Бесканальная прокладка тепловых сетей в ппу изоляции. Подземная прокладка трубопроводов

Для городов и населенных пунктов по архитектурным соображениям рекомендуется применять подземную прокладку теплопроводов, независимо от качества грунта, загруженности подземных коммуникаций и стесненности проездов. Для промышленных площадок подземная прокладка используется при высокой насыщенности подземных коммуникаций с целью упорядочения технологических прокладок в одном коллекторе с теплопроводами.

Подземные прокладки подразделяются на канальные и бесканальные.

Канальные прокладки предназначены для защиты трубопроводов от механического воздействия грунтов и коррозийного влияния почвы. Стены каналов облегчают работу трубопроводов, поэтому канальные прокладки допускаются для теплоносителей с давлением до 2,2 Мпа и температурой до 350ºС. В бесканальных прокладках трубопроводы работают в более тяжелых условиях, так как они воспринимают дополнительную нагрузку грунта и при неудовлетворительной защите от влаги подвержены наружной коррозии. В связи с этим бесканальные прокладки рекомендуется применять при температуре теплоносителя до 180ºС.

Проходные каналы применяются при прокладке в одном направлении не менее пяти труб большого диаметра. Использование проходных коллекторов для прокладки городских подземных коммуникаций различного назначения совместно с теплопроводами. Совместная прокладка городский сетей и теплопроводов удачно разрешает сложную проблему организации подземного хозяйства крупных городов и вместе с тем обеспечивает долговечную службу и плановое строительство новых линий связи. Проходные каналы используются часто для прокладки теплопроводов под многоколейными железными дорогами и автострадами с интенсивным движением транспорта, не допускающим вскрытие каналов и нарушения работы узлов на период ремонта сетей.

Каналы сооружают из кирпича, монолитного или сборного железобетона. Наименьшая высота канала принимается 1,8м, ширина определяется числом и размерами труб с учетом допустимых зазоров между ними. Ширина прохода для обслуживания принимается не менее0,7м. Габариты типовых каналов выбирают из условия свободного доступа, ремонта и обслуживания арматуры, оборудования и теплоизоляции. Общие коллекторы оборудуют монтажными проемами, вентиляцией , освещением, телефонной связью и средствами водоотлива.

В проходных каналах трубы большого диаметра размещают в нижнем ряду, меньшего диаметра – вверху. Теплопроводы рекомендуется укладывать в правом (по ходу теплоносителя со станции) вертикальном ряду, остальные – в левом. При компоновке сечения канала допустимые разрывы между коммуникациями и ограждениями принимаются по нормам строительного проектирования.

Полупроходные каналы применяют в стесненных условиях местности, когда невозможно возведение проходных каналов. Их используют в основном для прокладки сетей на коротких участках под крупными инженерными узлами, не допускающими вскрытия каналов для ремонта трубопроводов. Высота полупроходных каналов принимается не менее 1,4м, свободный проход – не менее 0,6м; при этих габаритах возможно проведение мелкого ремонта труб. Материалы для изготовления полупроходных каналов и принцип размещения в них коммуникаций аналогичны проходным каналам.

Непроходные каналы имеют наибольшее распространение среди других видов каналов. Каждый вид канала применяется в зависимости от местных условий изготовления, свойств грунта, места прокладки. В непроходные каналы укладывают трубопроводы тепловых сетей, не требующие постоянного надзора. Сборные каналы со стенками из неармированного бетона, усиленными кирпичной кладкой , прокладывают в слабых грунтах высокой влажности . Оклеечная гидроизоляция служит защитой от проникновения в канал грунтовой воды, воды атмосферных осадков. Каналы с прочными армированными конструкциями перекрытий и стенок пригодны для повсеместной прокладки, в том числе и под улицами, площадями и под автодорогами местного значения. Подготовка основания из фильтрующих материалов под каналами предупреждает затопление тепловых сетей в период максимального паводкового подъема уровня грунтовых вод. Каналы с дренажной обсыпкой стенок и дренажной трубой предназначены для прокладок в зоне грунтовых вод.

