Установка автоматической системы регулировки отопления, теплоснабжения в перми и крае. Автоматика погодного регулирования со смесительным клапаном

Погодное регулирование систем отопления

Радиаторы отопления - самые обыденные приборы для большинства российских городов. По ним в дом приходит тепло. Мы их замечаем только когда в комнате холодно или жарко. Между тем, работа системы отопления в наших домах связана не только с температурой и влажностью в среде нашего обитания, она влияет и на наш бюджет.

Система центрального отопления

Принципиально центральное отопление домов устроено очень просто. Существует котёл, который греет теплоноситель, циркулирующий через радиаторы отопления в доме. Они нагревают воздух, теплоноситель при этом остывает и возвращается в котёл для нагрева. Система разделена на несколько контуров циркуляции. Движение теплоносителя обеспечивают насосы. Наиболее распространённый теплоноситель - вода.

Описанная схема проста и понятна любому. Но для большого количества потребителей она не может быть эффективной:

  • Радиаторы имеют различное расположение по высоте, это оказывает значительное влияние на конвективное движение воды;
  • Потребители одного контура соединены последовательно и нагрев теплоносителя падает по ходу его движения;
  • Сопротивление различно во всех контурах, оно зависит от многих факторов;
  • Зависимость скорости движения рабочего тела от сопротивления носит сложный нелинейный характер;
  • Теплоотдача каждого радиатора и контура в целом не одинакова.

Для того, чтобы в помещениях создавалась требуемая комфортная температура в городских тепловых сетях и индивидуальных контурах применяются средства регулирования. Они состоят из циркуляционных насосов, датчиков нагрева воды и воздуха, регулируемых клапанов и смесителей. Однако, кроме перечисленных воздействий, на работу средств обогрева значительно влияют погодные условия: температура и влажность окружающего воздуха, ветровая нагрузка.

Стереотипы и заблуждения

Не вдаваясь в подробности действия различных факторов на качество решения задачи обеспечения тепла в среде обитания человека, трудно представить себе важность их влияния. Поэтому в непрофессиональной среде существует целый ряд распространённых сложившихся стереотипов и не совсем правильных мнений:

  • Многие горожане полагают, что установка общедомового прибора учёта позволяет добиться полной экономии потребляемых ресурсов энергии. Экономия средств после установки прибора учёта действительно может быть довольно значительной. Счётчик фиксирует фактическое значение количества израсходованного тепла. Соответственно, потребители оплачивают только то количество тепла, которое они получили. Но насколько оптимально была израсходована энергия для отопления?
  • Наиболее комфортная температура помещения для человеческого обитания находится в пределах 20-22С. Многие полагают, что только значение температуры и определяет ощущения теплового комфорта. При этом важным фактором восприятия служит и влажность воздуха.
  • Существует представление, что для существенной экономии ресурсов важнее сначала провести мероприятия по утеплению помещений. Часто кажется, что установка стеклопакетов, современных дверных конструкций обеспечат большую энергоэффективность, чем управление тепловой сетью. Это не совсем так. Конечно, уменьшение отдачи тепла в окружающую среду вносит свой вклад в общее потребление. Однако, как правило, качественное управление контуром с учётом всех свойств тепловой системы и её энергоэффективности позволяет получить значительно большие параметры снижения затрат.
  • Очень часто можно услышать, что регулирование энергопотребления определяется только двумя параметрами: количество градусов в помещении и степень нагрева теплоносителя. Как указано выше, на условия в жилых пространствах оказывают своё влияние многие факторы. При этом наибольшее значение привносят параметры погодных условий: температура окружающей среды, влажность воздуха, ветровая нагрузка на внешние части отапливаемых сооружений.

