Ремонт теплообменного оборудования. Обслуживание и ремонт теплообменников

Ремонт пластинчатых теплообменников

Пластинчатый теплообменник состоит из всего нескольких комплектующих: пластины, уплотнения, стяжные болты, прижимные плиты и рама. Довести теплообменник до состояния в котором рама или плиты выйдут из строя очень сложно, по этому далее речь пойдет о ремонте остальных его частей.

Ремонт теплообменников, какой вид ремонта может потребоваться Вашему теплообменнику?


Замена уплотнений

Ключевым элементом, отвечающим за работоспособность теплообменника, являются уплотнения, которые обеспечивают герметичность теплообменника. Рекомендуемый(паспортный) срок службы прокладок основных производителей таких как Альфа Лаваль, РИДАН, ГЕА Машимпекс и др. составляет 7 лет, в дальнейшем целесообразно произвести их замену на новые. За частую резиновые прокладки выходят из строя по причине неправильной эксплуатации теплообменного аппарата, а именно не соблюдению температурного режима и воздействие избыточного давления (гидроудар).


Замена пластин

Пластины в данном типе теплообменного оборудования выходят из строя не так часто как уплотнения, а при правильной эксплуатации могут служить десятками лет. Но все же есть факторы разрушающие целостность пластин, а именно: воздействие коррозии, разрушение метала в следствии воздействия кислот (не качественная промывка), механические повреждения (гидроудары, неправильная обтяжка и т.д.).

Специалисты компании «ГЛОБАЛ-ИНЖИНИРИНГ» обладают высокой компетенцией в сфере эксплуатации и ремонта пластинчатых теплообменников, готовы организовать подбор, поставку, замену прокладок, замену пластин и Вашего теплообменника в кратчайшие сроки.

Замена стяжных шпилек

Стяжные шпильки выходят из строя зачастую из-за некомпетентных специалистов, которые в ходе обслуживания теплообменника не очищают резьбу от песка и пыли и тем самым просто стирают ее.

Увеличение мощности теплообменника (модернизация)

Зачастую возникает необходимость увеличения мощности теплообменника. Добавлять дополнительный теплообменник не всегда возможно и целесообразно. Значительно выгодней и быстрее нарастить мощность существующего.
В этом случае специалисты компании «ГЛОБАЛ-ИНЖИНИРИНГ» произведут необходимые расчеты, выберут оптимальный способ решения, доставят необходимые комплектующие(пластины, прокладки) и проведут модернизацию и ремонт пластинчатых теплообменников. Наша компания осуществляет сервис теплообменников производства Альфа Лаваль, РИДАН, ГЕА Машимпекс, СВЕП, Данфос и др.

Произвести расчет нового пластинчатого теплообменника, модернизировать существующий или провести профессиональное обслуживание не сложно. Мы всегда готовы прийти к Вам на помощь, поэтому в случае возникновения каких-либо вопросов вы можете обратиться к нашим менеджерам, которые ответят на вопросы в режиме 24/7. Доверьте работы по модернизации иобслуживанию теплообменников опытным специалистам. Обращайтесь в надежную компанию по сервису инженерного оборудования. Обращайтесь в ООО ГЛОБАЛ-ИНЖИНИРИНГ . Итог нашей работы всегда один – высокая эффективность и бесперебойная работа оборудования .

Для заявки на обслуживание теплообменника

Смотрите так же:

Группа компаний «МАС» выполняет ремонт теплообменников для систем приточно-вытяжной вентиляции.

  • пайка теплообменника пайка теплообменника
  • ремонт калориферов ремонт калориферов
  • пайка медных теплообменников пайка медных теплообменников
  • ремонт теплообменников вентиляции
  • Разорванный калач фото Разорванный калач фото
  • Разорванный калач Разорванный калач
  • калач разорванный фото калач разорванный фото

Причины, по которым требуется ремонт или пайка теплообменника

Основной причиной выхода из строя водяного теплообменника в вентиляционной установке является его размораживание(разрыв).
Как правило, этому предшествуют ошибки в работе автоматики или полный выход из строя системы автоматики.

Что лучше, ремонт калорифера или покупка нового?

Ремонтировать калорифер вентиляционной системы имеет смысл тогда, когда в нем имеются немногочисленные разрывы калачей. Если разрывы калачей воздухонагревателя многочисленны или имеются разрывы змеевика внутри тела калорифера, то проще бывает купить новый теплообменник. На практике ремонт калорифера целесообразен в том случае, если цена ремонта теплообменника составит не более 30% от стоимости нового.