Отсутствие воздушного зазора между стенками каналов и тепловой изоляцией в конструкциях ухудшает вентиляцию воздуха и подсушку изоляции, вследствие чего тепловая изоляция постоянно находится во влажном состоянии. Высокая влажность тепловой изоляции увеличивает теплопотери и является основной причиной ускоренной коррозии трубопроводов. В настоящее время прокладки в каналах без воздушного зазора не допускается. В каналах с воздушным зазором между стенками и изоляцией трубопроводов тепловая изоляция в меньшей степени подвержена увлажнению, поэтому коррозия трубопроводов в таких каналах значительно ослаблена.

Вода, попавшая в каналы, частично испаряется и в виде конденсата выпадает на холодных стенках. Конденсат, падая с перекрытия на трубопроводы, увлажняет тепловую изоляцию, поэтому необходимо проектировать такие формы стенок каналов, чтобы капель не попадала на тепловую изоляцию. Сводчатая форма перекрытия наиболее удобна для организованного стока такой влаги на дно канала.

Типы и размеры каналов маркируют цифрами и буквами. Цифры перед буквами определяют количество ячеек канала, цифры после букв означают внутренние размеры каналов. Например, маркировка канала 2КЛ 90х60 означает двухъячейковый канал из лотковых элементов, перекрываемых плитами, ширина каждой ячейки 900мм, высота 600мм.

Подвижные опоры трубопроводов в каналах опираются на железобетонные подушки с закладными металлическими пластинами. С помощью подушек между низом изолированного трубопровода и дном канала образуется воздушный зазор, препятствующий увлажнению изоляции от попадающей в канал воды. Для стока воды вдоль канала расстояние не менее 0,1м. Высота подушек принимается в зависимости от диаметра трубопроводов по нормам проектирования.

Глубина заложения каналов принимается исходя из минимального объема земляных работ и надежного укрытия от раздавливания транспортом. Наименьшее заглубление от поверхности земли до верха перекрытия каналов в любом случае принимается не менее 0,5м.

Бесканальная прокладка - перспективный и экономичный способ строительства тепловых сетей. Перечень строительно – монтажных операций, а следовательно, и объем работ при бесканальной прокладке значительно уменьшается, благодаря чему стоимость сетей по сравнению с канальной прокладкой снижается на 20-25%. По этим соображениям тепловые сети с диаметром трубопровода до 500мм рекомендуется прокладывать преимущественно бесканально.

Бесканальные прокладки различаются по конструкции тепловой изоляции.

З а с ы п н ы е. В качестве изоляционного материалы используются различные насыпные материалы. В траншеях трубы укладывают на бетонные или деревянные лежни или непосредственно на подстилку изоляции. Слой изоляции плотно утрамбовывают. Под воздействием коррозии и просадки грунта наблюдались частые разрывы сварных стыков труб. Вследствие этого засыпные конструкции рекомендуются для временной прокладки сетей в сухих грунтах с температурой теплоносителя до 110º.

С б о р н ы е. В сборных прокладках формированные изоляционные изделия в виде кирпичей, сегментов, скорлуп закрепляются на трубах бандажной проволокой. Поверх изоляции в несколько слоев накладывают рулонную гидроизоляцию. Собранные конструкции укладывают на постель и засыпают грунтом. Формированные изделия из диатома, асбестоцемента, пенобетона, пеносиликата большей частью легко насыщаются влагой, поэтому собранная конструкция теплопровода даже при нанесении гидроизоляции оказывается недостаточно герметичной. По этим причинам сборные прокладки используют как временные сооружения.

С б о р н о – л и т ы е. В этих прокладках трубы укладывают в опалубку из пенобетонных плит. Пространство в опалубке заливают пенобетонной массой. После затвердевания бетона образуется прочная оболочка, исключающая независимое перемещение трубы при температурных удлинениях.