Сложности регулирования и управления

Структура автоматического управления и регулирования тепловых потоков в современных средствах обогрева домов довольно сложна. Сети прокладываются с учётом количества и видов потребителей, они могут быть открытыми - с отбором горячей воды из системы или закрытыми - с циркуляцией теплоносителя только для отопительных приборов. Встречаются многоконтурные системы, в которых носитель тепла с различной температурой передаёт энергию другому носителю через теплообменник. Однако, даже в самой простой системе автоматизация управления УУТЭ связана с необходимостью решения ряда технических задач:

  • Необходимость равномерного распределения тепла в отапливаемых помещениях;
  • Различная температура рабочего тела, передающего тепло на разных участках
  • Учёт влияния местных регулировок радиаторов;
  • Эффективное поддержание температуры воздуха при значительной инертности греющего контура;
  • Изменения отдачи тепла в окружающую среду вследствие погодных условий и вентиляции.

Как ни странно, фактор инертности системы при изменяющихся параметрах теплоотдачи - наиболее значимая причина перерасходов темповой энергии. При этом установка УУТЭ вместо обыкновенного счётчика не решает задачу энергоэффективного управления количеством тепла, если не учитываются погодные факторы.

Современные возможности в энергоэффективности

Существующие технические средства позволяют экономить 25-35% потребляемой тепловой энергии за счёт квалифицированного управления температурой и скоростью циркуляции рабочего тела с учётом погодных факторов. Основные элементы, позволяющие учитывать изменения погоды:

  • Датчики температуры воздуха, установленные на различных высотах;
  • Наружные и внутренние датчики влажности;
  • Измерительные приборы температуры помещений;
  • Анемометры или другие типы приборов получения информации о ветровой нагрузке;
  • Эффективные циркуляционные насосы с частотным регулированием нагрузки;
  • Управляющие клапаны;
  • Периферийные процессоры и исполнительные механизмы;
  • Контроллер управления процессом
  • Прибор учёта.

Для контроля параметров и установления эффективных режимов требуется большое число элементов автоматики. Такое количество может показаться слишком дорогостоящим. Однако, современная промышленность выпускает все требуемые приборы и механизмы в виде серийных изделий. Опыт применения элементов контроля параметров отопления, учитывающих погодные условия показывает быструю окупаемость вложенных средств. Показания счётчика потребляемой тепловой энергии снизят расходы сразу после установки. Затраты на приобретение комплекса окупятся уже в первый год его эксплуатации при условии компетентной установки и настройки.

Некоторые важные аспекты применения УУТЭ и приборов учёта

Общедомовой прибор учёта, установленный в системе центрального отопления только регистрирует количество энергии, потребляемой жилищным объектом. Приборы учёта экономят затраты собственников жилья только калькуляцией калорий, не снижая самого объёма расходуемых ресурсов. Для полноценной экономии и построения энергоэффективного потребления одним из наиболее значимых аспектов является способность регулирования параметров центрального отопления с учётом погодных факторов окружающей среды. Такие системы несколько дороже более простых аналогов. Но они окупаются быстрее, обеспечивая более высокую эффективность использования ресурсов.

У компании АНК групп большой опыт внедрения погодного регулирования на различных объектах, мы уверены, что сможем Вам помочь, быстро и качественно произвести данные работы.

Проблема экономичности работы системы отопления в большинстве случаев заключается в выборе оптимального соответствия между температурой на улице и текущим расходом тепла на здание. Очень часто котельные (это связано со спецификой работы энергетического оборудования) не успевают реагировать на быстрые изменения погодных условий. И тогда мы можем видеть следующую картину: на улице тепло, а радиаторы топят как "сумасшедшие". В это время теплосчетчик накручивает круглые суммы за никому не нужное тепло.

Решить проблему быстрого реагирования на изменения погодных условий в отдельно взятом здании поможет автоматическая система регулирования теплопотребления по погоде. Суть данной системы заключается в следующем: на улице устанавливается электротермометр, измеряющий температуру воздуха в данный момент. Каждую секунду его сигнал сравнивается с сигналом о температуре теплоносителя на выходе из здания (то-есть фактически с температурой самого холодного радиатора в здании) и/или с сигналом о температуре в одном из помещений здания. На основании данного сравнения регулирующий блок автоматически дает команду на электрический регулирующий клапан, который устанавливает оптимальную величину расхода теплоносителя.