Ремонт и пайка калориферов вентиляции

Ремонт медных теплообменников систем вентиляции возможен не всегда. Ремонт теплообменников пайкой, а именно запаивание разрывов калачей и змеевика, позволяет вернуть к жизни размороженный калорифер. Специалисты нашей компании осуществляют ремонт и пайку теплообменников вентиляции.

Ремонт(пайка) теплообменников вентиляции цена

Для расчета ориентировочной цены ремонта теплообменника необходимо прислать его маркировку(фото шильдика), фото всех поврежденных участков, диаметр калачей.

Наша компания предоставляет услугу «выезд специалиста», для точной дефектовки и замера физических размеров калорифера.

Ориентировочные расценки на работы по ремонту водяного медно-алюминиевого теплообменника для систем вентиляции:

Проведение дефектовки с выездом на объект — от 500 рублей;

Заплата на калач - от 700 руб./шт.;

Замена калача - от 1400 руб./шт.;

Опрессовка теплообменника - от 1500 руб./шт. (за разовую опрессовку калорифера).

Если заказчик не проводил дефектовку, то опрессовка производится дважды. Первый раз - для выявления мест разрывов, второй — для контрольной проверки герметичности теплообменника после ремонтных работ.

Этапы ремонта калорифера

Ремонт теплообменника начинается с определения характера повреждений и их количества. Для этого в калорифер впаивают клапан Шредера и глушат впускной и выпускной коллекторы, для проведения процедуры опрессовки. Далее производят опрессовку погруженного в ёмкость с водой теплообменника, подавая через клапан воздух под давлением не менее 9 Bar. После выявления мест разрыва, приступают к ремонту теплообменника. Места разрыва калорифера паяют, накладывая заплаты из твердого припоя. Так же производят замену или ремонт деформированных калачей, так как именно их чаще всего разрывает. Если калачи раздуты не значительно, то их зачищают и паяют. В случае значительного повреждения, старые калачи выпаивают и впаивают на их место новые. После произведенного ремонта теплообменник повторно опрессовывают для контрольной проверки герметичности.

На основании конструктивных особенностей пластинчатых теплообменных аппаратов можно выделить следующие виды неисправностей этого типа теплообменного оборудования:

1. НАЛИЧИЕ ВНЕШНЕЙ ПРОТЕЧКИ.

Как правило причиной протечек теплообменников является износ уплотнений пластин теплообменников. Он может быть обусловлен как истечением срока эксплуатации при соблюдении номинальных режимов эксплуатации, также протечки могут возникать в результате воздействия гидроударов или перегрева теплообменного оборудования. И в том и в другом случае ремонт теплообменника будет заключаться в полной или частичной замене уплотнений.
Состояние уплотнений и необходимость их замены определяет инженер сервисной службы ООО "ИнжСистемСервис", выезд на объект для осмотра и рекомендации относительно ремонта теплообменника производятся бесплатно.

2. НАЛИЧИЕ ВНУТРЕННИХ ПЕРЕПУСКАНИЙ из одного контура в другой.

Причины перепусканий могут быть аналогичными указанным выше. Помимо этого неисправность может быть вызвана коррозией поверхностей пластин теплообменников, их механическими повреждениями. Также к подобным последствиям могут привести ошибочные действия персонал, обслуживающего теплообменное оборудование. Ремонт теплообменника в случае наличия перепусканий требует квалифицированной диагностики оборудования для выявления причин возникновения подобной неисправности. После чего эти причины обязательно будут устранены нашими специалистами.

Очевидно, что в большинстве случаев ремонт пластинчатых теплообменников сводиться к полной или частичной замене его уплотнений (прокладок). Иногда, хотя это происходит довольно редко, приходится менять повреждённые пластины теплообменника.

В сязи с тем, что в настоящее время эксплуатируется большое разнообразие пластинчатых теплообменников различных фирм-производителей, к сожалению, уплотнения даже близких по габаритам и характеристикам моделей теплообменников не являются взаимозаменяемыми в следствии чего любой теплообменный аппарат может быть укомплектован только уплотнениями соответствующего им типа и маркировки. При принятии решения о замене уплотнений теплообменников необходимо принимать во внимание тот факт, что нужных Вам уплотнений может не оказаться в наличии на складе поставщика и в этом случае время ожидания может составить от 3-х до 6-ти недель, в зависимости от производителя и популярности модели уплотнения.