В некоторых конструкциях трубопроводы предварительно изолируют слоем минеральной ваты, затем заливают твердеющей массой или засыпают материалом, который после увлажнения цементируется. В таком исполнении трубы при удлинении свободно перемещаются в оболочке и конструкция становится подобно канальной.

Л и т ы е. В литых прокладках трубы укладывают в съемную опалубку, в которую заливают бетонный раствор или бетонную смесь. Если вокруг монолитной конструкции нанесено гидроизоляционное покрытие, то это достаточно герметическое сооружение может быть использовано для прокладки в зоне грунтовых вод.

М о н о л и т н ы е конструкции изготавливают на заводах путем накручивания арматурной сетки с небольшим зазором от поверхности очищенной от ржавчины и заливки твердеющего раствора вокруг трубы в специальных формах. После термообработки масса прочно сцепляется с металлом труб, образуя монолитную конструкцию. Готовые трубы укладывают в траншеи на песчаные постели. Монолитные оболочки при тепловом удлинении перемещаются в грунте с трубами. Оболочки, выполненные из бетонов, при прокладке во влажных грунтах требуют надежной гидроизоляции.

Бесканальную прокладку производят на глубине от поверхности земли до верха оболочки теплопровода не менее 0,7м. Основным недостатком бесканальных прокладок является повышенная просадка и наружная коррозия теплопроводов. Просадка труб вызывает перенапряжение сварных стыков и заедание сальниковых компенсаторов. Для предупреждения просадок применяется местное уплотнение грунта, иногда используются подкладки бетонных плит под трубы или производится бетонная заливка основания. В настоящее время для двухтрубных сетей различных диаметров разработаны типовые проекты бесканальной прокладки в грунтах различной категории и влажности.

На трассе подземных теплопроводов сооружаются вспомогательные строительные элементы, имеющие различное назначение. Ниши предназначены для размещения П - образных компенсаторов при всех видах подземной прокладки. Изготовляют ниши из тех же материалов, что и примыкающие к ним стены каналов. Расстояние между нишами определяется расчетом или принимаются равными допустимым расстоянием между неподвижными опорами.

Габаритные размеры ниши подбираются по размерам компенсаторов с учетом их температурной деформации. При компоновке ниш на место внешнего компенсатора с наибольшими размерами, как правило, должны быть уложены компенсаторы трубопроводов с наивысшей температурой теплоносителя (подающий трубопровод). Размеры вписанного компенсатора должны обеспечивать температурное удлинение трубопровода с наименьшей температурой теплоносителя (обратный трубопровод).

В бесканальных прокладках с обеих сторон ниши рекомендуется пристраивать непроходные каналы, которые сооружаются также в местах использования естественной компенсации трубопроводов. Длина каналов принимается по конструктивным соображения исходя из местных условий. Вводы трубопроводов в каналы целесообразно герметизировать, не нарушая свободного перемещения трубопроводов.

Камеры устанавливают по трассе подземных теплопроводов для размещения в них задвижек, сальниковых компенсаторов неподвижных опор, ответвлений, дренажных и воздушных устройств, измерительных приборов. Расстояния между камерами обычно принимают равными расстояниями между неподвижными опорами. Внутренние габариты камер зависят от числа и диаметра труб, размеров оборудования. Высота камер принимается не менее 2 м. Для обслуживания арматуры и оборудования предусматриваются свободные проходы, расстояния от стен и между оборудованием принимаются по нормам проектирования.

