Водоподготовка для котельных установок. Водоподготовка для котельных особенности, способы, рабочее оборудование

Обязательным приемом интенсификации процесса является использование ранее выпавшего шлама (осадка) в качестве контактной среды. Движущаяся снизу вверх вода поддерживает частицы шлама во взвешенном состоянии и контактирует с их поверхностью. Образующиеся при обработке воды трудно-растворимые вещества выделяются, в основном, не в объеме воды, а откладываются на поверхности частиц шлама.

Для того чтобы улучшить технологические свойства шлама, рекомендуется в дополнение к извести и коагулянту вводить в обрабатываемую воду флокулянт. В качестве флокулянтов может быть использованы полиакриламид (ПАА) или импортные флокулянты. Механизм действия флокулянта заключается в том, что молекулы этого полимера адсорбируют различные микрочастицы, содержащиеся в воде и образующиеся в процессе известкования и коагуляции. Применение флокулянта обычно позволяет улучшить осветление воды, но не углубляет эффекта удаления других примесей. Обычная доза флокулянта в пересчете на 100%-ный продукт составляет 0,2-1,0 мг/л. Флокулянт обычно вводят по ходу воды позже извести и коагулянта или осуществляют совместный ввод раствора коагулянта и флокулянта.

Одним из важнейших факторов протекания процессов предварительной очистки воды в осветлителе является стабильность дозирования реагентов.

Попеременная подача извести то с избытком, то с недостатком недопустима: известкованная вода оказывается при этом нестабильной, так как в ней продолжается процесс снижения жесткости и возникает опасность образования карбонатных отложений на фильтрующем материале механических фильтров.

Недопустимо нарушение в работе воздухоотделителя, т.к. оставшиеся в воде пузырьки воздуха налипают на частички шлама, делают их более легкими, что приводит к выносу шлама из осветлителя.

Обработанная в осветлителе вода даже при нормальной его работе содержит определенное количество механических примесей, находящихся в форме взвешенных различной степени дисперсности частиц. В моменты нарушения режимов работы осветлителя количество примесей резко возрастает за счет выносимого шлама.

Для удаления взвесей шлама, попадающих в известкованно-коагулированную воду, производится фильтрация ее через механические фильтры, загруженные дробленым антрацитом.

Содержащиеся в осветленной воде взвешенные вещества при движении через фильтрующий материал задерживаются им, и вода осветляется. Извлечение механических примесей из воды вследствие их прилипания к зернам фильтрующего материала происходит под действием сил адгезии. Осадок, накапливающийся в фильтрующем слое, имеет непрочную структуру и под влиянием гидродинамических сил потока разрушается, некоторая часть ранее прилипших частиц отрывается от зерен в виде мелких частиц и переносится в последующие слои загрузки. С течением времени, по мере накопления осадка в фильтрующем слое роль его верхних слоев уменьшается, и после предельного насыщения они перестают осветлять воду. При этом усиливается загрязнение последующего слоя и т.д. Когда вся толщина загрузки окажется недостаточной для обеспечения требуемой полноты осветления воды, концентрация взвеси в фильтрате будет быстро возрастать.

Вода при движении через фильтрующий материал преодолевает сопротивление, возникающее в результате трения ее о поверхность зерен фильтрующего материала, что характеризуется так называемой величиной потери напора.

Водоподготовительная установка (ВПУ) производительностью 80 т/час обеспечивает подготовку глубоко умягченной воды для восполнения потерь пара и конденсата в котельной низкого давления с барабанными котлами ГМ-50/14.

Обработка воды осуществляется по схеме двухступенчатого натрий-катионирования с предварительным осветлением на механических фильтрах. Основным источником водоснабжения является река Нева.

Вода на ВПУ подается из главного корпуса, предварительно подогретая до температуры 30 0 С.

Схема водоснабжения котельной позволяет производить подачу на ХВО воды из цирк-системы ТЭЦ (схема пожарного водоснабжения).

Подогреваемая вода подается на механические фильтры (МФ), затем на

Nа-катионитные фильтры 1 и 2 ступени. Умягченная вода после Nа-катионитного фильтра 2 ступени подается непосредственно в головку деаэратора (ДСА) котельной, либо в бак химочищенной воды (БХОВ) и оттуда насосами химочищенной воды

(НХОВ-1, 2) в ДСА.

НАЗНАЧЕНИЕ И КРАТКОЕ ОПИСАНИЕ
ОБОРУДОВАНИЯ ХВО КНД

Оборудование ХВО КНД включает в себя механические и Nа-катионитные фильтры,

баковое хозяйство и насосное оборудование, систему трубопроводов и каналов, а также средства контроля и управления за его работой, обеспечивающие требуемую технологию и качество обработки исходной воды.