Необходимо учитывать, что полная замена уплотнений теплообменников строго рекомендована производителями по окончании срока эксплуатации при соблюдении номинальных режимов. Согласно рекомендациям большинства производителей теплообменного оборудования срок эксплуатации резиновых уплотнений составляет в среднем 7-8 лет.
Также обращаем Ваше внимание на то, что в случае если срок резиновых уплотнений истекает, производить разборную очистку теплообменников не рекомендуется. Это связано с потерей пластичности уплотнений, что с большой долей вероятности, может помешать собрать пакет теплообменника со старыми уплотнениями без течей.

Опрессовка теплообменников.

Каждый раз после проведения работ по ремонту теплообменников, связанных с разборкой теплообменника, например, замену уплотнений или пластин теплообменников, необходимо опрессовку (испытание давлением) отремонтированного теплообменного оборудования. Эта процедура проводится для проверки внутренней и внешней герметичности контура.
При проведении испытания давлением сначала должна быть протестирована одна сторона, в это время вторая сторона должна находиться под атмосферным давлением. Испытательное давление должно равняться рабочему давлению испытываемого оборудования и обязательно не должно превышать значения обозначенного на шильдике теплообменника. Опрессовку рекомендуется производить в течении 10 минут. Необходимо высушить части опрессованного оборудования, используемые для охлаждения.

Ремонт кожухотрубных теплообменников.

10.05.2012

Течь теплообменника.

Ремонт теплообменников.

Несоблюдение правил эксплуатации теплообменника, отсутствие должного сервисного обслуживания и регулярных промывок системы зачастую приводят к выходу из строя всей системы, который предполагает проведение капитального ремонта теплообменника . Причинами для ремонта теплообменника могут стать самые различные неполадки в работе системы от течей до засорения теплообменника различного рода нерастворимыми загрязнителями. Нередко необходимость в ремонте теплообменника возникает в тех случаях, когда в качестве жидкости-теплоносителя используется вода низкого качества. Прошедшая недостаточную очистку вода содержит огромное количество разнообразных примесей, способных повредить систему и тем самым вызвать необходимостьремонта теплообменника . Иными словами, существует огромное количество причин, обуславливающих необходимость проведения ремонта теплообменника . Рассмотрим некоторые из них.

Низкое качество жидкости-теплоносителя.

Огромная часть неполадок, ведущих к необходимости проведения , своей причиной имеет низкое качество жидкости-теплоносителя. В современных системах отопления зачастую в качестве жидкости-теплоносителя используется обычная вода, которая не редко не проходит весь комплекс водоочистительных мер. В воде, не прошедшей водоподготовку, могут содержаться различного рода примеси как растворенные, так и нерастворимые, которые способны спровоцировать неполадки в работе системы и, как следствие, необходимость проведения ремонта пластинчатого теплообменника .

Одной из наиболее распространенных проблем, ведущих к ремонту теплообменника, является возникновение на внутренних поверхностях различного рода накипи, которая существенно понижает теплопроводность элементов теплообменника, что, в свою очередь, приводит к снижению эффективности системы и увеличению расходов на поддержание необходимых температурных параметров. Необходимость ремонта теплообменников в подобных ситуациях возникает при отсутствии регулярной промывки, во время которой из системы удаляется большая часть загрязнителей.

В подобных ситуациях достаточной мерой для ремонта теплообменника является разборная механическая промывка элементов теплообменникапри помощи специальных чистящих средств. Безразборная химическая промывка системы в подобных ситуациях не может считаться ремонтом теплообменника, так как эта мера считается достаточной для регулярного сервисного обслуживания системы, но не для ремонта пластинчатого теплообменника .

Помимо возникновения налета на внутренних поверхностях теплообменника вода низкого качества может повлечь за собой засорение системы, во время которого большая часть нерастворимых загрязнителей скапливается в нижней части теплообменника, нарушая циркуляцию жидкости-теплоносителя через пластины или трубы системы. Ремонтом системы в подобных случаях также может считаться разборная гидродинамическая процедура с использованием специальных установок для промывки теплообменников.

Следует учитывать, что в тех ситуациях, когда причиной неполадок является низкое качество воды, путем разборной механической промывки может быть осуществлен только в разборных системах, паяные же теплообменники подлежат замене.