Спуск в камеры осуществляется через входные и аварийные люки по скобам, заделанным в стены, или по лестницам. Конструкции и количество люков должны обеспечивать безопасный выход в любых аварийных обстановках и извлечение оборудования из камер. Для извлечения крупногабаритного оборудования, не проходящего через обычные люки, устраивают монтажные люки или проемы. При необходимости сооружают крупные камеры павильонного типа с устройством в них грузоподъемных механизмов. Дно камер и павильонов делается с уклоном 0,02 в сторону водосборного приямка. Камеры выполняют из кирпича, сборных плит, объемных элементов или монолитного железобетона типовых размеров. В местах ответвления тепловых сетей к небольшим зданиям тепловые камеры могут быть выполнены в виде смотровых колодцев из круглых сборных железобетонных колец типовых размеров.

Вентиляционные камеры сооружают только на трассе проходных каналов для обеспечения в них температуры воздуха не более 50 ºС, а во время ремонтов – не более 40 ºС. Вентиляция может быть естественной и принудительной. Для естественной вентиляции в высших точках трассы устраивают вытяжные шахты, а между ними в низших точках – приточные шахты. На небольших участках вентиляция может заменяться проветриванием через открытые люки камер. Во время работ в крупных коллекторах допускается применение вентиляторов .

Монтажные проемы сооружают на трассе проходных каналов через 200-300 м для затаскивания и выемки труб. Длина проемов не менее 4м, а ширина – не менее максимального диаметра трубы плюс 0,1м, но не менее 0,7м.

Продольный дренаж применяют для искусственного понижения уровня грунтовых вод в узкой полосе трассы. Грунтовые и поверхностные воды, проникая через стенки каналов и покровные оболочки бесканальных прокладок, увлажняют теплоизоляцию и вызывают коррозию труб. Для защиты подземных прокладок от затопления применяют гидрофобные теплоизоляционные материалы, герметичные каналы и продольное дренирование. Большое значение имеет планировка поверхности земли над теплопроводом с уклоном в сторону от трассы, а также уплотнение и прикатка грунта для предупреждения местных просадок почвы, в которых застаиваются талые воды и атмосферные осадки. Хорошо защищают теплопроводы уличные асфальтовые и бетонные дорожные покрытия.

Герметизация строительных конструкций создается гудронированием наружных стенок каналов, камер и бесканальных прокладок расплавом битума или битумных мастик с температурой не ниже 150 ºС с последующим обклеиванием рулонными гидроизоляционными материалами – изолом, бризолом. При большой влажности грунта оклейку стенок дополнительно защищают кирпичной кладкой в полкирпича, а перекрытия – бетонным раствором толщиной не менее 50мм. Однако при низкий температурах гидроизоляция теряет эластичность, растрескивается и пропускает воду. Вследствие этого герметизация, как и гидрофобные теплоизоляционные материалы, не обеспечивает защиту сетей от увлажнения. В качестве самостоятельного средства защиты эти меры эффективны лишь в сухих грунтах, временно насыщающихся атмосферными осадками.

В неблагоприятных гидрогеологических условиях с большими сезонными колебаниями уровней грунтовых вод наиболее целесообразно продольное дренирование. Дренаж представляет собой пористую засыпку из щебня, гравия средней крупности 5-20мм и крупнозернистого песка 0,5-1мм. Конструкция дренажа зависит от уровня и дебита грунтовых вод. При малом дебите и невысоком уровне грунтовых вод (УГВ) местное дренирование устраивается в виде фильтрующего основания и обсыпки стенок канала на высоту максимального подъема грунтовых вод. При большом дебите и высоком уровне воды дренирование рекомендуется выполнять по типовым проектам, разработанным для каналов различного сечения и грунтов с различной фильтрующей способностью. Дренажные трубы укладывают в зернистом слое с уклоном для лучшего отвода приточной воды. Дренаж устраивают с одной или двух сторон канала. Односторонний дренаж производится со стороны наибольшего притока воды. Устойчивое понижение уровня воды на глубину более 200мм от низа изоляции достигается заглублением верха дренажной трубы на 300мм и более от низа дна канала, а при бесканальной прокладке – от низа изоляции. Дренажные трубы изготавливают из керамики, бетона, асбестоцемента. Для пропуска воды в них высверливают отверстия или пробивают щели. В последнее время предложено использование толстостенных трубофильтров, изготовляемых из крупнопористых бетонов. Благодаря большой пористости стенок вода свободно проникает в трубы. Такие трубофильтры укладывают без устройства зернистого основания. Для чистки заиленных труб устраивают кирпичные или сборные колодцы. Смотровые колодцы размещают на прямых участках через 40-75м в местах смены диаметров дренажных труб и перепадов уровней их заложения, а также на поворотах трасс и ответвлений.

