Требования к качеству сетевой и подпиточной воды тепловых сетей. Какой теплоноситель лучше для отопления частного дома

Наиболее распространенным теплоносителем в централизованных и автономных системах отопления является вода. Ее популярность объясняется общедоступностью, низкой стоимостью, экологической безопасностью, а также хорошими тепловыми характеристиками. Однако имеется и ряд существенных недостатков.

Наличие растворенных солей в воде приводит к образованию накипи на внутренних стенках радиаторов. В результате существенно снижается теплоотдача, уменьшается проходной диаметр радиаторов, что ухудшает циркуляцию теплоносителя.

Еще одним недостатком является достаточно высокая температура замерзания воды (0 °C). Замерзание воды приводит к разрушению радиаторов. Поэтому если в работе системы возможны перерывы, рекомендуется использовать незамерзающий теплоноситель для радиаторов отопления — антифриз.

Температура замерзания антифриза может достигать -65 °C. Этого достаточно для эксплуатации системы отопления практически в любых условиях. Кроме того, даже при замерзании он переходит в гелеобразное состояние, что не приводит к разрушительным последствиям для радиаторов.

Рабочая температура антифриза составляет порядка +75 °C, что также вполне соответствует параметрам большинства систем отопления. Использование антифриза благоприятно влияет на срок службы прокладок, уплотнителей и других неметаллических элементов системы.

Сегодня в системах отопления чаще всего применяются антифризы на основе этиленгликоля и пропиленгликоля. Этиленгликоль обладает оптимальными теплофизическими характеристиками, но является сильным токсином. Поэтому наиболее широкое применение получили антифризы на основе пропиленгликоля, который является безвредным веществом.

При использовании антифриза очень важно контролировать показатель его кислотности. Для большинства радиаторов рекомендован уровень pH 7-8. В случае его превышения металл радиатора может достаточно быстро подвергаться коррозии.

Совместимость различных видов теплоносителей с радиаторами

Все виды современных радиаторов отопления могут эксплуатироваться как с водой, так и с антифризами. Однако существует ряд факторов, которые необходимо учитывать при выборе теплоносителя и радиаторов отопления.

Качественные чугунные радиаторы являются менее требовательными к химическому составу теплоносителя благодаря значительной толщине своих стенок. Коррозия угрожает им только при превышении рекомендованного уровня pH теплоносителя. Кроме того, за счет низкой тепловой инерции зависимость теплоотдачи радиатора от температуры теплоносителя является небольшой. Эти факторы способствуют использованию любых теплоносителей в чугунных радиаторах.

Однако есть существенное ограничение, за счет которого антифриз очень редко применяется для этих приборов. Объем одной секции радиатора из чугуна может достигать 1,5 литров. Учитывая, сколько потребуется антифриза для заполнения системы, применение этого типа теплоносителя оказывается экономически нецелесообразным. Кроме того, чугунные батареи чаще всего применяются в централизованных системах отопления, где в качестве теплоносителя используется вода. С другой стороны, в таких системах большое значение имеет качественная водоподготовка для профилактики образования накипи на стенках радиаторов.

Чугунные радиаторы Ogint — яркий представитель данной категории радиаторов, совмещающий в себе современный дизайн и преимущества традиционных чугунных батарей. Радиаторы произведены в полном соотвествии с ГОСТ 31311-2005, распространяется гарантия 2 года.

Стальные радиаторы являются наиболее чувствительными к качеству теплоносителя. Для заливки в эти приборы применяется либо мягкая или дистиллированная вода, либо качественный антифриз. Этим же требованиям должен отвечать и теплоноситель для алюминиевых радиаторов.

Благодаря небольшому объему секций алюминиевых радиаторов для заполнения системы требуется минимальное количество теплоносителя. При использовании антифриза необходимо учитывать, что он обладает более высокой вязкостью. Поэтому для нормальной циркуляции насос должен работать с повышенной нагрузкой, что обуславливает более высокое максимальное рабочее давление теплоносителя. Необходимо контролировать, чтобы давление не превышало допустимый уровень для конкретного типа отопительных приборов.

Алюминиевые радиаторы Ogint предназначены в первую очередь также на работу с антифризом. На радиаторы распространяется гарантия 5 лет.

Биметаллические радиаторы можно назвать наиболее универсальными. Они рассчитаны на высокое рабочее давление и демонстрируют высокую устойчивость к коррозии. Они одинаково хорошо приспособлены к воде и к антифризу с уровнем рН 6,5-9,5. Для заполнения системы потребуется больше теплоносителя по сравнению с алюминиевыми радиаторами, что может обуславливать более высокий уровень затрат особенно при использовании антифриза. Однако эти расходы будут значительно меньше, чем в случае с чугунными радиаторами.

Биметаллические радиаторы отопления Ogint — качественные отопительные приборы с современным дизайном и гарантией от изготовителя 10 лет. Батареи не чувствительны к типу теплоносителя и могут эксплуатироваться как с водой, так и с антифризом.

Важным замечанием при использовании в качестве теплоносителя антифриза является необходимость применения высококачественных межсекционных паронитовых и силиконовых прокладок . Это требование применимо ко всем типам радиаторов. Антифриз отличается высокой текучестью. Поэтому при использовании недостаточно качественного уплотнения могут возникать утечки.

Водно-химический режим тепловых сетей должен обеспечить их эксплуатацию без повреждений и снижения экономичности, вызванных коррозией сетевого оборудования, а также образованием отложений и шлама в оборудовании и трубопроводах тепловых сетей.

Для выполнения этих условий показатели качества сетевой воды во всех точках системы не должны превышать значений, указанных в таблице Е.1 .

