , получим

где - плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: - динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление - кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.

Рабочее давление в системе отопления - важнейший параметр, от которого зависит функционирование всей сети. Отклонения в ту или иную сторону от предусмотренных проектом значений не только снижают эффективность отопительного контура, но и ощутимо сказываются на работе оборудования, а в особых случаях могут даже вывести его из строя.

Конечно, определенный перепад давления в системе отопления обусловлен принципом ее устройства, а именно разницей давления в подающем и обратном трубопроводах. Но при наличии более значительных скачков следует принимать незамедлительные меры.

Вопросы терминологии

Давление в сети подразделяется на две составляющие:

  1. Статическое давление. Эта составляющая зависит от высоты столба воды либо другого теплоносителя в трубе или емкости. Статическое давление существует даже в том случае, если рабочая среда находится в покое.
  2. Динамическое давление. Представляет собой силу, которая воздействует на внутренние поверхности системы при движении воды или другой среды.

Выделяют понятие предельного рабочего давления. Это максимально допустимая величина, превышение которой чревато разрушением отдельных элементов сети.

Какое давление в системе следует считать оптимальным?

При проектировании отопления давление теплоносителя в системе рассчитывают исходя из этажности здания, общей длины трубопроводов и количества радиаторов. Как правило, для частных домов и коттеджей оптимальные значения давления среды в отопительном контуре находятся в диапазоне от 1,5 до 2 атм.

Для многоквартирных домов высотой до пяти этажей, подключенных к системе центрального отопления, давление в сети поддерживают на уровне 2-4 атм. Для девяти- и десятиэтажных домов нормальным считается давление в 5-7 атм, а в более высоких постройках - в 7-10 атм. Максимальное давление регистрируется в теплотрассах, по которым теплоноситель транспортируется от котельных к потребителям. Здесь оно достигает 12 атм.

Для потребителей, расположенных на разной высоте и на различном расстоянии от котельной, напор в сети приходится корректировать. Для его понижения применяют регуляторы давления, для повышения - насосные станции. Следует, однако, учитывать, что неисправный регулятор может стать причиной повышения давления на отдельных участках системы. В некоторых случаях при падении температуры эти приборы могут полностью перекрывать запорную арматуру на подающем трубопроводе, идущем от котельной установки.

Во избежание подобных ситуаций настройки регуляторов корректируют таким образом, чтобы полное перекрытие клапанов было невозможно.

Автономные системы отопления

При отсутствии централизованного теплоснабжения в домах устраивают автономные отопительные системы, в которых теплоноситель подогревается индивидуальным котлом небольшой мощности. Если система сообщается с атмосферой через расширительный бачок и теплоноситель в ней циркулирует за счет естественной конвекции, она называется открытой. Если сообщения с атмосферой нет, а рабочая среда циркулирует благодаря насосу, систему называют закрытой. Как уже было сказано, для нормального функционирования таких систем давление воды в них должно составлять примерно 1,5-2 атм. Такой низкий показатель обусловлен сравнительно малой протяженностью трубопроводов, а также небольшим количеством приборов и арматуры, результатом чего становится сравнительно малое гидравлическое сопротивление. Кроме того, из-за небольшой высоты таких домов статическое давление на нижних участках контура редко превышает 0,5 атм.

На этапе запуска автономной системы ее заполняют холодным теплоносителем, выдерживая минимальное давление в закрытых системах отопления 1,5 атм. Не стоит бить тревогу, если через некоторое время после заполнения давление в контуре понизится. Потери давления в данном случае обусловлены выходом из воды воздуха, который растворился в ней при заполнении трубопроводов. Контур следует развоздушить и полностью заполнить теплоносителем, доводя его давление до 1,5 атм.


После разогрева теплоносителя в системе отопления его давление несколько увеличится, достигнув при этом расчетных рабочих значений.

Меры предосторожности

Поскольку при проектировании автономных систем отопления в целях экономии запас прочности закладывают небольшой, даже невысокий скачок давления до 3 атм может вызвать разгерметизацию отдельных элементов или их соединений. Для того чтобы сгладить перепады давления вследствие нестабильной работы насоса или изменения температуры теплоносителя, в закрытой системе отопления устанавливают расширительный бачок. В отличие от аналогичного устройства в системе открытого типа, он не имеет сообщения с атмосферой. Одна или несколько его стенок делаются из упругого материала, благодаря чему бачок выполняет функцию демпфера при скачках давления или гидроударах.

Наличие расширительного бачка не всегда гарантирует поддержание давления в оптимальных пределах. В ряде случаев оно может превысить максимально допустимые значения:

  • при неверном подборе емкости расширительного бачка;
  • при сбоях в работе циркуляционного насоса;
  • при перегреве теплоносителя, что бывает следствием нарушений в работе автоматики котла;
  • вследствие неполного открытия запорной арматуры после проведения ремонта или профилактических работ;
  • из-за появления воздушной пробки (это явление может провоцировать как рост давления, так и его падение);
  • при снижении пропускной способности грязевого фильтра по причине его чрезмерной засоренности.

Поэтому во избежание аварийных ситуаций при устройстве отопительных систем закрытого типа обязательной является установка предохранительного клапана, который сбросит излишки теплоносителя в случае превышения допустимого давления.

Что делать, если падает давление в системе отопления

При эксплуатации автономных отопительных систем наиболее частыми являются такие аварийные ситуации, при которых давление плавно или резко снижается. Они могут быть вызваны двумя причинами:

  • разгерметизацией элементов системы или их соединений;
  • неполадками в котле.

В первом случае следует обнаружить место утечки и восстановить его герметичность. Сделать это можно двумя способами:

  1. Визуальным осмотром. Этот метод применяется в тех случаях, когда отопительный контур проложен открытым способом (не путать с системой открытого типа), то есть все его трубопроводы, арматура и приборы находятся на виду. Прежде всего внимательно осматривают пол под трубами и радиаторами, стараясь обнаружить лужицы воды или следы от них. Кроме того, место утечки можно зафиксировать по следам коррозии: на радиаторах или в местах соединений элементов системы при нарушении герметичности образуются характерные ржавые потеки.
  2. С помощью специального оборудования. Если визуальный осмотр радиаторов ничего не дал, а трубы проложены скрытым способом и не могут быть осмотрены, следует обратиться к помощи специалистов.
    и располагают специальным оборудованием, которое поможет обнаружить утечку и устранить ее, если владелец дома не имеет возможности сделать это самостоятельно. Локализация точки разгерметизации осуществляется достаточно просто: вода из отопительного контура сливается (для таких случаев в нижней точке контура на этапе монтажа врезают сливной кран), затем в него с помощью компрессора закачивается воздух. Место утечки определяется по характерному звуку, который издает просачивающийся воздух. Перед запуском компрессора с помощью запорной арматуры следует изолировать котел и радиаторы.

Если проблемное место представляет собой одно из соединений, его дополнительно уплотняют паклей или ФУМ-лентой, а затем подтягивают. Лопнувший трубопровод вырезают и приваривают на его место новый. Узлы, не подлежащие ремонту, просто меняют.