Дренирование компенсаторных ниш и камер осуществляется ответвлениями от основного дренажа . При большом объеме работ по сооружению дренирующих обводов вокруг каждой ниши и камеры, требующих дополнительного устройства четырех поворотов дренажных труб и возведения на каждом повороте смотрового колодца, целесообразно дренажные трубы пропускать через ниши и камеры в стальных футлярах. Концы футляров должны быть возведены за наружные поверхности стен окружения на расстояние не менее 500мм, а кольцевые зазоры между трубами на торцах футляров заделаны цементным раствором и залиты битумом. Чтобы вода из дренажной трубы не вытекала в футляр и далее в пересекаемые ниши и камеры, дренажные трубы на длине футляров должны быть уложены без водоприемных отверстий.

Типовое проектирование бесканальных прокладок в слабых и влажных грунтах предусматривает упрочнение и дренирование основания путем замены слабого грунта уплотненной песчаной засыпкой на глубину не менее 500мм и укладкой железобетонной плиты.

В непроходных невентилируемых каналах серьезную опасность представляет конвективная влага, образующаяся в результате конденсации влажного воздуха на холодных стенках канала. Скопление влаги под перекрытием образует капель. Падение конденсата на изоляцию труб вызывает ее разрушение и впоследствии коррозию труб. Для устранения вредного влияния конвективной влаги необходима периодическая вентиляция каналов и укладка перекрытий с наклоном 5-6º в любую сторону для направленного стока капели по вертикальным стенам канала. Вода из каналов, уложенных с уклоном, по специальным лоткам или просто между подушками, устроенными под опорами трубопроводов, стекает в камеры. В камерах для сбора дренируемой воды устраивают приямки, из которых вода периодически или непрерывно откачивается в дренажные колодцы или непосредственно в низшие точки местности в стороне от трассы.

9.1 В населенных пунктах для тепловых сетей предусматривается, как правило, подземная прокладка (бесканальная, в каналах или в тоннелях (коллекторах) совместно с другими инженерными сетями).

При обосновании допускается надземная прокладка тепловых сетей, кроме территорий детских и лечебных учреждений.

Байпасные трубопроводы тепловых сетей (при их эксплуатации менее одного года и служащие для бесперебойного теплоснабжения потребителей), используемые при реконструкции и капитальном ремонте, прокладываются, как правило, наземно.

При прохождении байпасных трубопроводов по территории детских и лечебных учреждений проектной документацией должны быть выполнены требования, обеспечивающие безопасность эксплуатации в соответствии с разделом 6 и предусмотрены мероприятия, установленные приложением Д настоящих правил.

9.2 Прокладку тепловых сетей по территории, не подлежащей застройке вне населенных пунктов, следует предусматривать надземную на низких опорах.

Прокладка тепловых сетей по насыпям автомобильных дорог общего пользования I, II и III категорий не допускается.

9.3 При выборе трассы допускается пересечение жилых и общественных зданий транзитными водяными тепловыми сетями с диаметрами теплопроводов до 300 включительно и давлением1,6 МПа при условии прокладки сетей в технических подпольях и тоннелях (высотой не менее 1,8 м) с устройством дренирующего колодца в нижней точке на выходе из здания.

В виде исключения пересечение жилых и общественных зданий транзитными водяными тепловыми сетями диаметром 400-600 мм допускается при выполнении требований раздела 6 и применении мероприятий в соответствии с приложением Д настоящих правил.