Таблица Е.1 - Нормы качества сетевой воды

Наименование показателя

Значение рН для систем теплоснабжения:

открытых

закрытых

открытых

закрытых

Количество взвешенных веществ, мг/дм, не более

открытых

закрытых

* По согласованию с уполномоченными органами исполнительной власти (Роспотребнадзор) допускается 0,5 мг/дм.

В начале отопительного сезона и в послеремонтный период допускается превышение норм в течение 4 недель для закрытых систем теплоснабжения по содержанию соединений железа - до 1,0 мг/дм, растворенного кислорода - до 30 мкг/дми взвешенных веществ - до 15 мг/дм.

При открытых системах теплоснабжения по согласованию с санитарными органами допускается отступление от действующих норм для питьевой воды по показателям цветности до 70° и содержанию железа до 1,2 мг/дмна срок до 14 суток в период сезонных включений эксплуатируемых систем теплоснабжения, присоединения новых, а также после их ремонта.

Качество подпиточной воды по содержанию свободной углекислоты, значению рН, количеству взвешенных веществ и содержанию нефтепродуктов не должно превышать значений, указанных в таблице Е.1. Содержание растворенного кислорода в подпиточной должно быть не более 50 мкг/дм.

Качество подпиточной и сетевой воды открытых систем теплоснабжения и качество воды горячего водоснабжения в закрытых системах теплоснабжения должно удовлетворять требованиям к питьевой воде в соответствии с СанПиН 2.1.4.1074 и СанПиН 2.1.4.2496.

Использование в закрытых системах теплоснабжения технической воды допускается при наличии термической деаэрации с температурой не менее 100 °С (деаэраторы атмосферного давления). Для открытых систем теплоснабжения согласно СанПиН 2.1.4.2469 деаэрация должна также производиться при температуре не менее 100 °С.

Непосредственная добавка гидразина и других токсичных веществ в систему теплоснабжения не допускается.

Другие реагенты (серная кислота, едкий натр, силикат натрия и др.), используемые для обработки сетевой и подпиточной воды закрытых и открытых систем теплоснабжения, должны отвечать соответствующим требованиям.

При использовании для подготовки подпиточной воды теплосети технологий, связанных с изменением ее ионного состава (натрий- и водород - катионирование, мембранная обработка и др.), для оценки накипеобразующих свойств обработанной воды используется показатель - карбонатный индекс - предельное значение произведения общей щелочности и кальциевой жесткости воды (мг-экв/дм), выше которого протекает карбонатное накипеобразование с интенсивностью более 0,1 г/(м·ч).

В соответствии с данным определением предельное (нормативное) значение карбонатного индекса сетевой воды равно

, (Е.1)

где и- соответственно предельно допустимые значения кальциевой жесткости и общей щелочности сетевой воды, мг-экв/дм.

Нормативные значения при нагреве сетевой воды в сетевых подогревателях приведены в таблице Е.2, а при нагреве ее в водогрейных водотрубных котлах - в таблице Е.3 .

Таблица Е.2 - Нормативные значения при нагреве сетевой воды в сетевых подогревателях в зависимости от рН воды

(мг-экв/дм)при значениях рН

не выше 8,5

Таблица Е.3 - Нормативные значения при нагреве сетевой воды в водогрейных водотрубных котлах в зависимости от рН воды

Температура нагрева сетевой воды, °С

(мг-экв/дм)при значениях рН

не выше 8,5

* При рН сетевой воды выше 10,0 величина не должна превышать 0,1 (мг-экв/дм).

Для закрытых систем теплоснабжения с разрешения энергосистемы верхний предел значения рН сетевой и подпиточной вод допускается не более 10,5 .

Значение подпиточной воды для открытых систем теплоснабжения должно быть таким же, как нормативное значениедля сетевой воды.

Значение подпиточной воды для закрытых систем теплоснабжения должно быть таким, чтобы обеспечить нормативное значениесетевой воды с учетом присосов водопроводной воды в сетевую.

Карбонатный индекс подпиточной воды равен

, (Е.2)

где - допустимая кальциевая жесткость подпиточной воды, мг-экв/дм;

Щелочность подпиточной воды, зависящая от технологии подготовки подпиточной воды, мг-экв/дм.

Значение рассчитывается следующим образом.

При известных значениях щелочности подпиточной и водопроводной воды щелочность сетевой составит

где , равная и- щелочность водопроводной и сетевой воды, мг-экв/дм;

Доля реальных присосов водопроводной воды (%) по отношению к расходу подпиточной воды

где ,и- общая жесткость соответственно сетевой, подпиточной и водопроводной воды, мг-экв/дм.

При отсутствии эксплуатационных данных по значению присосов водопроводной воды долю присосов рекомендуется принимать равной 10% при использовании водо-водяных кожухотрубных подогревателей и 1% при использовании пластинчатых подогревателей согласно .

При таком значении допустимая кальциевая жесткость сетевой водысоставит

, (Е.5)

где - карбонатный индекс сетевой воды по таблице Е.2 или Е.3.

Допустимая кальциевая жесткость подпиточной воды не должна превышать значения, рассчитанного по формуле (Е.6):

где - кальциевая жесткость водопроводной воды, мг-экв/дм.

Организация, эксплуатирующая тепловые сети, должна организовать постоянный контроль за качеством сетевой воды в обратных трубопроводах и выявлять абонентов, ухудшающих ее качество.

Допускается замена технологий обработки подпиточной воды системы теплоснабжения, связанных с изменением ее ионного состава, другими эффективными способами при условии надежного обеспечения работы системы без повреждения ее элементов вследствие отложений накипи, шлама и при отсутствии интенсификации процессов коррозии.