Кроме того, подобная система снабжена таймером переключения режима работы системы отопления. Это означает, что при наступлении определенного часа суток и (или) дня недели она автоматически переключает отопление из нормального режима в экономный и наоборот. Специфика некоторых организаций не требует наличия комфортного отопления в ночное время и система в заданный час суток автоматически снизит тепловую нагрузку на здание на заданную величину, а следовательно сэкономит тепло и деньги. Утром, перед началом рабочего дня, система автоматически переключится в нормальный режим работы и прогреет здание. Опыт установки подобных систем показывает, что величина экономии тепла, получаемая от работы подобной системы составляет порядка 15% зимой и 60-70% осенью и весной за счет постоянных периодических потеплений.

Сегодня одним из наиболее эффективных способов энергосбережения является экономия тепловой энергии на объектах ее конечного потребления: в отапливаемых зданиях. Главным условием, обеспечивающим возможность проведения такой экономии, является, прежде всего, обязательное оснащение теплопунктов приборами учета тепла, т.н. теплосчетчиками. Наличие такого прибора позволяет быстро окупить капиталовложения по оснащению отопительных систем энергосберегающим оборудованием и в дальнейшем получить значительную экономию финансовых затрат, идущих обычно на оплату счетов энергетических компаний.

Теплосчетчики. Простейший теплосчетчик сегодня представляет собой прибор, измеряющий температуры и расход теплоносителя на входе и выходе объекта теплоснабжения (см рис.).

График 3. Работа тепловычислителя

По информации от датчиков микропроцессорный вычислитель тепла каждое мгновенье определяет расход тепла на здание и интегрирует его по времени.

Друг от друга технически теплосчетчики отличаются по методу измерения расхода теплоносителя. На сегодняшний день в серийно выпускаемых теплосчетчиках используются расходомеры следующих типов:

  • · Теплосчетчики с расходомерами переменного перепада давления. В настоящее время данный метод сильно устарел и применяется крайне редко.
  • · Теплосчетчики с крыльчатыми (турбинными) расходомерами. Являются наиболее дешевыми приборами для измерения расхода тепла, но имеют ряд характерных недостатков.
  • · Теплосчетчики с ультразвуковыми расходомерами. Одни из самых прогрессивных, точных и надежных на сегодняшний день теплосчетчиков.
  • · Теплосчетчики с электромагнитными расходомерами. По качеству находятся приблизительно на одной ступени с ультразвуковыми. Во всех теплосчетчиках в качестве датчиков для измерения температуры используются стандартные термометры сопротивления.

График 4. Один из типовых вариантов установки одноконтурной автоматической системы регулирования потребления тепла зданием с коррекцией по погодным условиям

Фактическим стандартом любой системы отопления здания “на западе” сегодня является обязательное присутствие в ней т.н. автоматической системы регулирования тепловой нагрузки с коррекцией по погодным условиям. Наиболее типичная схема ее компоновки представлена на рис. 3.

Сигналы о температурах в контрольном помещении и подающем трубопроводе теплоносителя являются корректирующими. Возможен и другой вариант регулирования, когда контроллер будет поддерживать заданную по графику температуру в контрольном помещении. Такого рода прибор обычно снабжается таймером реального времени (часами), учитывающем время суток и переключающим режим энергопотребления здания из “комфортного” в “экономный” и назад в “комфортный”. Это особенно актуально, например, для организаций, в которых нет необходимости поддерживать комфортный режим отопления в помещениях ночью или в выходные дни. Система обладает также функциями ограничения величины поддерживаемой температуры по верхнему либо нижнему пределу и защиты от замерзания.