При выполнении этих же требований допускается устройство пристенного (пристроенного к фундаменту здания) канала, при этом устройство пристенных каналов ниже уровня фундаментов зданий не допускается.

9.4 Пересечение транзитными тепловыми сетями зданий и сооружений детских дошкольных, школьных и лечебно-профилактических учреждений не допускается.

Прокладка транзитных тепловых сетей по территории перечисленных учреждений допускается только подземная в монолитных железобетонных каналах с гидроизоляцией. При этом устройство вентиляционных шахт, люков и выходов наружу из каналов в пределах территории учреждений не допускается, запорная арматура на транзитных трубопроводах должна устанавливаться за пределами территории.

Ответвления от магистральных тепловых сетей для теплоснабжения зданий и сооружений, относящихся к детским дошкольным, школьным и лечебно-профилактическим учреждениям и расположенных на их территории, прокладываются в монолитных железобетонных каналах (в том числе и запесоченных), в сборных железобетонных каналах с применением оклеечной гидроизоляции и при условии монтажа конструкций, обеспечивающих герметичность канала.

Установка запорной арматуры на ответвлениях допускается только с применением бесканальных узлов и камер с устройством мероприятий по предотвращению несанкционируемого доступа третьих лиц и обеспечению самотечного водовыпуска из камер в систему дождевой канализации.

9.5 Прокладка тепловых сетей при рабочем давлении пара выше 2,2 МПа и температуре выше 350 °С в тоннелях совместно с другими инженерными сетями не допускается.

9.6 Уклон тепловых сетей независимо от направления движения теплоносителя и способа прокладки должен быть не менее 0,002. При катковых и шариковых опорах уклон не должен превышать

где - радиус катка или шарика, см.

Уклон тепловых сетей к отдельным зданиям при подземной прокладке должен приниматься, как правило, от здания к ближайшей камере.

На отдельных участках (при пересечении коммуникаций, прокладке по мостам и т.п.) допускается принимать прокладку тепловых сетей без уклона.

При прокладке тепловых сетей из гибких труб предусматривать уклон не требуется.

9.7 Подземную прокладку тепловых сетей допускается предусматривать совместно с перечисленными ниже инженерными сетями:

в каналах - с водопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа, контрольными кабелями, предназначенными для обслуживания тепловых сетей;

в тоннелях - с водопроводами диаметром до 500 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, трубопроводами сжатого воздуха давлением до 1,6 МПа, трубопроводами напорной канализации, холодопроводами.

Прокладка трубопроводов тепловых сетей в каналах и тоннелях с другими инженерными сетями, кроме указанных, не допускается.

Прокладка трубопроводов тепловых сетей должна предусматриваться в одном ряду или над другими инженерными сетями.

9.8 При новом строительстве расстояния по горизонтали и вертикали от наружной грани строительных конструкций каналов и тоннелей или оболочки изоляции трубопроводов при бесканальной прокладке тепловых сетей до зданий, сооружений и инженерных сетей следует принимать по приложению А. При прокладке теплопроводов по территории промышленных предприятий - по соответствующим нормам для промышленных предприятий.

Уменьшение нормативных указаний в приложении А возможно при обосновании и регламентируется постановлением Правительства Российской Федерации , раздел I, пункт 5.

9.9 При реконструкции и капитальном ремонте тепловых сетей, при стесненных условиях строительства и сохранении границ охранной зоны тепловой сети возможно уменьшение нормативных расстояний до зданий, сооружений и инженерных сетей (приложение А) путем выполнения мероприятий по обеспечению сохранности существующих зданий, сооружений и инженерных коммуникаций (приложение Д).

9.10 Пересечение тепловыми сетями рек, автомобильных дорог, трамвайных путей, а также зданий и сооружений следует, как правило, предусматривать под прямым углом. Допускается при обосновании пересечение под меньшим углом, но не менее 45°, а сооружений метрополитена, железных дорог - не менее 60°.