Разрешается применение ингибиторов накипеобразования и коррозии, соответствующих условиям эксплуатации оборудования. Тип и доза применяемых ингибиторов для каждого конкретного случая определяются специализированными организациями, разрабатывающими технологию их применения в соответствии с . Необходимость индивидуального подхода при выборе типа и дозы ингибиторов обусловлено влиянием значительного числа факторов на эффективность их применения, в первую очередь концентрации и типа органических соединений в сетевой воде.

Поставка ингибиторов коррозии и накипеобразования должна проводиться в соответствии с Техническими условиями и иметь разрешительные документы на их применение в соответствующих условиях.

Для предотвращения накипеобразования и коррозии в тепловых сетях используются также магнитные, ультразвуковые, электрохимические и другие физические методы воздействия на подпиточную и сетевую воды.

Оптимальные условия применения этих технологий определяются организациями, осуществляющими поставку соответствующего оборудования.

Использование ингибиторов накипеобразования и коррозии, а также физических технологий обработки воды позволяет эксплуатировать тепловые сети при значениях карбонатного индекса, значительно (в несколько раз) превышающих приведенные в таблицах Е.2 и Е.3, снизить коррозионные процессы, сократить затраты на подготовку подпиточной воды, обеспечить работу тепловой сети без образования минерализованных сточных вод.

К.т.н. Я.М. Щелоков, доцент кафедры «Энергосбережение», УГТУ-УПИ, г. Екатеринбург

Перед персоналом любого энергоисточника возникает комплекс задач по организации надежной и экономичной работы тепловых энергоустановок. К настоящему времени эти требования сформулированы в правилах устройства и эксплуатации различных энергетических установок . Конечная цель при этом - не допускать возникновения коррозии металла и/или образования накипи, отложений и шлама на теплопередающих поверхностях оборудования и трубопроводов в котельных, системах теплоснабжения за счет организации соответствующего водно-химического режима.

Принято считать, что достижение необходимого водно-химического режима работы энергоустановок возможно посредством обеспечения соответствующих концентрационных показателей воды, необходимых для обеспечения ее качественной и количественной характеристик .

Однако все попытки распространения этого технологического условия на водно-химические режимы тепловых сетей приводили чаще всего к отрицательным результатам по обеспечению как их надежной работы , так и необходимых экономических показателей .

Сложившееся противоречие было также подтверждено и в , где подчеркивается, что, по мнению теплохимиков, настало время реально оценить все аспекты эксплуатации тепловых сетей и, если это окажется необходимым, пересмотреть нормы их проектирования и эксплуатации.

О настоящей необходимости коренного пересмотра сложившихся схем теплоснабжения было подчеркнуто также и в . Именно в данной работе сделана попытка комплексного рассмотрения проблемы организации водно-химических режимов работы систем теплоснабжения, т.е. отопления и горячего водоснабжения (ГВС). Здесь А.П. Баскаковым приведены основные понятия химии воды. Отмечено, что, исходя из концентрационных показателей качества воды, обеспечение нормативных требований к водно-химическим режимам наиболее возможно в двух случаях .

1. Использование в качестве подпиточной химически чистой (нейтральной) воды, где могут распадаться на ионы менее одной из каждых 10 млрд молекул. На настоящий период наиболее близка по своему составу к нейтральной -обессоленная вода.

2. Использование так называемой «стабильной» воды, которая по своему определению не выделяет и не растворяет карбонат кальция, являющийся основой всякого рода отложений.

На примере Дании использование условно нейтральной воды в системе теплоснабжения вполне возможно (табл. 1).

Таблица 1. Показатели подпиточной воды для систем теплоснабжения (Дания).

Показатели Умягченная вода Обессоленная вода
Внешний вид чистая, бесцветная чистая, бесцветная
Запах нет нет
Частицы, мг/л <5 <1
Значение рН* 9,8±0,2 9,8±0,2
Проводимость (iS/cm как сырой воды <10
Остаточная жесткость dH° <0,1 <0,01
Содержание кислорода/двуокиси углерода, мг/л <0,1/10 <0,1/10
Содержание масла и жира нет нет
Содержание хлорида Cl~, мг/л <300 <1
Содержание сульфата SO4, мг/л - <1
Общее содержание железа Fe, мг/л <0,05 <0,005
Общее содержание меди Си, мг/л <0,05 <0,01
Бактериологический лимит официальных норм нет официальных норм нет

Но при этом следует обратить внимание на недопустимость в системах теплоснабжения использования алюминия, который подвергается коррозии при pH выше 8,7.

Возможность перехода на использование «нейтральной» воды в данном случае вызвана тем, что в системах теплоснабжения Дании средние потери воды составляют не более 0,15% в сутки, т.е. не более 1,5 л на каждый м3 воды (поданным HydroX).

В условно закрытых системах отопления, с вероятностью несанкционированных отборов воды, и тем более для систем с открытым водоразбором, применение даже просто умягченной воды становится экономически не реальным.

Что касается стабильности воды (по CaCO3), то теоретически это возможно только при неизменном температурном режиме работы системы теплоснабжения. Данное условие не выполнимо, по крайней мере, для водяных систем. Более того, поданным ВТИ в некоторых тепловых сетях наблюдается значительная (до 20-25 ОC) разница температур уже в подающих линиях ее магистралей.

То есть по ряду объективных (динамика температуры теплоносителя, климатические условия и др.) и субъективных (объемы утечек сетевой воды, квалификация обслуживающего персонала и др.) факторов, как правило, невозможно обеспечить надежную работу отечественных тепловых сетей только за счет поддержания соответствующих концентрационных показателей воды.