Механические фильтры (МФ).

На ХВО КНД установлены 3 вертикальных механических фильтра (МФ-1, МФ-2, МФ-3) напорного типа, которые предназначены для очистки исходной воды от взвешенных веществ (Æ – 3000 мм, площадь поперечного сечения –7,1 м 2 , рабочее давление не более 6 кгс/см 2 , скорость фильтрации при работе – 5 ¸ 6 м/ч, 35 ¸ 42 м 3 /ч).

Конструктивно МФ представляет собой вертикальный стальной цилиндр с приваренными сверху и снизу сферическими днищами. Внутри фильтра смонтированы верхнее и нижнее распределительные устройства (ВДРУ, НДРУ). ВДРУ представляет собой стакан, из которого радиально отходят 12 лучей (полиэтиленовых труб), имеющих по длине ряд отверстий Æ 15 мм. НДРУ смонтировано на залитом бетоном с цементной стяжкой нижнем днище и представляет из себя центральный коллектор диаметром

219 мм, от которого по всей его длине по обе стороны расходятся лучи. Каждый луч имеет ряд отверстий Æ 6 мм, которые закрываются кожухом из нержавеющей стали со щелями 0,4 ± 0,1 мм. В корпусе фильтра выполнены два люка: верхний – смотровой, нижний – ремонтный. В нижней части корпуса врезан штуцер для гидроперегрузки фильтрующего материала. Внутренняя поверхность фильтра имеет антикоррозийную защиту в виде лакокрасочного покрытия на основе эпоксидной шпаклевки (ЭП 0010). На корпусе фильтра смонтированы трубопроводы с запорной арматурой:

· подачи исходной воды в фильтр с задвижкой (з.1);

· отвода осветленной воды из фильтра с з.2;

· подвода воды на взрыхление с з.3;

· верхний дренаж с з.4;

· нижний дренах с з.5;

· подачи сжатого воздуха на взрыхление с з.6.

Фильтры оборудованы двумя пробоотборными точками с подсоединенными к ним манометрами на трубопроводах исходной и обработанной воды. Для контроля за нагрузкой во время работы фильтра на трубопроводе осветленной воды установлено расходомерное устройство. Фильтры оборудованы воздушниками, необходимыми для периодического удаления воздуха из объёма фильтров во время их работы, а также используемые при обслуживании фильтра (взрыхление, регенерация, ремонты и т.п.).

Nа-катионитные фильтры.

На ХВО КНД установлены два фильтра Nа-катионитных 1 ступени и один фильтр Nа-катионитный 2 ступени. Схема обвязки Nа-катионитных фильтров 1 ступени выполнена так, что каждый фильтр может работать как по 1 ступени, так и по 2 ступени.

При Nа-катионировании воды протекают следующие реакции:

2NaR + Ca (HCO 3) 2 ↔ CaR 2 + 2NaHCO 3 ;

2NaR + Мg (HCO 3) 2 ↔ MgR 2 + 2NaHCO 3 ;

2NaR + CaCl 2 ↔ CaR 2 + 2NaCl;

2NaR + CaSO 4 ↔ CaR 2 + Na 2 SO 4 ;

2NaR + MgCl 2 ↔ MgR 2 + 2NaCl;

2NaR + MgSO 4 ↔ MgR 2 + Na 2 SO 4 .

где NaR, CaR 2 и MgR 2 – солевые формы катионита.

Из приведенных реакций видно, что из обрабатываемой воды удаляются катионы Са 2+ и Mg 2+ , а в обрабатываемую воду поступают ионы Nа + . Анионный состав воды при этом не меняется.

Конструктивно все Nа-катионитные фильтры устроены аналогично МФ. На корпусе Nа-катионитного фильтра 1 ступени смонтированы трубопроводы с запорной арматурой:

· подачи осветленной воды в фильтр с з.1;

· подачи Nа-катионированной воды в фильтр с з.1А;

· отвода Nа-катионированной воды из фильтра с з.2;

· отвода Nа-катионированной воды с з.2А;

· верхний дренаж с з.4;

· нижний дренаж с з.5;

На корпусе Nа-катионитного фильтра 2 ступени смонтированы трубопроводы с запорной арматурой:

· подачи Nа-катионированной воды в фильтр с з.1;

· отвода химочищенной воды из фильтра с з.2;

· подачи воды на взрыхление с з.3;

· верхний дренаж с з.4;

· нижний дренаж с з.5;

· подачи раствора соли на фильтр с з.7, 7А.