Если герметичность трубопроводов и других элементов не вызывает сомнений, а давление в закрытой системе отопления все-таки падает, следует поискать причины этого явления в котле. Проводить диагностику самостоятельно не следует, это работа для специалиста, имеющего соответствующее образование. Чаще всего в котле обнаруживаются следующие дефекты:

  • появление микротрещин в теплообменнике из-за гидроударов;
  • заводской брак;
  • выход из строя подпиточного крана.

Весьма распространенной причиной, по которой падает давление в системе, является неправильный подбор емкости расширительного бачка.


Хотя в предыдущем разделе говорилось, что это может стать причиной роста давления, никакого противоречия тут нет. Когда растет давление в системе отопления, срабатывает предохранительный клапан. При этом теплоноситель сбрасывается и его объем в контуре уменьшается. В результате со временем давление будет снижаться.

Контроль давления

Для визуального контроля давления в сети отопления чаще всего применяют стрелочные манометры с трубкой Бредана. В отличие от цифровых приборов, такие манометры не требуют подключения электрического питания. В автоматизированных системах используют электроконтактные датчики. На отводе к контрольно-измерительному прибору следует обязательно устанавливать трехходовой кран. Он позволяет изолировать манометр от сети при проведении обслуживания или ремонта, а также используется для удаления воздушной пробки или сброса прибора на ноль.

Инструкции и правила, регламентирующие эксплуатацию отопительных систем, как автономных, так и централизованных, рекомендуют устанавливать манометры в таких точках:

  1. Перед котельной установкой (или котлом) и на выходе из нее. В этой точке определяется давление в котле.
  2. Перед циркуляционным насосом и после него.
  3. На вводе магистрали отопления в здание или сооружение.
  4. Перед регулятором давления и после него.
  5. На входе и выходе фильтра грубой очистки (грязевика) для контроля уровня его загрязненности.

Все контрольно-измерительные приборы должны проходить регулярную поверку, подтверждающую точность выполняемых ими измерений.

ultra-term.ru

Какое значение давления считают нормой?

Давление в автономно работающей системе отопления частного дома должно составлять 1,5-2 атмосферы. В домах, подключенных к централизованной теплосети, это значение зависит от этажности объекта. В малоэтажных зданиях величина давления в отопительной системе находится в диапазоне 2-4 атмосферы. В домах-девятиэтажках данный показатель равен 5-7 атмосферам. Для систем отопления высотных сооружений оптимальным значением давления считается 7-10 атмосфер. В теплотрассе, идущей под землей от ТЭЦ до точек теплопотребления, теплоноситель подается под давлением в 12 атм.

Для снижения напора горячей воды на нижних этажах многоквартирных домов используют регуляторы давления. Повысить напор теплоносителя на верхних этажах позволяет насосное оборудование.

Влияние температуры теплоносителя

После завершения монтажа отопительного оборудования в частном доме приступают к закачке теплоносителя в систему. При этом создают в сети минимально возможное давление, равное 1,5 атм. Это значение будет увеличиваться в процессе нагрева теплоносителя, так как в соответствии с законами физики происходит его расширение. Изменяя температуру теплоносителя, можно корректировать величину давления в теплосети.


Автоматизировать контроль рабочего давления в отопительной системе можно с помощью установки расширительных баков, не допускающих чрезмерного увеличения напора. Данные устройства включаются в работу при достижении уровня давления, равного 2 атм. Происходит отбор излишков разогретого теплоносителя расширительными баками, благодаря чему напор удерживается на нужном уровне. Может случиться так, что емкости расширительного бака не хватает для отбора излишек воды. При этом давление в системе приближается к критической планке, находящейся на уровне 3 атм. Ситуацию спасает предохранительный клапан, позволяющий сохранить в целости отопительную систему путем освобождения ее от лишнего объема теплоносителя.

При естественной циркуляции теплоносителя создается статическое давление в системе отопления, которое измеряется 1 атмосферой на каждые 10 метров высоты водяного столба. При монтаже циркуляционных насосов к статическому показателю добавляется величина динамического давления, показывающая, с какой силой давит принудительно движущийся теплоноситель на стенки трубопровода. Установка максимального давления в автономной системе отопления производится с учетом особенностей отопительного оборудования, использованного при монтаже. Например, при выборе чугунных батарей надо учитывать, что они рассчитаны на эксплуатацию при давлении, не превышающем 0,6 МПа.

aqua-rmnt.com

Виды давления

Чтобы понять, зачем давление в системе отопления, вспомним курс физики и определим, что же такое давление в системе отопления. По сути, это воздействие жидкости на внутренние стенки элементов системы.

При этом рабочее давление в системе отопления – является давление, которое допускает работу системы при включенном нагревательном приборе и насосе. Следует отметить, что данная величина есть сумма: статическое давление в системе отопления, оказываемое столпом теплоносителя, и динамическое давление, которое возникает при работе циркуляционного насоса.

В таком случае рабочее давление – величина, которая обеспечивает нормальную работу всех компонентов системы (насос, нагревательный прибор, расширительный бак), то есть, оптимальное давление в системе отопления. Следует отметить, что не все типы радиаторов способны выдерживать максимальное давление в системе отопления. Наиболее «стойкими» являются биметаллические радиаторы (то есть, состоящие из двух компонентов – например, медь и сталь).


А вот монометаллические радиаторы полноценно работают лишь при оптимальном показателе давления, превышение которого может сказаться крайне негативно и максимальное рабочее давление системы отопления вызовет трудности. Кроме того, такого типа радиаторы крайне плохо переносят порой возникающие в системе гидравлические удары (резкое скачкообразное повышение давления). Такие удары могут значительно повредить не только радиаторы, но и остальные элементы отопительной системы. В большинстве случаев причиной возникновения гидравлических ударов является банальная халатность, невнимательность обслуживающего персонала. Даже если вы ставили систему самостоятельно – это не исключает появление таких дефектов.

При пробном запуске отопительной системы следует проводить испытание таким образом, как давление воды в системе отопления. То есть – система запускается с давлением, которое превышает нормальное рабочее примерно в 1,5 раз.

Это позволяет не только проверить качество радиаторов, но и обнаружить незначительные протечки и дефекты системы (если они присутствуют). Такой простой метод позволяет исправить некоторые неполадки до начала отопительного сезона, определив минимальное давление в системе отопления.

В большинстве многоэтажных домов уровень давления является довольно высоким. И проведение таких проверок – важная необходимость, которая позволяет следить за функциональностью системы. Примечательно, что снижение в ней давления на уровень, который совсем немного ниже рабочего, может привести к серьезной поломке. Мало кто знает, но в многоэтажных домах давление теплоносителя в системе отопления может достигать 16 атмосфер и выше.