График 5. Схема циркуляции потоков внутри здания в обычных системах теплообеспечения

Как это не странно, но почему-то во времена Советского Союза в проектах практически всех новостроящихся высотных зданий была заложена одна из самых неоптимальных в плане распределения тепла схем трубной разводки систем отопления, а именно - вертикальная. Наличие такой схемы разводки уже само по себе предполагает температурный перекос по этажам здания.

График 6. Схема циркуляции потоков внутри здания в замкнутом контуре потоков

Пример такого перекоса (вертикальная разводка) изображен на рисунке. Прямой теплоноситель от котельной по подающему трубопроводу поднимается на верхний этаж здания и оттуда медленно спускается вниз по стоякам через радиаторы системы отопления, собираясь внизу в коллектор обратного трубопровода. Из-за малой скорости протекания теплоносителя по стоякам и возникает температурный перекос - все тепло отдается на верхних этажах и горячая вода просто не успевает дойти до нижних этажей, остывая по дороге.

В результате - на верхних этажах очень жарко, и находящиеся там люди вынуждены открывать форточки, через которые выходит то самое тепло, которого не хватает нижним этажам.

Наличие в здании подобного температурного перекоса подразумевает под собой:

Отсутствие комфорта в помещениях здания;

Постоянные потери 10-15% тепла (через форточки);

Невозможность экономии тепла: любая попытка снизить тепловую нагрузку еще более усугубит ситуацию с перекосом температур (т.к. скорость протекания теплоносителя по радиаторам станет еще меньше).

Решить подобную проблему сегодня можно только с помощью:

  • · полной переделки всей системы отопления здания, что кстати говоря, очень трудоемкое и дорогое удовольствие;
  • · установки в элеватор циркуляционного насоса, который увеличит скорость циркуляции теплоносителя по зданию.

Подобные системы широко распространены на «западе». Результаты опытов, проведенных западными коллегами, превзошли все ожидания: в осенний и весенний периоды, за счет частых временных потеплений, расход тепла на оборудованных данными системами объектах составил всего 40-50%. То есть экономия тепла в это время составила порядка 50-60%. Зимой снижение нагрузки было значительно меньше: оно достигало 7 -15% и получалось, в основном, за счет проведения прибором автоматического “ночного” снижения температуры в обратном трубопроводе на 3-5 оС. В целом же, общая усредненная экономия тепла за весь отопительный период, на каждом из объектов составила около 30-35% по отношению к прошлогоднему потреблению. Срок окупаемости установленного оборудования составил (в зависимости, конечно, от тепловой нагрузки здания) от 1-го до 5 месяцев.

Схема 7. циркуляционного насоса

Наиболее впечатляющие результаты от внедрения были достигнуты в г. Ильичевске, где подобными системами в 1998 г. были оборудованы 24 ЦТП ООАО “Ильичевсктеплокоммунэнерго” (ИТКЭ). Только благодаря этому ИТКЭ получило возможность снизить расход газа в своих котельных на 30 % по отношению к предыдущему отопительному периоду и одновременно существенно уменьшить время работы своих сетевых насосов, так как регуляторы в значительной мере способствовали выравниванию гидравлического режима тепловых сетей по времени.

Аппаратная реализация подобной системы может быть различна. Может быть использовано оборудование как отечественного так импортного производства.

Немаловажным элементом в данной схеме является циркуляционный насос. Бесшумный, бесфундаментный циркуляционный насос осуществляет следующую функцию: увеличение скорости протекания теплоносителя по радиаторам здания. Для этого между подающим и обратным трубопроводом устанавливается перемычка, через которую осуществляется подмешивание части обратного теплоносителя к прямому. Один и тот же теплоноситель быстро и несколько раз проходит по внутреннему контуру здания. Благодаря этому температура в подающем трубопроводе падает, а за счет увеличения в несколько раз скорости протекания теплоносителя по внутреннему контуру здания, в обратном трубопроводе температура поднимается. Происходит равномерное распределение тепла по зданию.

Насос снабжен всеми необходимыми устройствами защиты и работает полностью в автоматическом режиме.