Фильтр гидроперегрузки (ФГП).

На ХВО КНД установлен ФГП, используемый для проведения ремонтных работ на фильтрах с выгрузкой из них фильтрующего материала.

Конструктивно фильтр устроен аналогично Nа-катионитному фильтру 1 ступени. Обвязка ФГП позволяет использовать его в качестве Nа-катионитного фильтра

1 ступени.

Баковое хозяйство.

Для обслуживания фильтров и котлов ХВО КНД в зале котельной находятся баки:

Бак химочищенной воды (БХОВ).

Используется для подпитки ДСА-1, ДСА-2 котельной, а также в случае низкого давления в трубопроводе исходной воды.

Бак взрыхления механических фильтров (БВМФ).

Бак предназначен для взрыхляющих промывок механических фильтров.

Бак взрыхления Nа-катионитных фильтров (БВКФ).

Бак предназначен для сбора при регенерациях отмывочных вод Nа-катионитных фильтров с последующим использованием их для взрыхляющих промывок.

Все баки (БВМФ, БХОВ, БВКФ) имеют объем 60 м 3 , оборудованы соответствующими трубопроводами подвода и отвода воды, дренажом, переливом, поплавковым уровнемером. Внутренняя поверхность баков имеет антикоррозийную защиту на основе эпоксидной шпаклевки (ЭП 0010).

Бак мокрого хранения соли (БМХС).

Два БМХС находятся на ХВО ОВК и предназначены для приема и хранения поступающей на ТЭЦ поваренной соли. Выполнены из железобетона с гидроизоляцией и заглублены до отметки Ñ – 1,2 м. Рабочая емкость каждого бака – 50 м 3 . Баки оборудованы трубопроводами подачи воды, сжатого воздуха для перемешивания и растворения соли и переливами.

3.4.6. Бак чистого раствора соли (БЧРС).

Бак находится на ХВО ОВК, используется как емкость для приготовления раствора

соли требуемой концентрации. Объём бака 50 м 3 . Бак оборудован переливами, поплавковым уровнемером, трубопроводами для подачи соли из БМХС и осветленной воды. Обвязка бака позволяет обеспечивать возврат раствора соли в любой из БМХС. Для выполнения солещелочных обработок фильтрующего материала ХВО ОВК в бак имеется подвод щелочи (от НПЩ-1, 2) и пара для подогрева раствора.

Баки (БМХС, БЧРС) имеют антикоррозийное покрытие на основе эпоксидной шпаклевки (ЭП 0010).

Насосное оборудование.

Для обслуживания фильтров и подачи обработанной воды в котлы установлены следующие насосы.

Насос химочищенной воды (НХОВ).

Два насоса (рабочий и резервный) типа 4К-12 (Q = 60 – 100 м 3 /ч, Р= 3,5 кгс/см 2) предназначены для подпитки деаэратора из БХОВ. Насосы оборудованы системой автоматического включения резервного насоса (АВР) при выходе из строя рабочего. Проверка АВР приведена в приложении 3 и производится в случае постоянной работы НХОВ.

Насос взрыхления Nа-катионитных фильтров (НВКФ).

Насос типа 4К-90 (Q = 90 м 3 /ч, Р= 2 кгс/см 2) предназначен для взрыхления

Nа-катионитных фильтров.

Насос взрыхления механических фильтров (НВМФ).

Насос типа 8К-18 (Q = 260 м 3 /ч, Р= 1,5 кгс/см 2) используется для взрыхления механических фильтров.

Насос силовой воды (НВС-3).

Насос типа 2К-20/30 (Q = 20 м 3 /ч, Р= 3 кгс/см 2) используется для создания необходимого давления в системе управления задвижками с гидроприводами.

Насос чистого раствора соли (НЧРС).

Насос типа Х20-31ЛС (Q = 20 м 3 /ч, Р= 3,1 кгс/см 2) установлен на ХВО ОВК и предназначен для подачи раствора соли с концентрацией 6 – 8% из БЧРС непосредственно на катионитные фильтры ХВО КНД.

Насос раствора соли (НРС-2).

Насос типа Х20-31ЛС (Q = 20 м 3 /ч, Р= 3,1 кгс/см 2) установлен на ХВО ОВК на отметке Ñ - 1,2; предназначен для подачи раствора соли из ячеек (БМХС) в БЧРС.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Назначение ХВО

Химводоочистка (ХВО) предназначена для снабжения химочищенной водой производственных установок и паровой котельной.