Именно поэтому в подробно проанализированы результаты работ за последние 40-50

лет по созданию аппаратных устройств, режимных мероприятий и др. по предотвращению накипеобразования и коррозии в системах теплоснабжения.

Проведено сравнение таких методов обработки воды как ионный обмен (химический метод), стабилизационная обработка воды (органические фосфонаты, акрилаты и др.), безреагентная противонакипная обработка воды (магнитная, ультразвуковая и др.) и т.д.

Отмечено, что принципиальной особенностью ионного обмена является необходимость строго выдерживать пропускную способность катионитовых фильтров по подпиточной воде, своевременно и качественно выполнять все технологические операции. С другой стороны, у системы отопления и ГВС любого типа регулярно или периодически требуются изменения расхода подпиточной воды в широком диапазоне -нередко в десятки раз. То есть эти два технологических процесса - ионный обмен и система водяного теплоснабжения, тем более открытого, - практически несовместимы. И все попытки их объединить неизбежно связаны с необходимостью хотя бы периодического питания систем отопления и ГВС сырой водой со всеми вытекающими отсюда неприятными последствиями. Важно отметить, что этот метод водоподготовки является пассивным в отношении уже имеющейся накипи, т.е. все «проскоки» солей жесткости и перерывы в работе ионообменных фильтров (подпитка напрямую) приводят к постепенному увеличению трудноудаляемых отложений . И даже в условиях систем теплоснабжения Дании требуется дополнительно вводить специальные реагенты, преобразующие соли жесткости в шлам .

Неслучайно и нередко вопреки существующим нормам проектирования и эксплуатации на многих ТЭЦ России уже более 10 лет остановлены все установки водоподготовки для теплосетей и дозируется только комплексон (органические фосфонаты) , а в котельных используется та же стабилизационная обработка воды и/или безреагентные методы .

При этом в обращается внимание на наличие определенных проблем при использовании так называемых «нехимических» методов водоподготовки, куда некоторые авторы относят и обработку воды комплексонами . Вызвано это тем, что количество вводимого реагента значительно ниже стехиометрического состава.

Тем не менее, в определенных температурных режимах образования отложений не происходит. И этот эффект достигается не за счет удаления из воды накипеобразующих элементов, а подавляются их накипеобразующие свойства . При этом одновременно снижается коррозионная активность воды, ингибируется поверхность металла и постепенно удаляются ранее имевшиеся отложения (табл. 2).

Таблица 2. Данные анализов сетевой воды системы теплоснабжения с открытым водоразбором до и после применения реагента СК-110 .

Да, этот метод «не совсем химический», а есть комплекс физико-химических процессов. Причем у каждого из них свои стехиометрические соотношения. Но, на ряде конструкций котельного и теплообменного оборудования при определенных режимах их работы, эти стехиометрические соотношения не обеспечиваются.

В большинстве случаев вызвано это отказом пересмотреть сложившиеся нормы проектирования и эксплуатации этого оборудования . От себя заметим, что изменить здесь ситуацию возможно только отменой существующего в

ПТЭ разрешения заводам-изготовителям самостоятельно устанавливать показатели (нормы) качества воды для тепловых энергоустановок. Пока это разрешение сохраняется, будут и далее упрощаться гидравлические схемы котлов, снижаться скорости движения воды в трубах, в экранных контурах и т.д., и т.п. .

Хотя и в этой сложившейся схеме развития конструкций котлов на максимальное упрощение их гидравлических характеристик появились реальные позитивные изменения. Это водогрейные котлы со встроенными теплообменниками , переход на двухконтурные схемы систем теплоснабжения и др.

В заключение следует отметить, что проблемы, затронутые в рассматриваемом здесь издании , получили дальнейшее развитие в работе .

Литература

1. ПБ 10-374-03. Правила устройства и безопасной эксплуатации паровых и водогрейных котлов. - Спб.: Изд-во ДЕАН, 2003.

2. Правила технической эксплуатации тепловых энергоустановок. - СПб.: Изд-во ДЕАН, 2003.

3. Копылов А.С., Лавыгин В.М., Очков В.Ф. Водоподготовка в энергетике: Учебное пособие для вузов. - М.: Изд-во МЭП. 2003.

4. Щелоков Я.М. О схемах подготовки воды для систем тепло-водоснабжения // Промышленная энергетика. 1991. № 1.

5. Белоконова А.Ф. Результаты внедрения новой технологии подготовки подпиточной воды для тепловых сетей с открытым водоразбором//Электрические станции. 1997. №6.

6. Федосеев Б. С. Современное состояние водоподготовитель-ных установок и водно-химических режимов ТЭС // Теплоэнергетика. 2005. № 7.

7. БаскаковА.П., Щелоков Я.М. Качество воды в системах отопления и горячего водоснабжения: Учебное пособие. - Екатеринбург: УГТУ-УПИ. 2002.

8. Байбаков С.А., Тимошкин А.С. Основные направления повышения эффективности тепловых сетей // Электрические станции. 2004. № 7.

9. Оле Кристенсен, Свенд Андерсен. О системах водоподготовки на ТЭЦ в Дании // Новости теплоснабжения. 2002. № 10.

10. Резник Я.Е. О «нехимических» методах обработки воды // Энергосбережение и водоподготовка. 2006. № 5.

11. Щелоков Я.М. О техническом регламенте безопасной эксплуатации тепловых энергоустановок // Промышленная энергетика. 2006. № 4.