Воздействие на систему давлением

Есть два возможных варианта проверки функциональности отопительной системы при помощи давления. В первом случае проверка проходит отдельными участками. Конечно, это более кропотливый и продолжительный процесс, но, в то же время, – он позволяет более тщательно исследовать целостность участка системы и давление в трубах отопления. Кроме того, в случае обнаружения поломки исправить ее намного проще – ведь участок уже перекрыт. Соответственно – нет необходимости тратить время на определение местонахождения неисправности по всей системе, которые датчик давления в системе отопления вам не покажет.


Второй метод состоит именно в проверки всей системы одновременно. Пожалуй, единственное преимущество данного метода – более короткие сроки проведения испытания.

Вне зависимости от того, какой принцип проведения испытания выбран, проходит оно по единой схеме.

  • из системы (или отдельного ее сегмента) удаляется воздух.
  • подается допустимое давление в системе отопления, которое в 1,5 раз превышает рабочее.

После того, как завершается проверка давлением, система проходит еще одно испытание – на герметичность. Оно выполняется в два этапа. В первую очередь, система заполняется холодным теплоносителем. Далее подключается нагревательный элемент, и система наполняется горячим теплоносителем. Разумеется, испытания считаются успешными в том случае, если не возникло протечки. В случае если поломка есть – производится ремонт. Только после этого можно с уверенностью сказать, что система полностью готова к отопительному сезону и что выполнена норма давления в трубах отопления.

otoplenie-doma.org

Ознакомительная информация по теме

Первым делом предлагаем рассмотреть, зачем создавать в трубопроводах избыточное давление (выше атмосферного) и в чем оно измеряется. Начнем с конца: величину напора воды в закрытой системе отопления принято отображать в таких единицах:

  • 1 Бар = 10 м водного столба;
  • 1 МПа равняется 10 Бар или 100 м вод. ст.;
  • 1 кгс/см² – то же, что и 1 техническая атмосфера (Атм.) = 0.98 Бар.

Для справки. Килограмм-сила на см² — размерность, часто используемая во времена СССР. На данный момент давление принято измерять в более удобных метрических единицах – МПа или Bar.


Упрощенная схема отопления 3-этажного особняка

Далее, представьте себе трехэтажный коттедж с высотой потолков 3 м, который необходимо обогревать в зимний период. Для этого на обоих этажах выполняется установка батарей, подключенных к общему стояку, идущему от котла, что и показано на схеме. Реальное давление в получившейся закрытой системе отопления сложится из трех составляющих:

  1. Столб воды в трубопроводе давит с силой, равной его высоте. В нашем примере это 6 м или 0.6 Бар (0.06 МПа).
  2. Напор, создаваемый циркуляционным насосом. Он заставляет теплоноситель двигаться с нужной скоростью и преодолевать сопротивление трех сил: тяжести, трения жидкости о стенки труб и препятствия в виде арматуры и фитингов (сужений, тройников, поворотов и тому подобное).
  3. Дополнительный напор, возникающий от теплового расширения жидкости. Практика показывает, что холодная вода с температурой 10 °С после нагрева до 100 °С прибавляет около 5% от первоначального объема.

Примечание. Статическое давление столба жидкости изменяется в зависимости от места измерения. При отключенном насосе манометр в нижней точке системы покажет максимальное значение – 0.6 Бар, а в верхней – ноль.


Тепловое расширение жидкости

Очень важный момент. Чтобы подать в помещения требуемое количество тепла, необходимо обеспечить нужную температуру воды и ее расход – два основных параметра работы водяного отопления. Возникающий при этом напор – лишь следствие работы системы, а не причина. Теоретически, он может быть каким угодно, лишь бы выдержали радиаторы и котельная установка.

Отсюда возникает понятие, что такое рабочее давление в системе отопления: это максимально допустимое значение, прописанное в технической документации оборудования – котла или батарей. Нормативные документы требуют, чтобы в частных домах оно не превышало 0.3 МПа, хотя некоторые дешевые агрегаты не способны выдержать и 0.2 МПа.

Зачем поднимать давление

Напор в подающей магистрали выше, чем в обратной линии. Этот перепад характеризует эффективность работы отопления следующим образом:

  1. Небольшой перепад между подачей и обраткой дает понять, что теплоноситель успешно преодолевает все сопротивления и отдает расчетное количество энергии помещениям.
  2. Повышенный перепад давления указывает на увеличенное сопротивление участка, снижение скорости течения и чрезмерное охлаждение. То есть, наблюдается недостаточный расход воды и теплоотдача в комнаты.

Для справки. Согласно нормативам, оптимальная разность напора в подающем и обратном трубопроводе должна лежать в пределах 0.05-0.1 Bar, максимум – 0.2 Bar. Если показания 2 манометров, установленных на магистрали, отличаются больше, то система спроектирована неправильно либо нуждается в ремонте (промывке).

Чтобы избежать высокого перепада на длинных ветвях теплоснабжения с большим количеством батарей, оснащенных термостатическими вентилями, в начале магистрали устанавливается автоматический регулятор расхода, как показано на схеме.

Итак, избыточное давление в закрытой отопительной сети создается по таким причинам:

  • для обеспечения принудительного движения теплоносителя с нужной скоростью и расходом;
  • чтобы контролировать состояние системы по манометру и вовремя ее подпитывать либо ремонтировать;
  • теплоноситель под давлением разогревается быстрее, а в случае аварийного перегрева закипает при более высокой температуре.

Нас интересует пункт второй списка – показания манометра как характеристика исправности и работоспособности системы отопления. Именно они интересуют домовладельцев и хозяев квартир, занимающихся самостоятельным обслуживанием домашних коммуникаций и оборудования.

Напор в трубах многоквартирных домов

Из содержания предыдущих разделов становится понятно, что величина набора в трубопроводах центрального отопления высотных домов зависит от этажа, на котором расположена квартира. Ситуация следующая: если жильцы первых двух этажей могут приблизительно ориентироваться по манометру, установленному в подвальном тепловом пункте, то реальное давление в остальных жилищах остается неизвестным, поскольку оно падает с каждым метром подъема воды.

Примечание. В новостройках с поквартирной разводкой отопления от общего стояка, где оборудованы поэтажные тепловые пункты, можно контролировать давление теплоносителя на входе в каждую квартиру.

Более того, знание величины напора в централизованной сети не несет практической пользы, поскольку хозяин не может на него повлиять. Хотя некоторые рассуждают так: если давление в магистрали упало, значит, тепла поступает меньше, что является ошибкой. Простой пример: перекройте в подвале кран обратной линии и вы увидите скачок стрелки манометра, но при этом движение воды остановится и подача тепловой энергии прекратится.


Так выглядит тепловой пункт на подъезд

Теперь конкретно о цифрах. Диаметры сетей теплоснабжения и мощность подающих от котельной насосов рассчитывается так, чтобы обеспечить подъем нужного количества теплоносителя вплоть до последнего этажа. Это значит, что на входе в многоэтажный дом рабочее давление в системе отопления составит:

  • в старых пятиэтажках, где по сей день встречаются чугунные радиаторы, - не более 7 Бар;
  • в девятиэтажных зданиях советской постройки минимальный показатель составляет 5 Bar, а максимальный зависит от близости котельной с насосами, но не выше 10 Bar;
  • в высотках – не более 15 Бар.