Режим эксплуатации водоподготовительных установок и водно-химический режим должен обеспечить работу котельной и тепловых сетей без повреждений и снижения экономичности, вызванных коррозией внутренних поверхностей водоподготовительного, котельного и сетевого оборудования, а также образованием накипи и отложений на теплопередающих поверхностях, и шлама в оборудовании и трубопроводах котельной и тепловых сетей. Чтобы избежать подобных последствий, рекомендуется использовать химводоочистку (ХВО).

Система очистки воды для подпитки котлов включает в себя:

Удаление примесей на механических фильтрах;

Удаление солей жёсткости (умягчение воды) на Na-катионитовых фильтрах;

Обескислороживание и удаление углекислоты (декарбонизация).

Для предупреждения образования в котле кальциевой накипи применяется ввод фосфатов натрия в питательную воду на входе ее в барабаны котлов. Одновременно путем фосфатирования может поддерживаться определенная щелочность (РН) котловой воды, обеспечивающая защиту металла котла от коррозии. Раствор фосфата приготавливается в мешалках Е-9/1,2 с циркуляционными насосами Н-13/1,2, осветляется в фильтре Ф-6 и поступает в расходные емкости Е-10/1,2, откуда насосами-дозаторами Н-14/1-6 подается в котлы.

Для связывания углекислоты, выделяющейся в пар, из-за термического распада и гидролиза солей бикарбонатной и карбонатной щелочности, а также для защиты питательного тракта от углекислотной коррозии в питательную воду вводится раствор аммиачной воды. Аммиачная вода насосами-дозаторами Н-17/1,2 аммиачного хозяйства подается во всасывающую линию питательных насосов Н-9/1-3. Подача аммиачной воды ведется в автоматическом режиме.

Для поддержания солевых балансов котлов предусмотрена непрерывная продувка. В целях использования тепла продувки установлены сепараторы непрерывной продувки С-1,2. Вторичный пар, получаемый в сепараторах поступает в деаэраторы Да-1/1,2, а оставшаяся часть охлаждается в Х-2/1,2 и сбрасывается в остывочный колодец.

2. Химводоочистка для котельных, ТЭЦ и других энергообъектов

Вопросы подготовки и обработки воды для энергетических объектов в настоящее время приобрели особую актуальность в связи с неизбежностью замены устаревшего энергетического оборудования на современное и более совершенное, но требующего строгого соблюдения норм эксплуатации.

Непрерывное упаривание котловой воды в котлах с многократной естественной или принудительной циркуляцией приводит к возрастанию концентрации растворённых и взвешенных в ней примесей (солей, окислов, гидратов окислов) которые могут, отлагаясь на внутренней поверхности обогреваемых труб, значительно ухудшить условия их охлаждения, а также стать причиной перегрева металла и аварийной остановки котла из-за разрыва труб. Кроме того, чрезмерное повышение концентрации примесей в котловой воде недопустимо из-за уноса их паром из барабана с каплями воды или в виде парового раствора в пароперегреватель. Во избежание возрастания концентрации примесей в котловой воде производятся непрерывные и периодическиепродувки котла. Предельно допустимая концентрация примесей определяется конструкцией и параметрами котла, составом питательной воды и тепловыми напряжениями экранных поверхностей нагрева.

Продувка котла выполнятся с целью удаления загрязняющих примесей из пароводяного тракта котла. Различают непрерывную продувку котла: постоянный вывод растворённых примесей с частью котловой воды из верхнего барабана, и периодическую (шламовую) продувку котла - повторяющееся не чаще 1 раза в смену удаление нерастворимых примесей с частью котловой воды из нижних коллекторов циркуляционного контура котла. Тепло продувочной воды обычно утилизируется.

Наличие кислорода и агрессивных анионов, особенно хлоридов, в воде резко сокращает срок работы энергетических установок вследствие коррозии, которая в ряде случаев вызывает коррозионное растрескивание. За счёт деаэрации и водоподготовки изменяются стационарный потенциал и значения критических потенциалов и критических токов металла. Важным фактором, оказывающим влияние на коррозионную устойчивость материала котла, является значение pH котловой воды. Так, при уменьшении значения pH с 9,5 до 8,5 скорость растворения магнетита увеличивается в 5 раз. Требования к значению pH питательной воды строго регламентируются в требованиях к водно-химическому режиму котлов. Во многих случаях необходимой оказывается корректировка значения pH питательной воды, путём дозирования щелочи в воду, подготовленную для питания паровых котлов. химводоочистка паровой котел