9.11 Пересечение подземными тепловыми сетями трамвайных путей следует предусматривать на расстоянии от стрелок и крестовин не менее 3 м (в свету).

9.12 При подземном пересечении тепловыми сетями железных дорог наименьшие расстояния по горизонтали в свету следует принимать, м:

до стрелок и крестовин железнодорожного пути и мест присоединения отсасывающих кабелей к рельсам электрифицированных железных дорог - 10;

до стрелок и крестовин железнодорожного пути при просадочных грунтах - 20;

до мостов, тоннелей и других искусственных сооружений - 30.

9.13 Прокладка тепловых сетей при пересечении железных дорог общей сети, а также рек, оврагов, открытых водостоков должна предусматриваться, как правило, надземной. При этом допускается использовать постоянные автодорожные и железнодорожные мосты.

Бесканальная прокладка тепловых сетей при подземном пересечении железных, автомобильных, магистральных дорог, улиц, проездов общегородского и районного значения, а также улиц и дорог местного значения, трамвайных путей и линий метрополитена не допускается.

При прокладке тепловых сетей под водными преградами следует предусматривать, как правило, устройство дюкеров.

Пересечение тепловыми сетями станционных сооружений метрополитена не допускается.

При подземном пересечении тепловыми сетями линий метрополитена каналы и тоннели следует предусматривать из монолитного железобетона с гидроизоляцией.

Пересечение проездов в пределах квартальной застройки тепловыми сетями из гибких труб следует выполнять в футлярах с хомутовыми центрирующими опорами.

9.14 Длину каналов, тоннелей или футляров в местах пересечений необходимо принимать в каждую сторону не менее чем на 3 м больше размеров пересекаемых сооружений, в том числе сооружений земляного полотна железных и автомобильных дорог, с учетом таблицы А.3.

При пересечении тепловыми сетями железных дорог общей сети, линий метрополитена, рек и водоемов следует предусматривать запорную арматуру с обеих сторон пересечения, а также устройства для спуска воды из трубопроводов тепловых сетей, каналов, тоннелей или футляров на расстоянии не более 100 м от границы пересекаемых сооружений.

9.15 При прокладке тепловых сетей в футлярах должна предусматриваться антикоррозионная защита труб тепловых сетей и футляров. В местах пересечения электрифицированных железных дорог и трамвайных путей должна предусматриваться электрохимическая защита.

Между тепловой изоляцией и футляром должен предусматриваться зазор не менее 100 мм.

9.16 В местах пересечения при подземной прокладке тепловых сетей с газопроводами не допускается прохождение газопроводов через строительные конструкции камер, непроходных каналов и тоннелей.

9.17 При пересечении тепловыми сетями сетей водопровода и канализации, расположенных над трубопроводами тепловых сетей, при расстоянии от конструкции тепловых сетей до трубопроводов пересекаемых сетей 300 мм и менее (в свету), а также при пересечении газопроводов следует предусматривать устройство футляров на трубопроводах водопровода, канализации и газа на длине 2 м по обе стороны от пересечения (в свету). На футлярах следует предусматривать защитное покрытие от коррозии.

9.18 В местах пересечения тепловых сетей при их подземной прокладке в каналах или тоннелях с газопроводами должны предусматриваться на тепловых сетях на расстоянии не более 15 м по обе стороны от газопровода устройства для отбора проб на утечку газа.

При прокладке тепловых сетей с попутным дренажом на участке пересечения с газопроводом дренажные трубы следует предусматривать без отверстий на расстоянии по 2 м в обе стороны от газопровода, с герметичной заделкой стыков.

9.19 На вводах трубопроводов тепловых сетей в здания в газифицированных районах необходимо предусматривать устройства, предотвращающие проникание воды и газа в здания, а в негазифицированных - воды.