Для справки. Минимум 1 раз в году трубопроводы и отопительные приборы должны подвергаться испытаниям под напором, на 25% больше рабочего. Но в реальной жизни коммунальщики не рискуют проверять домовые системы и ограничиваются испытаниями наружных сетей теплоснабжения.

Представленная информация несет пользу только в плане выбора новых радиаторов и полимерных труб. Понятно, что в зданиях повышенной этажности не следует монтировать чугунные и стальные панельные батареи, рассчитанные максимум на 1 МПа, о чем подробно рассказывается в нашем руководстве по выбору и на видео от эксперта:

Показатели давления в частном доме и причины его падения

В закрытых системах отопления загородных домов и коттеджей принято выдерживать следующие величины давления:

Важный момент. Мы не зря указали, какое давление следует обеспечить при холодной системе отопления. Дело в том, что подавляющее большинство импортных газовых котлов, оборудованных современной автоматикой, рассчитано на запуск при минимальном напоре 0.8-1 Бар и при его отсутствии просто не включится.

О том, как правильно удалить воздух из отопительных магистралей и создать потребную величину давления, рассказывается в отдельной инструкции. Здесь же мы перечислим причины, почему после благополучного пуска в эксплуатацию показатели напора могут снижаться, вплоть до автоматического отключения настенного котла:

  1. Из трубопроводной сети, теплого пола и каналов отопительного оборудования выходят остатки воздуха. Его место занимает вода, что и фиксирует манометр падением до 1-1.3 Бар.
  2. Из-за негерметичности золотника опорожнилась воздушная камера расширительного бака. Мембрана вытягивается в обратную сторону и емкость заполняется водой. После нагрева давление в системе подскакивает до критического, отчего происходит сброс теплоносителя через предохранительный клапан и напор снова падает до минимума.
  3. То же, только после прорыва мембраны расширительного бачка.
  4. Мелкие протечки на стыках трубопроводной арматуры, фитингов либо самих труб в результате повреждения. Пример – греющие контуры теплых полов, где течь может долго оставаться незаметной.
  5. Прохудился змеевик бойлера косвенного нагрева или буферной емкости. Тогда наблюдаются скачки давления в зависимости от работы водоснабжения: краны открыты – показания манометра падают, закрыты – поднимаются (водопровод поддавливает через трещину теплообменника).

Подробнее о причинах перепадов напора и способах их устранения расскажет мастер в своем видео:

Заключение

Как видите, важность давления в централизованных сетях теплоснабжения несколько преувеличена. Пусть даже хозяин квартиры осведомлен, что у него в трубах должно быть 0.7 МПа, но это ему мало что дает. Кроме правильного подбора радиаторов и труб для замены магистралей.


Подпитка ручным насосом

В частном доме картина иная: показания манометра, да еще лужица около предохранительного клапана служит индикатором мелких либо существенных неисправностей. Эти вещи необходимо отслеживать и вовремя реагировать подпиткой системы, чтобы поднять давление до нормы. Не стоит забывать и о расширительном бачке – вовремя подкачивать воздушную камеру и следить за целостностью мембраны.

otivent.com

Зачем давление в системе

Многих потребителей интересует, зачем давление в системе отопления и что от него зависит. Дело в том, что оно оказывает непосредственное влияние на эффективность и качество обогрева помещений дома. Благодаря рабочему напору удается добиться наибольшей производительности теплоснабжающей системы по причине гарантированного поступления теплоносителя в трубопроводы и радиаторы в каждую квартиру многоэтажного дома.

Постоянное и стабильное давление в городской системе отопления позволяет сократить потери тепла и доставлять теплоноситель к потребителям почти такой же температуры, как и при нагреве воды в теплоагрегате котельной (прочитайте также: «Температура теплоносителя в системе отопления: нормы»).

Виды рабочего давления в отопительной конструкции

Напор в конструкции обогрева многоэтажного строения бывает нескольких видов:

  1. Статическое давление системы отопления является показателем того, с каким усилием объем жидкости в зависимости от высоты воздействует на трубопроводы и радиаторы. При этом при проведении расчетов уровень напора на поверхности жидкости равен нулю.
  2. Динамическое давление возникает в процессе движения жидкого теплоносителя по трубам. Оно воздействует на трубопровод и радиаторы изнутри.
  3. Допустимое (максимальное) рабочее давление в системе отопления – это параметр нормального и безаварийного функционирования теплоснабжающей конструкции.

Показатели нормального давления

Во всех отечественных многоэтажных домах, построенных как несколько десятков лет тому назад, так и в новостройках, система обогрева функционирует по закрытым схемам при помощи принудительного передвижения теплоносителя. Идеальными считаются условия эксплуатации, когда работает система отопления под давлением, равным 8-9,5 атмосферы. Но в старых домах в теплоснабжающей конструкции может наблюдаться потеря давления, а соответственно показатели напора снижаться до отметки 5 -5,5 атмосферы. Читайте также: «Что такое перепад давления в системе отопления».

Выбирая трубы и радиаторы для замены их в квартире, расположенной в многоэтажном доме, следует учитывать начальные показатели. Иначе отопительное оборудование будет работать нестабильно и даже возможно полное разрушение схемы теплоснабжения, которая стоит немалых денег.

То, какое давление в отопительной системе многоэтажного здания должно быть, диктуют стандарты и другие регулирующие документы.

Как правило, достичь необходимых параметров по ГОСТу невозможно, поскольку на рабочие показатели оказывается влияние со стороны разных факторов:

  1. Мощность оборудования , необходимого для подачи теплоносителя. Параметры давления в отопительной системе многоэтажки определяются на теплопунктах, где происходит нагрев теплоносителя для подачи через трубы в радиаторы.
  2. Состояние оборудования . И на динамическое, и на статическое давление в теплоснабжающей конструкции непосредственно влияет уровень износа элементов котельной таких, как генераторы теплоты и насосов. Немаловажное значение имеет расстояние от дома до теплопункта.
  3. Диаметр трубопроводов в квартире . Если при проведении ремонта своими руками владельцы квартиры установили трубы большего диаметра, чем на входном трубопроводе, то произойдет снижение параметров давления.
  4. Расположение отдельной квартиры в многоэтажке . Безусловно, необходимое значение напора определяют, согласно нормам и требованиям, но на практике немало зависит от того, на каком этаже находится квартира и ее расстояние от общего стояка. Даже когда жилые комнаты располагаются недалеко от стояка, натиск теплоносителя в угловых помещениях всегда ниже, поскольку там часто имеется крайняя точка трубопроводов.
  5. Степень износа труб и батарей . Когда элементы отопительной системы, расположенные в квартире, прослужили не один десяток лет, то некоторого снижения параметров оборудования и производительности не избежать. Когда имеют место подобные проблемы, желательно изначально произвести замену изношенных труб и радиаторов и тогда удастся избежать аварийных ситуаций.