В то же время, дополнительное введение щелочи в питательную воду увеличивает солесодержание в котловой воде, что приводит к увеличению потерь воды и тепла, связанных с непрерывной и периодической продувкой котла. Использование обессоленной воды, для подпитки котла позволяет на 5% увеличить экономичность котла и на столько же снизить расход подпиточной воды. Питание котлов обессоленной водой уменьшает и хлоридную коррозию металла, происходящую за счет анионов хлора. Следует отметить также, что необходимость дозирования щёлочи для коррекции pH в обессоленную воду приводит к увеличению солесодержания подпиточной воды практически до исходного значения.

Физические и химические свойства воды и/или пара во многом определяют срок службы оборудования. Накипь, кислородная и углекислотная коррозия обусловлены низкими качествами подпитывающей и питательной воды, а также отсутствием соответствующего контроля и химической коррекции свойств воды в котлах, пароконденсатных трактах и тепловых сетях. Эти проблемы приводят к снижению теплопередачи, уменьшению срока службы и выходу из строя оборудования, увеличению теплопотерь.

Правильный подбор водоподготовки позволяет избежать этих проблем уже на стадии проектирования и строительства новых систем тепло и водоснабжения и предотвратить их развитие в существующих системах.

Качество котловой и питательной воды регламентируется нормативными документами, а также соответствующими требованиями фирм-производителей котельного оборудования:

· ПБ 10-574-03? "Правила устройства и безопасной эксплуатации паровых и водогрейных котлов"

· ГОСТ 20995-75. "Котлы паровые стационарные с давлением до 3.9 Мпа. Показатели качества питательной воды и пара"

· "РД 24031.120-91. "Нормы качества сетевой и подпиточной воды водогрейных котлов, организация воднохимического режима и химического контроля"

· ПБ 10-575-03 "Правила устройства и безопасной эксплуатации электрических котлов и электрокотельных".

В зависимости от качества исходной воды и предъявляемых требований система водоподготовки может включать следующие стадии:

· предварительная очистка воды от механических примесей, сероводорода, железа;

· умягчение воды (Na+ -- катионирование) в одну или две ступени;

· обессоливание методом обратного осмоса или ионным обменом;

· глубокое обессоливание на фильтрах смешанного действия (ФСД) - декарбонизация и деаэрация;

· коррекционная обработка воды реагентами.

Широкий интерес к использованию метода обратного осмоса как метода обессоливания при подготовке воды для паровых котлов вызван тем, что его применение позволяет на 90% сократить количество потребляемых реагентов (поваренной соли, кислот, щелочей), избавившись таким образом от громоздкого и чрезвычайно вредного реагентного хозяйства, стоков, содержащих эти реагенты и снизить процент продувок паровых котлов до 0,5% вместо 10 и более процентов.

Мембранные методы могут применяться как в комбинациях, так и самостоятельно.

Мы предлагаем Вам рассмотреть наши предложения по:

· Установкам умягчения воды (Na+ -- катионирование), работающих в автоматическом режиме;

· Установкам обессоливания, работающим по технологии обратного осмоса;

· Оборудованию для снижения щелочности воды;

· Оборудованию для корректировки воднохимического режима котлов, путем дозирования химических реагентов.

Размещено на Allbest.ru

...

Подобные документы

    Понятие и строение парового котла, его назначение и функциональные особенности. Характеристика основных элементов рабочего процесса, осуществляемого в котельной установке. Конструкция парового котла типа ДЕ. Методы и средства управления работой котла.

    курсовая работа , добавлен 27.06.2010

    Краткое описание котельного агрегата ДКВР-6,5-13. Выбор водоподготовительного оборудования. Теплообменники, сепараторы непрерывной продувки. Принципиальная схема газоснабжения котельной. Автоматика безопасности котла. Отопление и вентиляция помещения.

    курсовая работа , добавлен 09.09.2014

    Генерация насыщенного или перегретого пара. Принцип работы парового котла ТЭЦ. Определение КПД отопительного котла. Применение газотрубных котлов. Секционированный чугунный отопительный котел. Подвод топлива и воздуха. Цилиндрический паровой барабан.

    реферат , добавлен 01.12.2010

    Реконструкция котельной на Новомосковском трубном заводе: определение нагрузок и разработка тепловых схем котельной, выбор основного и вспомогательного оборудования; расчет системы водоподготовки; автоматизация, обслуживание и ремонт парового котла.