12. Водогрейные котлы с кипящей водой низкого давления со встроенными теплообменниками / К. А. Жиделов, В.Ф. Киселев, В.Б. Кулемин, В.В.Проворов, Н.М. Сергиенко // Новости теплоснабжения. 2006. № 10.

13. Водное хозяйство промышленных предприятий: справочное издание: Книга 3/В.И. Аксенов, Я.М. Щелоков, Ю.А. Галкин, И.И. Ничкова, М.Г. Ладыгичев. М.: Теплотехник. 2007. 368 с.

Теплоносителем называется жидкость, которая движется по контуру теплообменного оборудования в системах отопления и кондиционирования и служит для осуществления теплообмена.

Из чего состоит теплоноситель?

В состав современного устройства входит основное вещество (этиленгликоль, реже пропиленгликоль), вода, в которой он растворен и пакет присадок-ингибиторов.

Почему в качестве основного вещества в теплоносителях используется этиленгликоль?

Лучшие теплоносители изготовляются на основе этиленгликоля, потому что это вещество отвечает требованиям, которые предъявляются к антифризам:
- низкая температура замерзания (до -65);
- высокая температура кипения (+115);
- высокая температура воспламенения;
- стабильность теплофизических свойств.

Есть ли у этиленгликоля недостатки?

Когда говорят о минусах применения этиленгликоля в теплоносителях, то, как правило, имеют в виду токсичность этого вещества. Действительно, этиленгликоль ядовит, и его смертельная доза не превышает 120 мл. Однако при соблюдении эксплуатационных требований и герметичности контура можно избежать протечек антифриза. Раствор, обогащенный специальным присадками, не оказывает агрессивного воздействия на резину. Соответственно, уплотнения не разрушаются, контур остается герметичным, и теплоноситель не вытекает. Это особенно важно, потому что этиленгликоль обладает высокой (выше, чем у воды) текучестью.

От чего зависит температурный диапазон использования теплоносителя?

Чем выше концентрация этиленгликоля в теплоносителе, тем ниже температура кристаллизации антифриза и тем выше температура его кипения. Если эксплуатационные условия позволяют, готовые антифризы можно разбавлять (увеличивать долю воды в растворе), чтобы расходовать продукт более экономно. Однако установлено, что температура кристаллизации этиленгликоля в чистом виде составляет лишь -12 С, и наиболее эффективными (самый низкий порог кристаллизации) считаются теплоносители, на 70% состоящие из гликоля. В то же время, антифризы на основе этиленгликоля даже при температуре ниже порога кристаллизации не разрушает контур.

Почему в теплоносителях используется пропиленгликоль?

Пропиленгликоль уступает этиленгликолю в теплофизических свойствах примерно на 20%. Однако на основе этого вещества производят теплоносители для теплообменного оборудования в фармацевтической и пищевой промышленности, а также для отопления и кондиционирования некоторых жилых объектов.

Каким требованиям должна соответствовать вода, в которой растворяют этиленгликоль?

Теплоносители для отопления должны изготавливаться из очищенной, обессоленной, дистиллированной воды. В противном случае в процессе эксплуатации антифриза на стенках контура образуются солевые отложения (накипь).

Зачем в теплоноситель добавляют присадки?

Этиленгиколь-жидкость довольно агрессивная и для того чтобы снизить коррозионную активность в теплоносители добавляют пакет специальных присадок. Агрессивная жидкость, этиленгликолевый раствор оказывает на металлические части контура разрушающее воздействие. Гликоль в процессе распада, в особенности под воздействием высоких температур, образует органические кислоты. Они насыщают теплоноситель и изменяют его рН. Нейтрализовать эти кислоты могут только специальные ингибиторы. В противном случае металлическая поверхность не будет защищена от коррозийной активности антифриза.

Каким образом действуют присадки в теплоносителях?

1. Ингибиторы покрывают внутреннюю поверхность слоя, концентрируясь на очагах коррозии. Защитная пленка не дает теплоносителю проявлять свою коррозийную активность.
2. Присадки понижают кислотность раствора, поскольку служат своего рода буфером для органических кислот.
Нюансы действия ингибиторов зависят от типов присадок.

Какие присадки используются в теплоносителях?

В зависимости от того, какие добавки имеются в антифризе, теплоносители делятся на три группы.
1. Традиционные, где качестве ингибиторов используются неорганические вещества: силикаты, фосфаты, амины, нитраты, бораты.
2. Гибридные теплоносители. Присадки - органические и неорганические вещества.
3. Карбоксилатные теплоносители, где ингибиторами являются карбоксилаты: соли карбоновых кислот.

Влияют ли присадки на теплофизические свойства теплоносителя?

Да, косвенным образом, и чем эффективнее ингибитор, тем меньше наслоений образуется на стенках контура, а следовательно, от качества присадок в теплоносителе зависит теплообмен в системе.

Влияют ли присадки в антифризе на токсичность этиленгликоля?

Нет, независимо от качества ингибиторов, антифризы на основе этиленгликоля остается ядовитым веществом, и допустить попадание которого в организм человека и животных нельзя.

Каково процентное соотношение различных компонентов теплоносителя?

Доли воды, гликоля и присадок в теплоносителе зависят от его марки. В антифризах, предназначенных для использования в суровом климате, например, «Гольстфрим-65» для вашего дома -65», доля этиленгликоля составляет 63%, а воды - 31%. Оставшиеся 6% - ингибиторы коррозиию
Готовые теплоносители для более высоких температур кристаллизации, например, «Гольфстрим-30», на 46% состоят из гликоля и на 50% - из воды, присадки составляют лишь 4% раствора.

Почему необходима замена теплоносителя?