Причиной неполадок, влекущих за собой ремонт теплообменника, могут стать самые разнообразные загрязнители, которые содержаться в воде. Так, например, одним из наиболее распространенных типов накипи, препятствующей нормальной работе теплообменника, является накипь, в состав которой входит карбонат кальция. Не меньшую опасность для теплообменника представляют биологические загрязнители вроде ила или бактерий. Для ремонта теплообменников в подобных случаях используются различные химические реагенты вроде каустической соды, способные уничтожить все находящиеся в системе микроорганизмы.

Ремонт теплообменников , причиной которого является низкое качество жидкости-теплоносителя, путем разборной промывки считается одним из наиболее простых случаев, так как для ремонта пластинчатых теплообменников в подобных ситуациях достаточно обычной прочистки деталей системы.

Повреждение пластин теплообменника.


Наиболее распространенной причиной ремонта пластинчатых теплообменников является повреждение ее основных функциональных элементов — металлических пластин, через которые циркулирует жидкость-теплоноситель. Как и упоминалось ранее, необходимость ремонта пластинчатого теплообменника может быть вызвана низким качеством жидкости-теплоносителя, однако накипь и возникновение налета нельзя считать повреждением пластин. Поврежденные пластины теплообменника могут стать причиной таких неполадок как внутренние течи теплообменника, поэтому считается необходимой мерой в случае повреждения пластин.

Обычно под повреждением пластин теплообменника подразумевается коррозия металлических пластин, следствием которой может стать возникновение внутренних течей, то есть свободного перехода жидкости-теплоносителя из одного контура теплообменника в другой. Металлические пластины теплообменника постоянно подвергаются коррозийному воздействию внешней среды, усугубленному высокими температурами, при которых процесс коррозии протекает с гораздо большей скоростью.

Для предотвращения необходимости проведения ремонта пластинчатого теплообменника рекомендуется использование различных ингибиторов, которые добавляются в жидкость-теплоноситель, однако в случае коррозийного повреждения пластин ремонт теплообменника или замена пластин становится обязательной мерой.

Помимо химического или коррозийного повреждения пластин существует также вероятность механического воздействия, которое также приводит к снижению эффективности работы теплообменника, ведущей к необходимости проведения ремонта пластинчатого теплообменника . Механические повреждения чаще всего бывают вызваны неправильной эксплуатацией системы, какой, к примеру, считается превышение определенного давления.

Повреждение уплотнителей.

Еще одним обязательным элементом всех пластинчатых теплообменников являются уплотнители. Необходимость проведения ремонта пластинчатых теплообменников в случае повреждения уплотнителей возникает вследствие высокого риска появления внутренних и внешних течей, которые приводит к снижению эффективности системы в случае возникновения внутренних течей либо же к потере жидкости-теплоносителя в случае внешних протечек.

Повреждение уплотнений, ведущее к возникновению необходимости проведения ремонта пластинчатого теплообменника , может быть вызвано различными факторами, однако наиболее распространенной причиной является неправильная эксплуатация системы. Под неправильной эксплуатацией системы, ведущей к ее выходу из строя и, как следствие, к ремонту пластинчатого теплообменника , подразумевают нарушение сразу нескольких правил. К таким правилам можно отнести не только отсутствие регулярного сервисного обслуживания, отсутствие регулярных промывок, но и несоблюдение параметров, указанных в инструкции, как температура и давление, использование не подходящей к конкретному типу уплотнений жидкости-теплоносителя, промывка уплотнений агрессивными средствами, которые влекут за собой его повреждение, и другие факторы. Ремонт пластинчатых теплообменников в таких случаях представляет собой простую замену уплотнений, которые вышли из строя.

Специалистами сегодня рекомендуется проведение регулярного ремонта пластинчатых теплообменников, который подразумевает замену уплотнений. Это прежде всего связано с тем, что в процессе эксплуатации уплотнения изнашиваются, трескаются или ссыхаются, что отрицательно сказывается на их изоляционных способностях, поэтому регулярный ремонт пластинчатых теплообменника может предотвратить многие нежелательные последствия внутренней или внешней протечки теплообменника.

Ремонт пластинчатого теплообменника, предполагающий замену уплотнений, считается обязательной мерой в ряде случаев. Примером может послужить разборная механическая или химическая очистка теплообменника, при которой необратимо повреждаются уплотнения и возникает необходимость проведения ремонта пластинчатого теплообменника .

Потеря теплопроводных свойств жидкостью-теплоносителем.

Выход из строя основных функциональных элементов теплообменника, износ уплотнений или засорение теплообменника не являются единственными причинами возникновения необходимости проведения ремонта теплообменника , также система может потерять свою эффективность вследствие потери жидкостью-теплоносителем своих изначальных свойств.