    дипломная работа , добавлен 16.08.2012

    Элементы рабочего процесса в котельной установке. Обоснование необходимости автоматизации технологических параметров. Система автоматического регулирования и контроля питания котла, ее монтаж и наладка. Спецификация на монтажные изделия и материалы.

    дипломная работа , добавлен 01.06.2015

    Конструкция котельной установки, характеристика ее оборудования. Пуск котла, его обслуживание при нормальной эксплуатации. Перечень аварийных случаев и неполадок в котельном цехе. Экономичность работы парового котла. Требования по технике безопасности.

    дипломная работа , добавлен 01.03.2014

    Часовые производственные показатели котельной в номинальном режиме. Расход химочищенной воды для подпитки котлов и теплосети. Годовой отпуск тепловой энергии на теплофикацию. Абсолютные и удельные вложения капитала в котельной. Материальные затраты.

    курсовая работа , добавлен 11.12.2010

    Расчет и анализ основных параметров системы теплоснабжения. Основное оборудование котельной. Автоматизация парового котла. Предложения по реконструкции и техническому перевооружению источника тепловой энергии. Рекомендации по осуществлению регулировки.

    дипломная работа , добавлен 20.03.2017

    Принципиальное устройство парового котла ДЕ, предназначеного для выработки насыщенного пара. Расчет процесса горения. Тепловой баланс котла. Расчет топочной камеры, конвективных пучков, экономайзера. Расчет и выбор тягодутьевых устройств и дымовой трубы.

    курсовая работа , добавлен 11.06.2010

    Описание реконструкции котла КВ-ГМ-50 для сжигания угля. Выполнение теплового расчета котельной установки и вентиляции котельного зала. Краткая характеристика топлива. Определение количества воздуха, продуктов сгорания и их парциальных давлений.

Водоподготовка котельных установок на сегодняшний день является обязательным атрибутом в рабочем процессе любой отдельно взятой котельной.

Система водоподготовки котельной устанавливается для того, чтобы предотвратить формирование минеральных отложений, которые накапливаются внутри водонагревательных котлов.

Несомненно, качественная водоподготовка для котлов является гарантией эффективного и безаварийного функционирования всего оборудования в течение отопительного сезона.

1 Зачем нужно очищать воду для котельной?

Водоподготовка для паровых котлов представлена в виде процесса, который заключается в том, что перед подачей воды в котельную производится ее предварительная обработка.

Очистка воды происходит благодаря применению многоступенчатых блоков-фильтров. В процессе обработки воды для водогрейных и судовых котлов, встроенное оборудование из жесткой рабочей среды, в , преобразовывает ее исходные свойства.

Оборудование, обеспечивающее умягчение воды для водогрейных систем и систем газового отопления эффективно производит умягчение жесткой воды.

В процессе умягчения и последующей очистки, из жесткой воды оборудование удаляет большинство растворенных в ней загрязнителей.

Причинами жесткой рабочей среды являются концентрированные минеральные соли и механические примеси грубодисперсного типа .

Первичный этап умягчения и дальнейшего процесса водоподготовки в водогрейных и судовых котлах, а также ее очистка не представляет высокой сложности.

Очистка жесткой воды производится с применением обычного набора методов физической обработки, с помощью средств

Второй этап процесса водоподготовки более сложен и трудоемок. Для того чтобы очистка жесткой воды и ее последующее умягчение прошло как можно более эффективно, необходимо позаботиться об удалении растворенных в рабочей среде минеральных солей.

Умягчение и поэтапная очистка судовых и водогрейных котлов, а также газового оборудования производится с применением наиболее современного и высокоэффективного метода тонкой очистки воды.

Он основан на включении специальных мембранных технологий, обеспечивающих умягчение и последующую очистку судовых и водогрейных котельных.

Смягчители здесь не употребляются ввиду применения методов и ультрафильтрации.

2 Как произвести расчет?

Водоподготовка, очистка и умягчение водогрейных систем производится после того, как будет проведен предварительный расчет.

Водоподготовка котла, установка удаления накипи из воды

Расчет включает в себя сбор и систематизацию данных о протяженности судовых водонагревательных систем, и степени их засоренности.

Водоподготовка котельных и последующая очистка системы транспортировки теплоносителя подразделяется на несколько основных этапов. Это:

  • Начальная очистка от взвесей, коллоидов и органики;
  • Процесс смягчения (деминерализации);
  • Аннигиляция агрессивных газов СО2 и О2;
  • Коррекционная постобработка и расчет следующей очистки.