Его наличие необходимо по следующим причинам: во-первых, он в несколько раз увеличивает скорость циркуляции теплоносителя по внутреннему контуру системы отопления, чем повышается комфортность в помещениях здания. А во-вторых, он необходим потому, что регулирование тепловой нагрузки производится путем снижения расхода теплоносителя. В случае однотрубной разводки системы отопления в здании (а это стандарт именно отечественных систем) это автоматически увеличит перекос температур в помещениях: из-за снижения скорости протекания теплоносителя практически все тепло станет отдаваться в первых по его ходу радиаторах, что значительно ухудшит ситуацию с распределением тепла в здании и снизит эффективность регулирования.

Перспективность внедрения подобного оборудования трудно переоценить. Это эффективное средство решения проблемы энергосбережения на объектах конечного потребителя тепла, которое способно при столь относительно малых затратах дать столь высокий экономический эффект.

Кроме этого существуют различные методы оптимизации и выбор того или иного определяется специалистом исходя из специфики объекта.

Погодное регулирование - это регулирование температуры воды в системе отопления в зависимости от наружной температуры. Процесс регулирования под управлением контроллера выполняется в узле смешения регулирующим клапаном, смешивающий теплоноситель из подающего трубопровода с более высокой температурой с теплоносителем из обратного трубопровода с низкой температурой. Таким образом регулируется температура теплоносителя, поступающего непосредственно в приборы отопления - радиаторы, конвекторы. Погодная компенсация, осуществляемая в индивидуальных тепловых пунктах (ИТП), гарантирует наиболее комфортные условия для проживания и работы и в существенной степени влияют на показания теплосчетчиков в АСКУЭ в сторону уменьшения энергопотребления, и, соответственно экономят энергоресурсы.

Система погодного регулирования – очень надежный новейший способ, позволяющий сэкономить тепловую энергию. Работает она с поправкой не только на изменение температуры окружающей среды, но и на температуру, изменяющуюся в помещении. Температура устанавливается в автоматическом режиме по заданному температурному графику дифференцировано по дням недели и даже по часам суток. Установка и грамотная эксплуатация данной системы в комплексе с приборами учета тепловой энергии обеспечит экономию энергоресурсов, и соответственно, Ваших денег.

Системы погодного регулирования устанавливают с целью автоматического обеспечения в помещениях требуемой температуры и снижения платежей за тепло. Наше предложение по установке модульного исполнения погодного регулирования СУАПР является очень конкурентоспособным.

Предмет предложения. Поставка Смесительных Узлов Автоматического Погодного Регулирования (СУАПР) производства ООО “Теплотрон”.
Назначение СУАПР. Снижение платежей за потребляемую тепловую энергию жителями многоквартирных домов (на 18 % — 25 %) и обеспечение постоянной комфортной температуры во всех жилых помещениях.

  1. Краткое описание СУАПР.

Большинство жилых и общественных зданий обеспечивается теплом от ТЭЦ и котельных. Температура теплоносителя, подаваемого потребителям, регулируется централизованно на источниках тепла, в соответствии с температурой наружного воздуха. Существующие системы теплоснабжения в основном оснащены водоструйными элеваторами, которые не позволяют регулировать температуру подаваемого в здания теплоносителя. Снижение температуры теплоносителя в общественных зданиях во время отсутствия в них людей и в жилых зданиях в определенные переходные периоды позволяет существенно снизить затраты на отопление.