В процессе эксплуатации теплофизические свойства антифриза ослабевают. Выработка ресурса может произойти как в течение нескольких месяцев (негликолевые теплоносители), так и за 2-5 лет (традиционные гликолевые антифризы)
Так или иначе, но теплообмен в контуре со временем ухудшается, и причиной тому служит также образование различных наслоений в контуре: продуктов коррозии, продуктов распада гликоля, силикатного осадка в виде геля. Это негативно сказывается на теплопередаче, и к тому же, если продукты коррозии имеются в самом теплоносителе, то его свойства резко ухудшаются. Темпы данных процессов тоже зависят от марки антифриза.

Каким образом осуществляется замена теплоносителя?

Независимо от частоты замены антифриза, перед заливкой нового, контур тщательно промывается от вышеуказанных отложений. Для этого существуют специальные моющие жидкости для теплоносителей
Чем качественнее был антифриз, тем меньше отложений остается на стенках контура и, соответственно, тем проще будет его очистить. Затем производится промывка водой, и остатки наслоений, антифриза и моющей жидкости удаляются. Использованный теплоноситель утилизируется, а вместо него контур наполняют новым антифризом.

Каковы продукты распада этиленгликоля в составе теплоносителя?

1. Гликолевая кислота: агрессивная высокотоксичная субстанция.
2. Глиоксиловая кислота.
3. Щавелевая кислота: ядовита и обладает самой высокой коррозийной активностью по сравнению с другими перечисленными кислотами.
4. Муравьиная кислота.

Почему в качестве теплоносителя нельзя использовать этиленгликоль в чистом виде?

Неразбавленный этиленгликоль имеет более высокую температуру кристаллизации, как это уже отмечалось выше, и поэтому наиболее эффективным теплоносителем будет этиленгликоль, разбавленный водой в нужных пропорциях.
Кроме того, этиленгликоль без ингибиторов - чрезвычайно агрессивная жидкость. Поэтому использование чистого этиленгликоля в качестве теплоносителя ведет к разрушению контура, а также снижению срока службы самого антифриза.
Сырьевой этиленгликоль (ГОСТ 19710) - это лишь материал для изготовления антифриза.

Какие параметры теплоносителя изменяются в зависимости от концентрации основного вещества в растворе?

С увеличением концентрации этиленгликоля до определенного уровня растет его морозостойкость и температура кипения; при повышении температуры вязкость падает, но чем концентрированнее раствор, тем она выше. То же можно сказать и о плотности теплоносителя: чем больше процентная доля гликоля, тем раствор плотнее, однако с увеличением температуры плотность уменьшается.
Теплоемкость антифриза тоже зависит от того, насколько он разбавлен. Чистая вода, хотя и обладает небольшим температурным диапазоном, в качестве антифриза, демонстрирует высокую теплоемкость, которая не сильно различается на всем его протяжении и колеблется в районе 4,2 кДж/кг К.
У гликолевых теплоносителей теплоемкость падает с увеличением концентрированности раствора и увеличивается с ростом температуры. Так, антифриз, разбавленный водой наполовину, будет иметь большую теплоемкость, чем разбавленный на 20%. Однако температурный диапазон, в котором теплоноситель можно использовать, в первом случае будет уступать.
Что касается теплопроводности, то зависимость ее от концентрации антифриза довольно необычна. Если доля чистого (готового) антифриза в растворе превышает определенный процент (в районе 40%), то с увеличением температуры теплопроводность будет падать.
При этом, чем концентрированней теплоноситель, тем более резким будет уменьшение теплоемкости. Если же доля антифриза ниже данного уровня, то теплопроводность, напротив, будет расти с увеличением температуры. Чем сильнее разбавлен раствор, тем выше его теплопроводность.
С увеличением концентрации теплоносителя растут и коэффициент объемного расширения, и относительный коэффициент теплопередачи, при этом, чем выше температура, тем выше и эти показатели. Что касается давления пара, то оно растет с увеличением температуры и падает с увеличением концентрации

Какие параметры проверяются в ходе эксплуатации теплоносителя?

Для того, чтобы система отопления исправно работала, важно, чтобы контур не был поврежден и свойства теплоносителя соответствовали определенному уровню.
В ходе ревизий и проверок измеряются:
- коррозийная активность антифриза, в том числе определяются скорость коррозии, ее потенциал и виды общей и локальной коррозии;
- плотность теплоносителя;
- резерв щелочности;
- водородный показатель;
- температура кипения и кристаллизации теплоносителя;
- концентрация этиленгликоля в растворе;
- доля воды в антифризе;
- содержание присадок в теплоносителе;
- рН раствора.

Какие методы используются для контроля состояния теплоносителя?

Для проведения необходимых измерений специалисты прибегают к газовой и газо-жидкостной хроматографии, рефрактометрии, рН-метрии, спектрофотометрии, химическому, кулонометрическому, атомно-адсорбционному анализу, коррозийным испытаниям.

Какой показатель рН является оптимальными для теплоносителя?

рН теплоносителя следует поддерживать на уровне 7,5-9,5. В кислотной среде (рН<5) антифриз склонен к общей коррозии: равномерной и неравномерной. В щелочной среде (рН>9) сильнее проявляется локальная коррозия: язвенная, щелевая и другие виды.

Почему вода является неэффективным теплоносителем?

Использование воды в качестве антифриза нежелательно по следующим причинам:
- Вода обладает высокой температурой замерзания, что не позволяет использовать ее как теплоноситель в холодное время года. При замерзании вода разрушает контур.
- Высокая коррозийная активность воды сокращает эксплуатационный срок оборудования.
- Использование неочищенной воды в качестве антифриза приводит к образованию солевых отложений на стенках, а обессоленная вода обладает повышенной коррозийной активностью. В результате, теплопередача ухудшается, оборудование быстрее приходит в негодность и приходится с повышенной частотой осуществлять замену теплоносителя и промывку контура от отложений.