Испытательное давление

Жильцам многоквартирных домов известно, каким образом коммунальные службы совместно со специалистами энергетических компаний проверяют давление теплоносителя в отопительной системе. Обычно они до начала отопительного сезона подают в трубы и батареи теплоноситель под напором, величина которого приближается к критическим отметкам.

Используют давление при испытании системы отопления для того, чтобы протестировать работоспособность всех элементов теплоснабжающей конструкции в экстремальных условиях и выяснить, насколько эффективно будет передаваться тепло от котельной в многоэтажный дом.

Когда подается испытательное давление системы отопления нередко ее элементы приходят в аварийное состояние и требуют ремонта, поскольку изношенные трубы начинают протекать и в радиаторах образуются пробоины. Избежать подобных неприятностей поможет своевременная замена устаревшего отопительного оборудования в квартире.

При проведении испытаний контроль параметров выполняют при помощи специальных приборов, установленных в самой низкой (обычно это подвал) и самой высокой (чердачное помещение) точках многоэтажки. Все произведенные замеры в дальнейшем анализируют специалисты. При наличии отклонений необходимо обнаружить неполадки и немедленно их устранить.

Проверка герметичности системы отопления

Для обеспечения эффективной и надежной работы системы обогрева, не только проверяют давление теплоносителя, но и тестируют оборудование на герметичность. Как это происходит, видно на фото. В результате можно проконтролировать наличие протечек и предотвратить поломку оборудования в самый ответственный момент.

Проверку герметичности осуществляют в два этапа:

  • испытание с использованием холодной воды. Трубопроводы и батареи в многоэтажном здании наполняют теплоносителем, не нагревая его, и замеряют показатели давления. При этом его значение в течение первых 30 минут не может составить менее стандартных 0,06 МПа. Через 2 часа потери не могут быть более 0,02 МПа. При отсутствии порывов отопительная система многоэтажки дальше будет функционировать без проблем;
  • испытание с применением горячего теплоносителя. Отопительную систему тестируют до начала отопительного периода. Воду подают под определенным сдавливанием, его значение должно быть наиболее высоким для оборудования.

Чтобы добиться оптимального значения давления в системе отопления расчет схемы ее обустройства лучше всего доверить специалистам-теплотехникам. Сотрудники таких фирм не только могут произвести соответствующие испытания, но еще и промоют все ее элементы.

Тестирование проводят перед началом запуска отопительного оборудования, иначе цена ошибки бывает слишком дорогостоящей, а, как известно, аварию устранить при минусовых температурах довольно сложно.

От параметров давления в схеме теплоснабжения многоэтажного дома зависит, насколько комфортно можно проживать в каждой комнате. В отличие от собственного домовладения с автономной системой обогрева в многоэтажке у владельцев квартир не имеется возможность самостоятельно регулировать параметры отопительной конструкции, в том числе температуру и подачу теплоносителя.

Но жильцы многоэтажных домов при желании могут установить такие измерительные приборы как манометры в подвале и в случае малейших отклонений давления от нормы сообщать об этом в соответствующие коммунальные службы. Если после всех предпринятых действий потребители по-прежнему недовольны температурой в квартире, возможно, им следует подумать над организацией альтернативного отопления.

Как правило, напор в трубопроводах отечественных многоэтажных зданий не превышает предельные нормы, но все же установка индивидуального манометра не будет лишней.

Лекция 2. Потери давления в воздуховодах

План лекции. Массовый и объемный потоки воздуха. Закон Бернулли. Потери давления в горизонтальном и вертикальном воздуховодах: коэффициент гидравлического сопротивления, динамический коэффициент, число Рейнольдса. Потери давления в отводах, местных сопротивлениях, на разгон пылевоздушной смеси. Потери давления в высоконапорной сети. Мощность пневмотранспортной системы.

2. Пневматические параметры течения воздуха
2.1. Параметры воздушного потока

Под действием вентилятора в трубопроводе создается воздушный поток. Важными параметрами воздушного потока являются его скорость, давление, плотность, массовый и объемный расходы воздуха. Расходы воздуха объемный Q , м 3 /с, и массовый М , кг/с, связаны между собой следующим образом:

;
, (3)

где F – площадь поперечного сечения трубы, м 2 ;

v – скорость воздушного потока в заданном сечении, м/с;

ρ – плотность воздуха, кг/м 3 .

Давление в воздушном потоке различают статическое, динамическое и полное.

Статическим давлением Р ст принято называть давление частиц движущегося воздуха друг на друга и на стенки трубопровода. Статическое давление отражает потенциальную энергию воздушного потока в том сечении трубы, в котором оно измерено.

Динамическое давление воздушного потока Р дин , Па, характеризует его кинетическую энергию в сечении трубы, где оно измерено:

.

Полное давление воздушного потока определяет всю его энергию и равно сумме статического и динамического давлений, измеренных в одном и том же сечении трубы, Па:

Р = Р ст + Р д .

Отсчет давлений можно вести либо от абсолютного вакуума, либо относительно атмосферного давления. Если давление отсчитывается от нуля (абсолютного вакуума), то оно называется абсолютным Р . Если давление измерять относительно давления атмосферы, то это будет относительное давление Н .

Н = Н ст + Р д .

Атмосферное давление равно разности полных давлений абсолютного и относительного

Р атм = Р Н .

Давление воздуха измеряют Па (Н/м 2), мм водяного столба или мм ртутного столба:

1 мм вод. ст. = 9,81 Па; 1 мм рт. ст. = 133,322 Па. Нормальное состояние атмосферного воздуха соответствует следующим условиям: давление 101325 Па (760 мм рт. ст.) и температура 273К.

Плотность воздуха есть масса единицы объема воздуха. По уравнению Клайперона плотность чистого воздуха при температуре 20ºС

кг/м 3 .

где R – газовая постоянная, равная для воздуха 286,7 Дж/(кг  К); T – температура по шкале Кельвина.

Уравнение Бернулли. По условию неразрывности воздушного потока расход воздуха постоянен для любого сечения трубы. Для сечений 1, 2 и 3 (рис. 6) это условие можно записать так:

;

При изменении давления воздуха в пределах до 5000 Па плотность его остается практически постоянной. В связи с этим

;

Q 1 = Q 2 = Q 3 .

Изменение давления воздушного потока по длине трубы подчиняется закону Бернулли. Для сечений 1, 2 можно написать

где р 1,2 – потери давления, вызванные сопротивлением потока о стенки трубы на участке между сечениями 1 и 2, Па.

С уменьшением площади поперечного сечения 2 трубы скорость воздуха в этом сечении увеличится, так что объемный расход останется неизменным. Но с увеличением v 2 возрастет динамическое давление потока. Для того, чтобы равенство (5) выполнялось, статическое давление должно упасть ровно на столько, на сколько увеличится динамическое давление.

При увеличении площади сечения динамическое давление в сечении упадет, а статическое ровно на столько же увеличится. Полное же давление в сечении останется величиной неизменной.