Даже в тех системах теплоснабжения, где применяется современное оборудование и производится расчет всех параметров работы, происходит непланомерная утечка теплопередающего вещества.

В тех котельных, оборудование которых представлено в виде стальных и чугунных котлов утечка компенсируется так называемой подпилочной водой.

Эта вода проходит обязательный этап предварительной подготовки, в процессе которой применяются смягчители.

2.1 Способы водоподготовки котельной

В настоящее время способов водоподготовки котельных существует немало. Каждый из них обладает собственными технологическими особенностями и тонкостями. Это:

  • Осаждение;
  • Химические способы ( , флокуляция, адсорбация);
  • Обратный осмос;
  • Ионный обмен;
  • Безреагентная водоподготовка.

При осаждении все твердые частицы, взвешенные в воде, оседают на фильтрующей поверхности устройства и внутри его.

Осаждение протекает благодаря включению в состав воды специальных реагентов. Данный способ отлично зарекомендовал себя при выведении каллоидных и взвешенных частиц.

Является наиболее быстрым, простым и эффективным методом смягчения и очистки. Обратный осмос протекает с помощью включения в систему очистки специальной мембраны.

Она способно производить эффективную фильтрацию практически всех находящихся воде примесей, имеющих органическое происхождение.

Эта же мембрана может неплохо отфильтровывать вирусы и бактерии. Обратный осмос слишком тщательно производит очистку воды, потому она обедняется.

Мембрана стоит недешево, и может с легкостью повредиться от большого количества загрязнения. Этот способ не обладает высокой скоростью очищения воды от вредоносных посторонних примесей.

Это обусловлено полупроницаемостью мембраны. При проведении водоподготовки посредством ионного обмена основным элементом будет служить специальная смола.

Ей заполняется картридж. В состав смолы входят ионы натрия, которые подготовлены к последующему обмену.

Он осуществляется при наступлении контакта с водой, обладающей высокими показателями жесткости.

В процессе фильтрации соли замещаются натрием или вода приобретает мягкость. Недостаток данного метода заключается в постоянной необходимости замены картриджей.

Химические реагенты при проведении водоподготовки осуществляются с применением специальных окислителей.

В большинстве случаев они представлены в виде кислорода, озона, хлорамина, перекиси водорода или марганцовки.

Наиболее сильным дезинфектором считается хлор. Он проявляет высокую степень стойкости и активности даже после полного растворения.

Перманганат кальция применяется как восстановитель. Перекись водорода используется в малых дозировках ввиду высокой степени токсичности.

Озон общепризнанно считается наиболее сильным окислителем. Он отличается высокой степенью экологичности, однако его стоимость высока, по сравнению с другими реагентами.

2.2 Оборудование для водоподготовки

В настоящее время оборудование, которое обеспечивает водоочистку и водоподготовку котельных представлено виде различных установок и фильтров.

Загрузочные баллонные фильтры применяются в котельных, установленных в частных домах. Работают они, основываясь на принципе механической фильтрации.

Некоторые из моделей могут выполнять функцию обезжелезивателя. Основное преимущество представленного оборудования – это сравнительно невысокая стоимость.

2.3 Как производится водоподготовка котельных? (видео)

Инженерные сооружения , в которых происходит обработка, нагрев теплоносителя (воды) и дальнейшая его транспортировка до конечного потребителя, называются котельными. Котельные обеспечивают конечных потребителей теплом и горячей водой. Различаются котельные по типу расположения (отдельно стоящие, пристроенные и встроенные, блочно-модульные), типу используемого топлива (газ, мазут и дизельное топливо, уголь и кокс), по типу котлов (водогрейные, паровые, смешанные), по назначению тепловой нагрузки (отопительные, производственные, смешанные) и по категории надёжности (1-ой, 2-ой и 3-ей).

Котельное оборудование, использующее воду в качестве теплоносителя или источника для производства пара очень требовательно к её качественному составу. Ведь из-за наличия в воде солей жёсткости (карбонатная жёсткость), на нагревательных элементах водогрейных и паровых котлов происходит отложение накипи, белого известкового налёта, который снижает теплоотдачу нагревательного элемента, происходит его перегрев и как следствие быстрый выход из строя котельного оборудования. Чтобы избежать этого, котельные и тепловые энергоустановки комплектуются системами ХВО (ХВП) для химической и реагентной обработки исходной воды.

ГК "ВиВком" осуществляет подбор, поставку и монтаж химводоочистки (ХВО), химводоподготовки (ХВП) для нужд энергетических, отопительных и производственно-отопительных водогрейных и паровых котельных местного и группового назначения.