Можно ли смешивать различные теплоносители?

Любые антифризы без предварительной проверки на совместимость смешивать не рекомендуется. В случае если химические основы пакетов присадок ТН различные, то это может привести к частичному их разрушению и как следствие к снижению антикоррозионных свойств.
ТН "Гольфстрим" нежелательно смешивать с ТН имеющим фосфатную основу!

Необходимо ли разбавлять теплоноситель "Гольфстрим 65"?

Обязательно! Так как разбавление ТН водой кроме экономии для потребителя позволяет повысить теплоотдачу, уменьшить плотность смеси и улучшить ее циркуляцию по системе. Так же уменьшается вероятность нагара на ТЭНах или в области горелок и проникающая способность антифриза, которая существенно выше, чем у воды.
Оптимальным для Центрального региона считается разбавление ТН на -25-30 ºС, для электрокотлов на -20-25 ºС. Для Северных регионов соответственно уровень должен быть на 5-10 ºС ниже! Даже если температура опустится ниже указанных параметров, разрушение системы исключено, так как ТН не расширяется. Он превращается лишь в желеобразную массу, которая снова становится жидкой при повышении температуры.

Какой водой лучше разбавлять теплоноситель?

В идеале ТН лучше разбавлять дистиллированной водой, в которой отсутствуют соли кальция и магния, так как именно они при нагревании кристаллизируются и образуют накипь. К примеру, накипь толщиной 3мм уменьшает теплоотдачу на 25% и система требует больших энергозатрат. В ТН "Гольфстрим" имеется специальная присадка, которая обеспечивает нормальную работу при разбавлении обычной водопроводной водой (не более 5 ед. жесткости). Для информации: вода из скважины, если не предусмотрена система умягчения, может иметь жесткость 15-20 ед.

Можно ли использовать "Гольфстрим" в системах с оцинкованными трубами?

Любой теплоноситель-антифриз на гликолевой основе, в том числе и импортный, не может защищать оцинкованные покрытия! Возможные проблемы (металлизированная взвесь, а потом труднорастворимые осадки) зависят от того, какой объем занимает такая разводка. Однако следует знать, что даже горячая вода (свыше 70 ºС) тоже смывает цинк, правда значительно медленнее.

Что лучше использовать для герметизации соединений?

Можно использовать герметики, стойкие к гликолевым смесям (например "Гермесил", LOCTITE и "ABRO") или шелковистый лен, но без подмазки масляной краской.

Есть ли обязательные правила, которые следует учесть при проектировании системы, если она будет работать на теплоносителе?

Так как ТН на гликолевой основе более вязкие, необходимо устанавливать циркуляционные насосы более мощные, чем при работе на воде (по производительности на 10%, по напору - на 50-60%).
При выборе расширительного бака следует учесть, что коэффициент объемного расширения ТН "Гольфстрим" (как и других теплоносителей) на 15-20% больше, чем на воде (вода = 4,4 х 10 -4 , а смесь ТН и воды: на -20 ºС = 4,9 х 10 -4 , на -30 ºС = 5,3 х 10 -4).
Как вывод: расширительный бак не должен быть менее 15% объема системы.
Максимальная тепловая мощность котла при работе на ТН составит примерно 80% его номинала.

Может ли теплоноситель стать причиной завоздушивания системы?

ТН "Гольфстрим" не влияет на образование пустот, заполненных кислородом или газообразованиями. Причины следует искать в ошибках проектирования или монтажа оборудования: маленький расширительный бак, гальванический эффект несовместимых элементов, неверно выбранные места установки воздухоотводчиков, неправильная настройка термостатов и т.д.

К чему приводит перегрев ТН "Гольфстрим" и как его избежать?

При длительном перегреве начинается термическое разложение присадок и самого гликоля. ТН становится темно-коричневого цвета, появляется неприятный запах, образуются осадки. Зачастую на ТЭНах образуется нагар, который становится причиной выхода их из строя.
С целью предотвращения нагара необходимо:
- при разбавлении ТН не надо "гнаться" за температурой замерзания, оптимально готовые растворы должны быть на -20 -25 ºС; максимум -30-35 ºС;
- установить более мощный циркуляционный насос;
- ограничивать температуру ТН на выходе из котла - 90 ºС, а для настенных -70 ºС;
- в холодное время года нагрев ТН осуществлять постепенно, не включая котел на полную мощность.

Влияет ли теплоноситель, заполняющий систему отопления (вода или антифриз), на выбор циркуляционного насоса для этой системы?

Да, влияет. Т.к. применяемые жидкости имеют различную вязкость (вязкость антифриза выше вязкости воды).

Что может быть применено в качестве теплоносителя в системе отопления?

В качестве теплоносителя для систем отопления может использоваться либо вода, либо специальный антифриз (низкозамерзающий теплоноситель). Если нет опасности размораживания системы отопления вследствие прекращения работы котла (из-за перебоев в подаче электроэнергии, из-за падения давления газа или по другим причинам), то систему можно заполнить водой. Лучше если это будет вода дистиллированная. При этом желательно, чтобы в воде были специальные присадки способные "продлить жизнь" системе отопления (ингибиторы коррозии и т.д.).
В случае же, если размораживание системы возможно, то стоит рассмотреть вариант с применением теплоносителя -это должен быть не автомобильный тосол, трансформаторное масло или этиловый спирт, а низкозамерзающий теплоноситель, специально разработанный для систем отопления. Надо помнить, что теплоноситель должен быть пожаробезопасным и не содержать в своем составе добавок недопустимых к применению в жилых помещениях.