2.2. Потери давления в горизонтальном воздуховоде

Потеря давления на трение пылевоздушного потока в прямом воздуховоде с учетом концентрации смеси, определяется по формуле Дарси-Вейсбаха, Па

, (6)

где l – длина прямолинейного участка трубопровода, м;

 - коэффициент гидравлического сопротивления (трения);

d

р дин – динамическое давление, исчисляемое по средней скорости воздуха и его плотности, Па;

К – комплексный коэффициент; для трасс с частыми поворотами К = 1,4; для трасс прямолинейных с небольшим количеством поворотов
, где d – диаметр трубопровода, м;

К тм – коэффициент, учитывающий вид транспортируемого материала, значения которого приведены ниже:

Коэффициент гидравлического сопротивления  в инженерных расчетах определяют по формуле А.Д. Альтшуля


, (7)

где К э – абсолютная эквивалентная шероховатость поверхности, К э = (0,0001… 0,00015) м;

d – внутренний диаметр трубы, м;

R е – число Рейнольдса.

Число Рейнольдса для воздуха

, (8)

где v – средняя скорость воздуха в трубе, м/с;

d – диаметр трубы, м;

 - плотность воздуха, кг/м 3 ;

1 – коэффициент динамической вязкости, Нс/м 2 ;

Значение динамического коэффициента вязкости для воздуха находят по формуле Милликена, Нс/м2

 1 = 17,11845  10 -6 + 49,3443  10 -9 t , (9)

где t – температура воздуха, С.

При t = 16 С  1 = 17,11845  10 -6 + 49,3443  10 -9 16 =17,910 -6 .

2.3. Потери давления в вертикальном воздуховоде

Потери давления при перемещении аэросмеси в вертикальном трубопроводе, Па:

, (10)

где - плотность воздуха, = 1,2 кг/м 3 ;

g = 9,81 м/с 2 ;

h – высота подъема транспортируемого материала, м.

При расчете аспирационных систем, в которых концентрация аэросмеси  0,2 кг/кг значение р под учитывают только при h  10 м. Для наклонного трубопровода h = l sin, где l – длина наклонного участка, м;  - угол наклона трубопровода.

2.4. Потери давления в отводах

В зависимости от ориентации отвода (поворота воздуховода на некоторый угол) в пространстве различают два вида отводов: вертикальные и горизонтальные.

Вертикальные отводы обозначают начальными буквами слов, отвечающих на вопросы по схеме: из какого трубопровода, куда и в какой трубопровод направляется аэросмесь. Различают следующие отводы:

– Г-ВВ – транспортируемый материал движется из горизонтального участка вверх в вертикальный участок трубопровода;

– Г-НВ – то же из горизонтального вниз в вертикальный участок;

– ВВ-Г – то же из вертикального вверх в горизонтальный;

– ВН-Г – то же из вертикального вниз в горизонтальный.

Горизонтальные отводы бывают только одного типа Г-Г.

В практике инженерных расчетов потерю давления в отводе сети находят по следующим формулам.

При значениях расходной концентрации  0,2 кг/кг

где
- сумма коэффициентов местного сопротивления отводов ветви (табл. 3) при R / d = 2, где R – радиус поворота осевой линии отвода; d – диаметр трубопровода; динамическое давление воздушного потока .

При значениях   0,2 кг/кг

где
- сумма условных коэффициентов, учитывающих потери давления на поворот и разгон материала за отводом.

Значения о усл находят по величине табличных т (табл. 4) с учетом коэффициента на угол поворота К п

о усл = т К п . (13)

Поправочные коэффициенты К п берут в зависимости от угла поворота отводов :

К п

Таблица 3

Коэффициенты местного сопротивления отводов о при R / d = 2

Конструкция отводов

Угол поворота, 

Отводы гнутые, штампованные, сварные из 5 звеньев и 2 стаканов

In order to provide you with the best online experience this website uses cookies. Delete cookies

In order to provide you with the best online experience this website uses cookies.

By using our website, you agree to our use of cookies.

Information cookies

Cookies are short reports that are sent and stored on the hard drive of the user"s computer through your browser when it connects to a web. Cookies can be used to collect and store user data while connected to provide you the requested services and sometimes tend not to keep. Cookies can be themselves or others.

There are several types of cookies:

  • Technical cookies that facilitate user navigation and use of the various options or services offered by the web as identify the session, allow access to certain areas, facilitate orders, purchases, filling out forms, registration, security, facilitating functionalities (videos, social networks, etc..).
  • Customization cookies that allow users to access services according to their preferences (language, browser, configuration, etc..).
  • Analytical cookies which allow anonymous analysis of the behavior of web users and allow to measure user activity and develop navigation profiles in order to improve the websites.

So when you access our website, in compliance with Article 22 of Law 34/2002 of the Information Society Services, in the analytical cookies treatment, we have requested your consent to their use. All of this is to improve our services. We use Google Analytics to collect anonymous statistical information such as the number of visitors to our site. Cookies added by Google Analytics are governed by the privacy policies of Google Analytics. If you want you can disable cookies from Google Analytics.

However, please note that you can enable or disable cookies by following the instructions of your browser.

Вопрос 21. Классификация приборов измерения давления. Устройство электроконтактного манометра, способы его поверки.

Во многих технологических процессах давление является одним из основных параметров, определяющих их протекание. К ним относятся: давление в автоклавах и пропарочных камерах, давление воздуха в технологических трубопроводах и т. п.

Определение величины давления

Давление – это величина, характеризующая действие силы на единицу поверхности.

При определении величины давления принято различать давление абсолютное, атмосферное, избыточное и вакуумметрическое.

Абсолютное давление (р а ) – это давление внутри какой-либо системы, под которым находится газ, пар или жидкость, отсчитываемое от абсолютного нуля.

Атмосферное давление (р в ) создается массой воздушного столба земной атмосферы. Оно имеет переменную величину, зависящую от высоты местности над уровнем моря, географической широты и метеорологических условий.

Избыточное давление определяется разностью между абсолютным давлением (р а) и атмосферным давлением (р в):

р изб = р а – р в.

Вакуум (разрежение) – это такое состояние газа, при котором его давление меньше атмосферного. Количественно вакуумметрическое давление определяется разностью между атмосферным давлением и абсолютным давлением внутри вакуумной системы:

р вак = р в – р а

При измерении давления в движущихся средах под понятием давления понимают статическое и динамическое давление.

Статическое давление (р ст ) – это давление, зависящее от запаса потенциальной энергии газовой или жидкостной среды; определяется статическим напором. Оно может быть избыточным или вакуумметрическим, в частном случае может быть равно атмосферному.

Динамическое давление (р д ) – это давление, обусловленное скоростью движения потока газа или жидкости.

Полное давление (р п ) движущейся среды слагается из статического (р ст) и динамического (р д) давлений:

р п = р ст + р д.

Единицы измерения давления

В системе единиц СИ за единицу давления принято считать действие силы в 1 H (ньютон) на площадь 1 м², т. е. 1 Па (Паскаль). Так как эта единица очень мала, для практических измерений применяют килопаскаль (кПа = 10 3 Па) или мегапаскаль (МПа=10 6 Па).