НАЗНАЧЕНИЕ

Химводоочистка (ХВО) призвана обеспечить бесперебойную работу котельного оборудования, предотвратить накипеобразование на внутренних поверхностях котлов, коррозию и образование шлама в трубопроводах тепловых сетей.

Назначение ХВО для котельных заключается как раз в умягчении теплоносителя (воды) до норм РД 24.032.01-91 путём удаления или снижения карбонатной жёсткости, чтобы обеспечить оптимальный рабочий режим дорогостоящего котельного оборудования и продлить его безаварийную эксплуатацию.

Цели ХВО для энергетического комплекса:

  • подготовка питательной воды паровых котлов в соответствии с РД 24.032.01-91
  • подготовка котловой воды водогрейных котлов в соответствии с РД 24.032.01-91
  • коррекционная обработка воды реагентами (Аминат КО 2 и КО 5 и др.)

По жёсткости воды различают:

  • очень жёсткая вода – свыше 12 мг-экв/л
  • жёсткая вода – 8-12 мг-экв/л
  • средней жёсткости – 4-8 мг-экв/л
  • мягкая вода – 0-4 мг-экв/л

Жёсткость может быть временной (карбонатная жёсткость), обусловлена гидрокарбонатами кальция и магния Са(НСО3)2; Mg(НСО3)2, которая откладывается в форме накипи на нагревательных элементах котлов и прочего оборудования и постоянная (некарбонатная) вызванная присутствием других солей, не выделяющихся при кипячении воды: в основном, сульфатов и хлоридов Са и Mg (CaSO4, CaCl2, MgSO4, MgCl2).

ПОЛУЧИТЬ ТКП

ПРИНЦИП ОЧИСТКИ

Химводоочистка (ХВО) для котельных представляет собой комплекс, в котором установлено водоподготовительное оборудование предочистки, ионитные фильтры для снижения жёсткости и насосы дозаторы для коррекционной обработки воды. Процесс умягчения сводится к следующему: при прохождении воды через катионит в Na форме (синтетический материал на основе сополимера стирола и дивинилбензола) соли жёсткости замещаются на соли натрия, при этом происходит истощение ионообменной ёмкости смолы. Чем больше в воде жёсткость, тем интенсивнее ионообменная смола теряет свою рабочую ёмкость. По мере полного истощения смолы, управляющий клапан фильтра даёт сигнал на регенерацию.

Регенерация происходит исходной водой с добавлением 26% раствора соли (NaCl). Для этих нужд, ионитный фильтр-умягчитель комплектуется солевым баком для приготовления солевого раствора. Для подготовки котловой воды достаточно одноступенчатого умягчения, для подготовки питательной воды используется двухступенчатое умягчение. Дополнительно, для реагентной обработки воды, связывания кислорода и корректировки показателя рН используются дозировочные комплексы, состоящие из насоса дозатора и ёмкости с для дозирующего вещества (Аминат КО 2 и КО 5). Комплексы ХВО используют непрерывный режим работы, круглосуточно снабжая котельные умягчённой водой. Это обеспечивают установки Twin и Duplex, в которых используются от двух и более катионообменных фильтров.

ПОЛУЧИТЬ ТКП

ПРЕИМУЩЕСТВА

Для ХВО водогрейных и паровых котельных специалистами ГК "ВиВком" используются комплектующие и фильтрующие материалы известных мировых брендов. Все схемы очистки подбираются с учётом возможного ухудшения качественных показателей исходной воды до 30%. Мы гарантируем качество очистки в соответствии с РД 24.032.01-91.

  • материал изготовления фильтров умягчителей – армированный стеклопластик с внутренним полиэтиленовым стаканом (Structural – Бельгия,Canature - Китай)
  • надёжные управляющие клапана (Clack, Autotrol – США, RUNXIN - Китай)
  • распределительные устройства из полимерных материалов: верхнее – лучи, фильера или корзина, нижнее – лучи, дренажный колпачок
  • DOWEX – США, Lewatit – Германия, Purolite – Англия, ПЮРЕЗИН, КУ-2-8 - Россия)
  • широкий диапазон по производительности – от 1 до 100 куб/час
  • дозирующие комплексы с дозаторами Etatron, Seko, Tekna – Италия, Grundfos – Дания
  • простота и удобство обслуживания водоподготовительных комплексов
  • монтаж и пуско-наладка оборудования
  • гарантия на оборудование - 1 год
  • гарантия на работы - 2 года
  • гарантия качества воды в соответствие с РД 24.032.01-91