Каков срок службы теплоносителя?

Если говорить о продолжительности службы теплоносителя, то антикоррозионные свойства антифриза рассчитаны на 5 лет непрерывной работы или 10 отопительных сезонов.

Как тип теплоносителя (вода или антифриз) влияет на выбор радиаторов?

Да, т.к. теплоемкость теплоносителя примерно на 15-20% ниже, чем у воды (т.е. он хуже накапливает тепло и хуже отдает его), то при проектировании системы отопления с теплоносителем радиаторы следует выбирать более мощные


Правильная подготовка воды для системы отопления очень важна для владельцев частных домов, ведь отсутствие должного внимания к выбору теплоносителя может неблагоприятно сказаться на состоянии всех элементов отопительной системы.

  • разрушением стенок труб и котла из-за реакции с химически активными веществами;
  • коррозией материала и образованием накипи;
  • выходом из строя радиаторов и теплообменников;
  • ухудшением проходимости теплоносителя и снижением скорости воды в отдельных элементах системы;
  • снижением показателя теплоотдачи до 20-25%;
  • перерасходом топлива и пр.

Для сетей отопления требуется особенная вода, прошедшая все стадии очистки и обработки. Предварительная водоподготовка для системы отопления позволит избежать преждевременного ремонта котельной, замены радиаторов и котла.

Какую воду можно заливать в систему отопления?

Определить химический состав и пригодность выбранного вами теплоносителя можно путем проведения специализированных тестов. Данные услуги предоставляют сертифицированные лаборатории, гарантируя высокую точность и достоверность данных.

В домашних условиях подготовка воды для системы отопления может осуществляться при помощи набора для экспресс-анализа воды.
Он определяет показатели ph и жесткости, а также выявляет наличие узкого ряда компонентов: железо, марганец, сульфиды, фториды, нитриты и нитраты, аммоний, хлор.

Определив концентрацию реагентов в составе теплоносителя необходимо привести их значение к определенному уровню:

  1. Наличие растворенного кислорода около 0,05 мг/куб.м. либо его полное отсутствие.
  2. PH или степень кислотности в пределах 8.0 — 9.5
  3. Содержание железа не более 0,5-1 мг/л
  4. Показатель жесткости около 7-9 мг экв/л

Концентрацию всех веществ необходимо проверять как минимум один раз в полгода.

Болезнетворные микроорганизмы, содержащиеся в воде, могут значительно ухудшить качество теплоносителя и образовать на стенках системы слизистую пленку, мешающую работе системы.

Не следует забывать о некоторых свойствах воды: полностью обессоленная мягкая вода с повышенной кислотностью является идеальной средой для образования коррозии за счет присутствия кислорода и диоксида углерода.
Но их минимальное содержание в составе воды вызывает лишь незначительные процессы электрохимической коррозии.

Увеличение температуры воды в трубах отопления приводит к изменению уровня кислотности.

Примеси солей, содержащиеся в неочищенной воде, являются источником образования накипи. В то же время они понижают уровень кислотности и являются «естественным» средством, предотвращающим коррозию металла.
Их полное удаление нежелательно при очистке воды.

Способы подготовки воды для отопительных систем


Часть недостатков при подготовке воды для системы отопления устраняется путем предварительной термической обработки и фильтрации.

В остальных случаях теплоноситель разбавляется специальными присадками и реагентами, придавая ему необходимые свойства.

Какими методами можно воспользоваться при подготовке воды перед заполнением системы отопления?

  1. Изменение состава воды путем добавления реагентов, то есть химически активных веществ.
  2. Каталитическое окисления для выведения излишков железа в осадок.
  3. Применение механических фильтров различных размеров и конструкций.
  4. Смягчение воды посредством обработки электромагнитными волнами.
  5. Термическая обработка: кипячение, замораживание или дистилляция.
  6. Отстаивание воды в течение определенного промежутка времени.
  7. Деаэрация воды в целях выведения кислорода и углекислого газа и пр.

Предварительная фильтрация воды поможет удалить не нужные механические загрязнения и взвешенные частицы (камни, песок, мелкая глина и грязь и пр.).

Для очистки воды с незначительными загрязнениями применяются фильтры с промывными или сменными типами картриджей.
Сильно загрязненную воду пропускают через фильтры с двойным слоем кварцевого песка, активированного угля, керамзита или антрацита.

Длительное кипячение способствует выведению оксида углерода и значительному смягчению воды, но все-таки не позволяет полностью вывести из нее карбонат кальция.

Почему необходимо смягчать воду?

Заполнение системы отопления водой, не прошедшей процесс очистки, значительно повышает риск преждевременного износа и выхода из строя некоторых элементов отопительной системы.

Умягчение воды заключается в снижении показателя содержании ионов магния и кальция. Добиться необходимого результата можно несколькими способами.

Использование специальных фильтров на основе ряда компонентов: гашеной извести, гидроксида натрия и кальцинированной соды. Данные вещества тесно связывают растворенные в воде ионы магния и кальция, предотвращая их дальнейшее попадание в очищенный теплоноситель.

Не менее действенным приспособлением являются фильтры на основе мелкозернистой ионообменной смолы. Действие данной системы заключается в замене ионов магния и кальция на ионы натрия.

Под воздействием магнитных смягчителей воды ионы магния и калия утрачивают свою способность выпадать в виде твердого осадка и преобразуются в рыхлый шлам, который необходимо вывести из состава воды.