Кроме того, на практике применяют такие единицы давления:

    миллиметр водяного столба (мм вод. ст.);

    миллиметр ртутного столба (мм рт. ст.);

    атмосфера;

    килограмм силы на квадратный сантиметр (кг·с/см²);

При этом соотношение между этими величинами следующее:

1 Па = 1 Н/ м²

1 кг·с/см² = 0,0981 МПа = 1 атм

1 мм вод. ст. = 9,81 Па = 10 -4 кг·с/см² = 10 -4 атм

1 мм рт. ст. = 133,332 Па

1 бар = 100 000 Па = 750 мм рт. ст.

Физическое объяснение некоторых единиц измерения:

    1 кг·с/см² – это давление столба воды высотой 10м;

    1 мм рт. ст. – это величина уменьшения давления при подъеме на каждые 10м высоты.

Методы измерения давления

Широкое использование давления, его перепада и разрежения в технологических процессах вызывает необходимость применять разнообразные методы и средства измерения и контроля давления.

Методы измерения давления основаны на сравнении сил измеряемого давления с силами:

    давления столба жидкости (ртути, воды) соответствующей высоты;

    развиваемыми при деформации упругих элементов (пружин, мембран, манометрических коробок, сильфонов и манометрических трубок);

    тяжести грузов;

    упругими силами, возникающими при деформации некоторых материалов и вызывающими электрические эффекты.

Классификация приборов измерения давления

Классификация по принципу действия

В соответствии с указанными методами, приборы измерения давления можно разделить, по принципу действия на:

    жидкостные;

    деформационные;

    грузопоршневые;

    электрические.

Наибольшее распространение в промышленности получили деформационные средства измерения. Остальные, в большинстве своем, нашли применение в лабораторных условиях в качестве образцовых или исследовательских.

Классификация в зависимости от измеряемой величины

В зависимости от измеряемой величины средства измерения давления подразделяются на:

    манометры – для измерения избыточного давления (давления выше атмосферного);

    микроманометры (напоромеры) – для измерения малых избыточных давлений (до 40 кПа);

    барометры – для измерения атмосферного давления;

    микровакуумметры (тягомеры) – для измерения малых разряжений (до -40 кПа);

    вакуумметры – для измерения вакуумметрического давления;

    мановакуумметры – для измерения избыточного и вакуумметрического давления;

    напоротягомеры – для измерения избыточного (до 40 кПа) и вакуумметрического давления (до -40 кПа);

    манометры абсолютного давления – для измерения давления, отсчитываемого от абсолютного нуля;

    дифференциальные манометры – для измерения разности (перепада) давлений.

Жидкостные средства измерения давления

Действие жидкостных средств измерений основано на гидростатическом принципе, при котором измеряемое давление уравновешивается давлением столба затворной (рабочей) жидкости. Разница уровней в зависимости от плотности жидкости является мерой давления.

U -образный манометр – это простейший прибор для измерения давления или разности давлений. Представляет собой согнутую стеклянную трубку, заполненную рабочей жидкостью (ртутью или водой) и прикрепленную к панели со шкалой. Один конец трубки соединяется с атмосферой, а другой подключается к объекту, где измеряется давление.

Верхний предел измерения двухтрубных манометров составляет 1…10кПа при приведенной погрешности измерения 0,2…2%. Точность измерения давления этим средством будет определяться точностью отсчета величины h(величины разности уровня жидкости), точностью определения плотности рабочей жидкости ρ и не зависеть от сечения трубки.

Жидкостные средства измерения давления характерны отсутствием дистанционной передачи показаний, небольшими пределами измерений и низкой прочностью. В то же время благодаря своей простоте, дешевизне и относительно высокой точности измерений они широко распространены в лабораториях и реже в промышленности.

Деформационные средства измерения давления

Основаны на уравновешивании силы, создаваемой давлением или вакуумом контролируемой среды на чувствительный элемент, силами упругих деформаций различного рода упругих элементов. Эта деформация в виде линейных или угловых перемещений передается регистрирующему устройству (показывающему или самопишущему) или преобразуется в электрический (пневматический) сигнал для дистанционной передачи.

В качестве чувствительных элементов используют одновитковые трубчатые пружины, многовитковые трубчатые пружины, упругие мембраны, сильфонные и пружинно-сильфонные.

Для изготовления мембран, сильфонов и трубчатых пружин применяются бронза, латунь, хромоникелевые сплавы, отличающиеся достаточно высокой упругостью, антикоррозийностью, малой зависимостью параметров от изменения температуры.

Мембранные приборы применяются для измерения небольших давлений (до 40кПа) нейтральных газовых средств.

Сильфонные приборы предназначены для измерения избыточного и вакуумметрического давления неагрессивных газов с пределами измерений до 40кПа, до 400кПа (как манометры), до 100кПа (как вакуумметры), в интервале -100…+300кПа (как мановакуумметрические).

Трубчато-пружинные приборы принадлежат к числу наиболее распространенных манометров, вакуумметров и мановакуумметров.

Трубчатая пружина представляет собой тонкостенную, согнутую по дуге окружности, трубку (одно- или многовитковую) с запаенным одним концом, которая изготавливается из медных сплавов или нержавеющей стали. При увеличении или уменьшении давления внутри трубки пружина раскручивается или скручивается на определенный угол.

Манометры рассмотренного типа выпускаются для верхних пределов измерения 60…160кПа. Вакуумметры выпускаются со шкалой 0…100кПа. Мановакуумметры имеют пределы измерений: от -100кПа до +(60кПа…2,4МПа). Класс точности для рабочих манометров 0,6…4, для образцовых – 0,16; 0,25; 0,4.

Грузопоршневые манометры применяются как устройства для поверки механических контрольных и образцовых манометров среднего и высокого давления. Давление в них определяется по калиброванным грузам, помещаемым на поршне. В качестве рабочей жидкости применяют керосин, трансформаторное или касторовое масло. Класс точности грузопоршневых манометров 0,05 и 0,02%.

Электрические манометры и вакуумметры

Действие приборов этой группы основано на свойстве некоторых материалов изменять свои электрические параметры под действием давления.

Пьезоэлектрические манометры применяют при измерении пульсирующего с высоко частотой давления в механизмах с допустимой нагрузкой на чувствительный элемент до 8·10 3 ГПа. Чувствительным элементом в пьезоэлектрических манометрах, преобразующим механические напряжения в колебания электрического тока, являются пластины цилиндрической или прямоугольной формы толщиной в несколько миллиметров из кварца, титаната бария или керамики типа ЦТС (цирконат-титонат свинца).

Тензометрические манометры имеют малые габаритные размеры, простое устройство, высокую точность и надежность в работе. Верхний предел показаний 0,1…40Мпа, класс точности 0,6; 1 и 1,5. Применяются в сложных производственных условиях.

В качестве чувствительного элемента в тензометрических манометрах применяются тензорезисторы, принцип действия которых основан на изменении сопротивления под действием деформации.