Проблема окисления и снижения теплопроводности обычно не возникает в тех случаях, когда в роли жидкости-теплоносителя выступает обычная вода, однако в теплообменниках, где используется гликоль или другие подобные материалы, нередко снижение эффективности системы и, как следствие, возникновение необходимости проведения ремонта теплообменника котла.

Причиной потери гликолем своих изначальных свойств может стать не только постепенное окисление жидкости и снижение способности проводить тепло, но также и другие неполадки системы вроде сбоя в работе теплообменнике, неисправность циркуляционных насосов, перепады температуры и давления.

Ремонт теплообменника котла в подобных ситуациях представляет собой полную или частичную замену гликоля, причем более экономичной и рациональной мерой считается замена только некоторой части гликоля. Также ремонт теплообменника котла в таких случаях может сопровождаться добавлением в жидкость-теплоноситель ингибиторов, которые значительно продлят срок службы гликоля, замедлив окислительные реакции.

Выход из строя циркуляционных насосов.

Не меньшую важность для ремонта теплообменника котла имеет такой фактор, как повреждение или неправильная работа циркуляционных насосов. Циркуляционные насосы являются одним из основных функциональных элементов теплообменника, поэтому их повреждение может губительным образом сказаться на общей эффективности работы теплообменника.

Необходимость проведения ремонта пластинчатого теплообменника в случае выхода из строя циркуляционных насосов диктуется прежде всего их неспособностью выполнять свою основную задачу — перегонять жидкость теплоноситель через трубки или пластины теплообменника. Также показателем к ремонту теплообменников становится неспособность циркуляционный насосов перекачивать воду с соблюдением всех установленных норм и параметров вроде заданной температуры или давления.

Ремонт теплообменника котла в подобных ситуациях чаще всего предполагает замену циркуляционных насосов, однако возможен и ремонт уже действующих насосов. Подобный возможен лишь в тех случаях, когда конструкция системы допускает извлечение из системы насоса для его ремонта.

Выход из строя циркуляционных насосов может повлечь за собой не только потерю эффективности теплообменника, но также и возникновение внутренних и внешних протечек, причиной которых является повреждение пластин или уплотнений теплообменника в результате их неправильной эксплуатации. В случае выхода из строя циркуляционных насосов ремонт теплообменника котла становится единственной мерой, способной предотвратить возможные нежелательные последствия.

Диагностика неполадок работы системы и предотвращение аварийных ситуаций.

Основным показателем к ремонту теплообменника котла является снижение его эффективности и качества работы. Под снижением эффективности теплообменника чаще всего предполагается увеличение расходов энергии на поддержание заданных температурных параметров. В случае несоответствия параметров работы системы указанным в сопроводительной документации параметрам рекомендуется провести диагностику неполадок работы и, в случае необходимости, ремонт пластинчатого теплообменника .

Под диагностикой неполадок работы теплообменника обычно подразумевают детектирование существующих проблем и выявление их причин. Как и следует из сказанного ранее, методы ремонта теплообменника котла напрямую зависят от причин, вызвавших те или иных неполадки. Существующие проблемы в работе системы детектируются путем замера температуры и давления на входе и выходе жидкости из системы. В случае несоответствия этих величин друг друг необходимо проводить диагностику оборудования и определять методыремонта теплообменника котла. Наиболее распространенным методом диагностики неполадок оборудования является разбор теплообменника и внешний осмотр деталей, которого зачастую бывает достаточно для определения причин неправильной работы. Иначе дело обстоит с паяными системами, где визуальный осмотр деталей попросту невозможен. В этом случае для диагностики и ремонта теплообменника рекомендуется воспользоваться услугами специалистов.

Для предотвращения аварийных ситуаций и экстренного ремонта теплообменника котла рекомендуется не только соблюдать все правила эксплуатации системы, но также и обеспечить должное сервисное обслуживание, которое включает в себя регулярные промывки теплообменника и котлов, а также своевременную диагностику возможных проблем.

→ Монтаж холодильных установок


Технология ремонта теплообменных аппаратов


В процессе длительной работы происходит эрозионный и коррозионный износ труб и стенок корпуса: теплопередающие поверхности загрязняются и эффективность теплопередачи падает. Характерными дефектами являются уменьшение толщины стенки трубы, днища, корпуса, свищи в сварных швах, повреждение уплотнительных поверхностей, трещины на корпусных деталях и трубах, вмятины, неплотности и пропуски в вальцовке труб в трубных решетках, увеличение диаметра отверстий в трубных решетках, язвенная, межкристаллитная и другие виды коррозии, повреждение опор, резьбы на крепежных деталях, увлажнение или повреждение теплоизоляции.