Применение разработанного специалистами ООО “Теплотрон” смесительного узла автоматического погодного регулирования СУАПР (зарегистрирован в Госреестре РФ под № 010/019586), который устанавливается взамен нерегулируемого водоструйного элеватора позволяет добиться комфортных условий для пребывания людей и снизить затраты на отопление с минимальными временными и материальными затратами. За счет соответствия тепловой нагрузки, габаритных и присоединительных размеров при внедрении СУАПР не требуется проектирования и проведения сварочных работ по реконструкции теплового пункта. Вся работа по реконструкции ИТП состоит в демонтаже существующего элеватора и установке на его место СУАПР с соответствующими тепловой нагрузкой и типоразмерами. При установке СУАПР не требуется проект (в ряде случаев теплоснабжающие компании согласовывают данное техническое решение на основе представленного типового проекта), высококвалифицированный персонал, отпадает необходимость сварочных работ. Наладка СУАПР производится в заводских условиях, никаких дополнительных настроек на объекте не требуется. Таким образом, применение СУАПР по сравнению с традиционными системами автоматического погодного регулирования позволяет существенно снизить материальные и временные затраты на внедрение, а значит сократить сроки окупаемост и.

Согласно письма — Заместителя руководителя Северо-Западного управления Федеральной Службы по экологическому и атомному надзору (РОСТЕХНАДЗОР), разрешение на допуск в эксплуатацию СУАПР не требуется.

Элеватор водоструйный типа 40с10бк СУАПР с аналогичными размерами и
тепловой нагрузкой

СУАПР оснащается интеллектуальным контроллером РПТ-1.2Д, который, получая сигнал от трех датчиков температуры (наружный воздух, подающий и обратный трубопровод), по заданному алгоритму управляет запорно-регулирующим клапаном КРТ с электроприводом и промышленным насосом (или двумя насосами) . РПТ-1.2Д, КРТ и Термодатчики также производятся компанией “Теплотрон”.
РПТ-1.2Д является 2-х контурным регулятором, что позволяет при необходимости организовать регулирование на только отопления, но и ГВС с минимальными затратами.
Благодаря применению СУАПР достигается автоматическое регулирование параметров теплопотребления (контроль над параметрами поступающего теплоносителя, обеспечение соблюдения температурного графика, регулирование параметров теплоносителя в соответствии с температурой наружного воздуха) с целью поддержания комфортных условий во внутренних помещениях здания и рационального использования тепловой энергии. Отмечаем, что составные части СУАПР (контроллер РПТ-1.2.Д, запорно-регулирующие клапана КРТ, термодатчики) нашли широкое применение в различных регионах РФ и стран Евразийского Союза.

Пример монтажа СУАПР (система отопления жилого 5-ти этажного дома):


Таким образом, СУАПР представляет собой полноценный узел автоматического погодного регулирования модульного исполнения. Во всех помещениях здания, в котором установлен СУАПР, автоматически поддерживается требуемая (заданная) температура.

2. Подбор СУАПР под конкретный объект, монтаж и запуск в эксплуатацию.

Модель СУАПР (всего производится семь моделей СУАПР) подбирается в зависимости от тепловой нагрузки (расходов теплоносителя) системы теплоснабжения здания. Все требуемые данные, в том числе и геометрические размеры установленного нерегулируемого элеватора, заносятся в опросный лист на СУАПР. Обычно опросный лист на СУАПР заполняется Заказчиком или специализированной организацией. Правильно заполненный опросный лист является результатом обследования объекта и гарантирует простоту монтажа и работоспособность СУАПР .

Изготовленный под конкретный объект СУАПР поставляется в собранном состоянии, готовый к установке, в ящиках размером 1000 мм х 1000мм х 600 мм. Масса брутто не более 55 кг . При установке СУАПР сварочных работ не требуется . СУАПР устанавливается в посадочные гнезда демонтированного нерегулируемого элеватора. Средняя продолжительность работ по установке СУАПР двумя сантехниками — 4-6 часов (с учетом демонтажа нерегулируемого элеватора). Для установки СУАПР не требуется специальных знаний.