Давление в манометре измеряется схемой неуравновешенного моста.

В результате деформации мембраны с сапфировой пластинкой и тензорезисторами возникает разбаланс моста в виде напряжения, которое с помощью усилителя преобразуется в выходной сигнал, пропорциональный измеряемому давлению.

Дифференциальные манометры

Применяются для измерения разности (перепада) давления жидкостей и газов. Они могут быть использованы для измерения расхода газов и жидкостей, уровня жидкости, а также для измерения малых избыточных и вакуумметрических давлений.

Мембранные дифференциальные манометры являются бесшакальными первичными измерительными приборами, предназначенными для измерения давления неагрессивных сред, преобразующими измеряемую величину в унифицированный аналоговый сигнал постоянного тока 0…5мА.

Дифференциальные манометры типа ДМ выпускаются на предельные перепады давления 1,6…630кПа.

Сильфонные дифференциальные манометры выпускаются на предельные перепады давления 1…4кПа, они рассчитаны на предельно допустимое рабочее избыточное давление 25кПа.

Устройство электроконтактного манометра, способы его поверки

Устройство электроконтактного манометра

Рисунок - Принципиальные электрические схемы электроконтактных манометров: а – одноконтактная на замыкание; б – одноконтактная на размыкание; в – двухконтактная на размыкание–размыкание; г – двухконтактная на замыкание–замыкание; д – двухконтактная на размыкание–замыкание; е – двухконтактная на замыкание–размыкание; 1 – указательная стрелка; 2 и 3 – электрические базовые контакты; 4 и 5 – зоны замкнутых и разомкнутых контактов соответственно; 6 и 7 – объекты воздействия

Типовая схема функционирования электроконтактного манометра может быть проиллюстрирована рисунке (а) . При росте давления и достижении им определенного значения указательная стрелка 1 с электрическим контактом входит в зону 4 и замыкает с помощью базового контакта 2 электрическую цепь прибора. Замыкание цепи в свою очередь приводит к вводу в работу объекта воздействия 6.

В схеме размыкания (рис. б ) при отсутствии давления электрические контакты указательной стрелки 1 и базового контакта 2 замкнуты. Под напряжением U в находится электрическая цепь прибора и объект воздействия. При повышении давления и прохождении стрелкой зоны замкнутых контактов происходит разрыв электрической цепи прибора и соответственно прерывается электрический сигнал, направляемый на объект воздействия.

Наиболее часто в производственных условиях применяются манометры с двухконтактными электрическими схемами: одна используется для звуковой или световой индикации, а вторая – для организации функционирования систем различных типов управления. Так, схема размыкание–замыкание (рис. д ) позволяет по одному каналу при достижении определенного давления разомкнуть одну электрическую цепь и получить сигнал воздействия на объект 7 , а по второму – с помощью базового контакта 3 замкнуть находящуюся в разомкнутом состоянии вторую электрическую цепь.

Схема замыкание–размыкание (рис. е ) позволяет при увеличении давления одну цепь замкнуть, а вторую – разомкнуть.

Двухконтактные схемы на замыкание–замыкание (рис. г ) и размыкание–размыкание (рис. в ) обеспечивают при повышении давления и достижении одних и тех же или различных его значений замыкание обеих электрических цепей или соответственно их размыкание.

Электроконтактная часть манометра может быть как неотъемлемой, совмещенной непосредственно с механизмом измерителя, так и присоединяемой в виде электроконтактной группы, устанавливаемой на передней части прибора. Производители традиционно используют конструкции, в которых тяги электроконтактной группы монтировались на оси трубки. В некоторых устройствах, как правило, устанавливается электроконтактная группа, соединенная с чувствительным элементом через указательную стрелку манометра. Некоторые производители освоили электроконтактный манометр с микровыключателями, которые устанавливаются на передаточном механизме измерителя.

Электроконтактные манометры производятся с механическими контактами, контактами с магнитным поджатием, индуктивной парой, микровыключателями.

Электроконтактная группа с механическими контактами конструктивно наиболее проста. На диэлектрическом основании фиксируется базовый контакт, представляющий собой дополнительную стрелку с закрепленным на нем электрическим контактом и соединенным с электрической цепью. Другой разъем электрической цепи связан с контактом, который передвигается указательной стрелкой. Таким образом, при росте давления указательная стрелка смещает подвижный контакт до момента его соединения со вторым контактом, закрепленным на дополнительной стрелке. Механические контакты, изготовленные в виде лепестков или стоек, производятся из сплавов серебро–никель (Ar80Ni20), серебро–палладий (Ag70Pd30), золото–серебро (Au80Ag20), платина–иридий (Pt75Ir25) и др.

Приборы с механическими контактами рассчитаны на напряжение до 250 В и выдерживают максимальную разрывную мощность до 10 Вт постоянного или до 20 В×А переменного тока. Малые разрывные мощности контактов обеспечивают достаточно высокую точность срабатывания (до 0,5 % полного значения шкалы).

Более прочное электрическое соединение обеспечивают контакты с магнитным поджатием. Их отличие от механических состоит в закреплении на обратной стороне контактов (клеем или винтами) малых магнитов, что усиливает прочность механического соединения. Максимальная разрывная мощность контактов с магнитным поджатием составляет до 30 Вт постоянного или до 50 В×А переменного тока и напряжением до 380 В. Из-за наличия магнитов в системе контактов класс точности не превышает 2,5.

Способы поверки ЭКГ

Электроконтактные манометры, а также датчики давления должны периодически подвергаться поверке.

Электроконтактные манометры в полевых и лабораторных условиях могут проверяться тремя способами:

    поверка нулевой точки: при снятии давления, стрелка должна возвращаться к «0» отметке, недоход стрелки не должен превышать половины допуска погрешности прибора;

    поверка рабочей точки: к проверяемому прибору подсоединяется контрольный манометр и производится сравнение показаний обоих приборов;

    поверка (калибровка): поверка прибора согласно методики на поверку (калибровку) для данного типа приборов.

Электроконтактные манометры и реле давления проверяются на точность срабатывания сигнальных контактов, погрешность срабатывания должна быть не выше паспортной.

Порядок выполнения поверки

    Выполнить ТО прибора давления:

Проверить маркировку и сохранность пломб;

Наличие и прочность крепления крышки;

Отсутствие обрыва заземляющего провода;

Отсутствие вмятин и видимых повреждений, пыли и грязи на корпусе;

Прочность крепления датчика (работы на месте эксплуатации);

Целостность изоляции кабеля (работы на месте эксплуатации);

Надежность крепления кабеля в водном устройстве (работы на месте эксплуатации);

Проверить затяжку крепежных элементов (работы на месте эксплуатации);

    Для контактных приборов проверить сопротивление изоляции относительно корпуса.

    Собрать схему для контактных приборов давления.

    Плавно повышая давление на входе, снять показания образцового прибора при прямом и обратном (снижении давления) ходе. Отчеты выполнить в 5 равнорасположенных точках диапазона измерений.

Проверить точность срабатывания контактов согласно уставок.