Структура ремонтного цикла оборудования различна и зависит от характера производства, типа аппарата и холодильной установки в целом. Все теплообменное оборудование холодильных установок эксплуатируют с проведением через каждые три месяца профилактического осмотра, ежегодного текущего ремонта, среднего ремонта (через 3 года) и капитального.ремонта через 12 лет. В ряде случаев ограничиваются двумя видами ремонта - текущим и капитальным.

При профилактических осмотрах проверяют затяжку фланцевых соединений, устраняют неплотности, выполняют подтяжку или перебивку сальников запорной арматуры, осматривают приборы контроля, предохранительные устройства, проверяют натяжение приводных ремней в аппаратах с мешалками и вентиляторами, очищают желоба в оросительных конденсаторах.

При текущем ремонте проводят дополнительный объем работ: частичную разборку и демонтаж запорной арматуры, перебивку всех сальников, замену прокладок, проверку герметичности арматуры, ремонт предохранительных и обратных клапанов, в оросительных конденсаторах - демонтаж и очистку отбойных щитов и труб, очистку и регулировку водораспределительных устройств.

При среднем ремонте дополнительно к объему текущего ремонта проводят съем крышек теплообменников с очисткой труб и полостей от ила, накипи, продуктов коррозии, испытания на плотность для выявления возможных течей труб в трубных решетках, подвальцовку, зачеканку или подварку свищей и течей, глушение дефектных труб, проверку и наладку работы мешалок, выборочную проверку труб испарителей (типа ИА или ИП) и оросительных конденсаторов на коррозию, ремонт теплоизоляции, освидетельствование сосудов технической администрацией предприятия.

При капитальном ремонте дополнительно к объему среднего ремонта выполняют работы по замене всех ранее заглушённых трубок (при глушении более 15% трубок), замену труб и секций, имеющих течи, замену труб с износом более 25% по толщине стенки, ремонт и замену запорной арматуры, освидетельствование сосудов инспектором Госгортехнадзора СССР.

Очистка теплообменных аппаратов. Хорошая очистка тепло-передающей поверхности не только увеличивает теплопередачу, но и способствует удлинению срока службы аппаратов. Очистку проводят химическими, механическими, гидравлическими ультразвуковым или смешанным способами.

Механические способы очистки используют для очистки труб теплообменников. Устройство для очистки состоит из вращающейся штанги с режущим инструментом на конце. Штанга вместе с приводом (электродрель или пневмодвигатель) прикреплена к тележке, перемещающейся по монорельсу по мере продвижения штанги по трубе теплообменника. Вращающаяся штанга заключена в трубу, которая защищает руки рабочих и одновременно служит трубопроводом для подачи воды с целью промывки отложений. Горизонтально приспособление перемещается вручную. Для очистки У-образных труб теплообменных аппаратов и трубок малого диаметра используют гибкие валы, приводимые в движение различного рода двигателями.

Инструмент, применяемый при механической чистке, разнообразен: сверла, ерши, резцы, буры, шарошки.

При пескоструйной очистке песок вместе с водой подается в очищаемый аппарат («мокрая» пескоструйная очистка). Если песок подается в воду струей воздуха, то в этом случае осуществляется очистка смесью воды, воздуха и песка.

При гидропневматической очистке в трубу подают с помощью водовоздушного пистолета воду под давлением 0,5- 0,6 МПа и воздух под давлением 0,7-0,8 МПа в соотношении 1: 1. Сжатый воздух, расширяясь, резко увеличивает скорость движения воды, которая начинает двигаться толчками с интенсивными завихрениями, что способствует разрушению отложений.

Продолжительность очистки по сравнению с механической сокращается в 8-10 раз.

При гидромеханической очистке вода под давлением до 70 МПа подается насосом по высоконапорному гибкому шлангу в полую штангу, на конце которой укреплено сопло с отверстиями, располагаемыми в большинстве случаев под углом 45° к оси штанги. Этот метод требует соблюдения определенных мер предосторожности, но позволяет проводить очистку быстро и без эрозионного износа.

При подаче воды в полую штангу, в том случае если наконечник выполнен из твердосплавного резца или сверла, можно очищать трубки со сплошной забивкой. Давление воды в таком случае не превышает 1,0 МПа.