После монтажа СУАПР необходимо:

— поместить датчик температуры наружного воздуха (входит в состав СУАПР) на северную стену здания;
— подвести питание 220 В к СУАПР.
СУАПР поставляется полностью готовым к работе на конкретном объекте и не требует дополнительных настроек. В случае необходимости СУАПР легко перенастраивается непосредственно на объекте под требуемый температурный график. Настройка СУАПР производится с клавиатуры РПТ-1.2.Д без применения дополнительных инструментов и программного обеспечения. Возможно дистанционное считывание информации и управление СУАПР посредством задействования GSM-модемов.
В стандартном исполнении СУАПР контроллер РПТ-1.2.Д размещается на раме СУАПР. Возможно размещение РПТ-1.2.Д в отдельном щите автоматики. Требуемое размещение РПТ-1.2.Д указывается в опросном листе.
Типовые проекты на СУАПР при необходимости будут согласованы с теплоснабжающими организациями города Таганрога и Ростова на Дону.
Для технической поддержки внедренного оборудования будут привлечены представители ООО “Теплотрон” по Ростовской области.

3. Стоимость СУАПР

Ниже в таблицах (№ 2 и №3) приведены прайсовые стоимости моделей СУАПР (склад Санкт-Петербург) в зависимости от тепловой нагрузки здания.
Таблица №2.

Гкал/час

Модификация СУАПР

(один насос)

Расход воды

из сети, т/час

Цена за штуку,

рубли

СУАПР№1-102 0,5-1 0,04-0,08 212 400
СУАПР№2-102 1-2 0,08-0,16 218 300
СУАПР№3-102 2-3 0,16-0,24 285 560
СУАПР№4-102 3-5 0,24-0,4 297 360
СУАПР№5-102 5-10 0,4-0,8 319 780
СУАПР№6-102 10-15 0,8-1,2 339 840
СУАПР№7-102 15-25 1,2-2 368 160

Таблица №3. Cтоимость СУАПР (рубли РФ с учетом НДС 18%)

Гкал/час

Модификация СУАПР

(два насоса)

Расход воды

из сети, т/час

Цена за штуку,

рубли

СУАПР№1-202 0,5-1 0,04-0,08 271 400
СУАПР№2-202 1-2 0,08-0,16 289 100
СУАПР№3-202 2-3 0,16-0,24 368 160
СУАПР№4-202 3-5 0,24-0,4 379 960
СУАПР№5-202 5-10 0,4-0,8 414 180
СУАПР№6-202 10-15 0,8-1,2 446 040
СУАПР№7-202 15-25 1,2-2 486 160

При заказе СУАПР от 2-х штук возможно предоставление скидок до 15 % и работа по договору с частичной отсрочкой платежа.

Срок отгрузки СУАПР – 4 недели
Примерная стоимость доставки одного СУАПР до города Таганрог – 4 000 рублей
Гарантийный срок на СУАПР – 18 месяцев с даты отгрузки
Экономическая эффективность применения СУАПР.
Опыт внедрения СУАПР на жилых и общественных зданиях говорит о том, что теплопотребление при установке СУАПР снижается:
— административные и общественные здания на 23 % – 30 %;
— жилые здания на 18 % — 25 %.

Рассчитать экономический эффект от применения СУАПР для конкретного здания можно с помощью счетчика, размещенного на сайте www.суапр.рф

  1. Конкурентные преимущества СУАПР

— Блочное исполнение, малые размеры и вес, что обеспечивает легкость монтажа и обслуживания. СУАПР свободно заносится в любой дверной проем в собранном состоянии и может быть размещен в любом подвале.
— Геометрические размеры и нагрузки совпадают с аналогичными параметрами нерегулируемых элеваторов, что позволяет производить монтаж без сварочных работ.
— При монтаже СУАПР требуется кратковременное (не более 4 часов) отключение здания от системы теплоснабжения, что позволяет производить работы в отопительный период.
— СУАПР поставляется со всеми необходимыми настройками под конкретный объект. В случае необходимости СУАПР легко перенастраивается под требуемый температурный график. Для монтажа и эксплуатации СУАПР не требуются высокопрофессиональные специалисты .
— Низкая стоимость СУАПР и минимальные затраты на его внедрение обеспечивают данному изделию самый быстрый срок окупаемости.