Самым простым и надежным методом предупреждения отложений на стенках труб является ультразвуковой. Суть его заключается в том, что скорости распространения волн в металле и в отложениях значительно различаются и при возникновении деформации в граничной зоне происходит непрерывное разрушение тонкого слоя отложений.

При техническом перевооружении промышленных установок, в тех случаях когда в водоохлаждающих оборотных циклах не предусмотрены эффективные устройства по очистке воды от ила, целесообразно использовать конденсаторы с псевдокипением («самоочищающийся» конденсатор). В процессе работы под действием ударов частиц песка поверхность труб очищается от ила и накипи (рис. 112, г). Недостатком этого эффективного конденсатора является коррозионно-эрозионный износ стенок конденсатора и необходимость изготовления по этой причине труб только из легированной стали.

Порядок ремонта. Порядок ремонтных операций после подготовки отключенного от схемы аппарата и сдачи его в ремонт следующий: демонтаж арматуры и трубопроводной обвязки, разборка резьбовых соединений, съем крышек, люков, выемка трубных решеток, если это позволяет конструкция аппаратов, проверка плотности и прочности труб и их крепление в трубных решетках путем пневматических или гидравлических испытаний, глушение и развальцовка (обварка) труб в трубных решетках, извлечение труб из корпуса при их замене, постановка новых труб с предварительной очисткой отверстий в решетках и зачисткой концов труб, ремонт корпусных деталей, вырубка и вырезка прокладок, подготовка крепежа, сборка аппарата, испытания на плотность и прочность, сдача в эксплуатацию.

Рис. 1. Гидродинамическая (а) и гидромеханическая (б) очистка теплообменников, установка преобразователей для очистки ультразвуком (в) и схема работы «самоочищающегося» конденсатора - конденсатора с псевдо-кипящим потоком песка (г):
1- двигатель; 2 - насос; 3 - регулятор давления; 4 - барабан для шланга; 5 - подвод воды; 6 - гибкий шланг высокого давления; 7 - щиток; 8 - пульт управления («пистолет»); 9 - полая штанга; 10 - распылитель с соплами; 11 - дрель; 12 - подшипник; 13 - манжета; 14 - сверло; 15 - преобразователь; 16 - генератор; 17 - перегородки; 18 - сливной лоток; 19 - смотровые окна

Ремонт теплообменных аппаратов начинают с проверки их плотности. Течи в теплообменных аппаратах выявляют при их испытании давлением воды (опрессовка). При испытании неразъемных кожухотрубных аппаратов воду подают в межтрубное пространство и, поднимая давление до давления испытания, проверяют аппарат на отсутствие течей в трубной решетке и из полости трубок. В случае затруднений в удалении воды из аппаратов течи в холодильных теплообменных аппаратах определяют давлением сухого воздуха или азота (пневматическая опрессовка) с проверкой обмыливанием или течеискателями. Выявленные трубы с течами могут быть отглушены временными пробками для продолжения испытаний.

При ремонте теплообменных аппаратов, как указывалось выше, допускается глушение не более 15% трубок. Правку мятых трубок осуществляют на винтовых приспособлениях путем протаскивания пробки-оправки на штанге. Трубы глушат с двух сторон пробками на резьбе или на припое.

При замене вальцованные трубы подрезают за трубной решеткой специальным резцом или рассверливают для уменьшения толщины стенки и последующей выемки. Все эти операции проводят так, чтобы не повредить поверхности отверстий в решетке. Рассверливание ведут ступенчатым сверлом с центрирующим гладким концом, равным внутреннему диаметру трубы и режущей частью, равной 3/4 наружного диаметра труб. Уменьшение толщины труб резко снижает напряжение в вальцованном соединении, и труба легко вынимается. Чтобы не уронить трубу в межтрубное пространство, в нее вставляют с другой трубной решетки металлический прут или используют приспособления.

Рис. 2. Ремонт теплообменников: исправление вмятин в трубах (а), глушение дефектных труб резьбовой пробкой (б); резиновой прокладкой с разжимными конусами (в), резиновой прокладкой на период испытаний (г); вытаскивание дефектных труб (д) и стадии вальцовки: вставка трубы в решетку (е), подвальцовка (ж) и окончательная развальцовка и бортовка (з);
1 - болт; 2 - нажимные детали; 3 - трубная решетка; 4 - труба теплообменника; 5 - пробка калиброванная; 6 - резьбовая пробка; 7 - резиновые прокладки; 8 - стопорящий сухарь; 9 - опорный стакан

Трубы, закрепленные в трубной решетке с помощью сварки, удаляют из аппарата вырубкой вручную кольцевого шва или срезанием торца трубы и калинового шва фрезой с приводом от гибкого вала. До замены выбитых дефектных трубок новыми отверстия в трубных решетках зачищают, продувают и насухо протирают. Продольные риски на поверхностях отверстий зачищают шабером. Шероховатость поверхности в отверстиях под вальцовку должна быть не ниже Ra 0,80 мкм.

Концы труб зачищают, протирают, трубы вставляют в трубную решетку, зазоры продувают воздухом. Величина зазора не должна быть меньше 0,5 и больше 1,5% диаметра трубы. При малых зазорах трудно заводить трубы в трубную решетку, а при больших появляется опасность потери прочности трубы и плотности соединения. Развальцовку начинают с привальцов-кк - раздачи конца трубы для его закрепления в отверстии. Привальцовку выполняют вальцовкой с длиной роликов на 10- 12 мм, превышающей толщину трубной решетки. После при-вальцовки всех труб проводят окончательную развальцовку из расчета 15-20% толщины стенки вальцуемой трубы и отбор-тевывают концы труб под углом 15° к оси трубы. Привальцовку выполняют крепежной вальцовкой, окончательную привальцовку и отбортовку - бортовочной вальцовкой (с бортовочными роликами).

Сначала развальцовывают все трубки в одной решетке, а затем в другой. При большом количестве заменяемых трубок порядок вальцовки следующий. Вальцуют вначале четыре трубки крест-накрест, а затем все трубки по периметру, после чего все остальные.

Качество работы проверяют осмотром на отсутствие трещин и разрывов, подреза труб по кромке гнезда, а также убеждаются в отсутствии ярко выраженного перехода между вальцованной и невальцованной частью.

Приспособления. При ремонте теплообменных аппаратов могут быть использованы приспособления, работающие в полуавтоматическом режиме. Примером может служить развальцовочная машина, которая может быть использована при соответствующей смене инструмента для развальцовки, торцовки и удаления труб из теплообменника, а также для нарезания кольцевых канавок в отверстиях трубных решеток теплообменников с трубами диаметром от 14 до 57 мм. Машина работает в ручном, автоматическом и полуавтоматическом режимах. На раме машины расположена тележка, перемещаемая в горизонтальном направлении посредством цепного привода. На ней установлена вертикальная рама, по которой перемещается горизонтально расположенная рама с приводом для развальцовки. Вертикально рама с приводом перемещается также с помощью цепной передачи, а в поперечном направлении - с помощью рычага.

Рис. 2. Развальцовочная машина:
1 - рама машины; 2 - шкаф управления; 3 - горизонтально перемещаемая тележка; 4 - мотор-редукторы вертикального, горизонтального перемещения и привода развальцовки; 5 - вертикально расположенная рама; 6 - уравновешивающий груз; 7 - пульт-координатор вертикального и горизонтального перемещений; 8 - выносной пульт управления; 9 - телескопический вал в неподвижном защитном кожухе; 10 - головка крепления инструмента с шарнирным соединением с валом и замком крепления; 11 - кожухотрубный теплообменник; 12 - кнопочная станция управления приводом развальцовки; 13 - рычаг поперечного перемещения

Управление приводами вертикального и горизонтального перемещений осуществляется с пульта-координатора, а управление и выбор режима работы привода развальцовки выполняют с выносного пульта, расположенного на защитном кожухе телескопического вала. Развальцовку труб в отверстиях трубных решеток выполняют инструментом, закрепляемым в головке, шарнирно соединенной с валом. При торцовке, подрезке и нарезании канавок в решетке управление мотор-редуктором ведут от кнопочной станции.

Рис. 3. Гидравлическое испытание межтрубного пространства аппарата:
1 - гидропресс; 2 - залив водой; 3 - выпуск воздуха; 4 - слив воды; 5 - места осмотра при давлении испытания на плотность

Свищи и трещины в корпусных деталях и обечайках заваривают. После всех работ по сварке корпусных деталей сосуды, подлежащие контролю Госгортехнадзора СССР, подвергают гидравлическому испытанию на прочность. Опрессовку кожухо-трубных аппаратов жесткой конструкции проводят со снятыми крышками и с проверкой качества вальцовки в решетках. Во время заполнения аппаратов водой перед испытаниями необходимо обеспечить при любой конструкции выход воздуха из испытываемой полости (рис. 3).