9.20 В местах пересечения надземных тепловых сетей с воздушными линиями электропередачи и электрифицированными железными дорогами следует предусматривать заземление всех электропроводящих элементов тепловых сетей (с сопротивлением заземляющих устройств не более 10 Ом), расположенных на расстоянии по горизонтали по 5 м в каждую сторону от проводов.

9.21 Прокладка тепловых сетей вдоль бровок террас, оврагов, откосов, искусственных выемок должна предусматриваться за пределами призмы обрушения грунта от замачивания. При этом при расположении под откосом зданий и сооружений различного назначения следует предусматривать мероприятия по отводу аварийных вод из тепловых сетей с целью недопущения затопления территории застройки.

9.22 В зоне отапливаемых пешеходных переходов, в том числе совмещенных с входами в метрополитен, следует предусматривать прокладку тепловых сетей в монолитном железобетонном канале, выходящем на 5 м за габарит переходов.

Наиболее распространенными конструк­циями теплопроводов являются подземные .

Подземные теплопроводы . Все конст­рукции подземных теплопроводов можно разделить на две группы: канальные и бесканальные .

В канальных теплопроводах изоляцион­ная конструкция разгружена от внешних на­грузок грунта стенками канала.

В бесканальных теплопроводах изоля­ционная конструкция испытывает нагруз­ку грунта.

Каналы сооружаются проходными и не­проходными .

В настоящее время большинство ка­налов для теплопроводов сооружается из сборных железобетонных элементов, за­ранее изготовленных на заводах или специ­альных полигонах. Сборка этих элементов на трассе выполняется при помощи транспортно-подъемных механизмов. Устройст­во в грунте траншей для сооружения под­земных теплопроводов, как правило, осу­ществляется экскаваторами. Все это позво­ляет значительно ускорить строительство тепловых сетей и снизить их стоимость.

Из всех подземных теплопроводов наи­более надежными, зато и наиболее дороги­ми по начальным затратам являются тепло­проводы в проходных каналах .

Основное преимущество проходных ка­налов - постоянный доступ к трубопрово­дам. Проходные каналы позволяют заме­нять и добавлять трубопроводы, проводить ревизию, ремонт и ликвидацию аварий на трубопроводах без разрушения дорож­ных покрытий и разрытия мостовых. Про­ходные каналы применяются обычно на вы­водах от теплоэлектроцентралей и на ос­новных магистралях промплощадок круп­ных предприятий. В последнем случае в об­щем проходном канале прокладываются все трубопроводы производственного назначе­ния (паропроводы, водоводы, трубопрово­ды сжатого воздуха).

В тех случаях, когда количество парал­лельно прокладываемых трубопроводов не­велико (два-четыре), но постоянный доступ к ним необходим, например при пересече­нии автомагистралей с усовершенствован­ными покрытиями, теплопроводы сооружа­ются в полупроходных каналах . Габаритные размеры полупроходных каналов выбирают из условия прохода по ним человека в полусогнутом состоянии.



Большинство теплопроводов прокла­дывается в непроходных каналах или бесканально .

Теплопроводы в непроходных кана­лах. Для надежной и долговеч­ной работы теплопровода необходима за­щита канала от поступления в него грунто­вых или поверхностных вод. Как правило, нижнее основание канала должно быть вы­ше максимального уровня грунтовых вод.

Для защиты от поверхностных вод на­ружная поверхность канала (стены и пере­крытия) покрывается оклеенной гидроизо­ляцией из битумных материалов.

При прокладке в непроходных каналах габариты каналов выбираются из условия размещения в них трубопроводов и выполнения всех работ по монтажу и ремонту только при вскрытии канала с поверхности земли. Проход обслуживающего персонала в канале без снятия перекрытия невозможен.

Типовые железобетонные непроходные каналы в серии 3.006-2, лобковые типов КЛ и КЛп, показаны на рис. (8.4).

Типоразмеры каналов выбираются по диаметрам трубопроводов и допустимым расстояниям в свету между трубопроводами и строительными конструкциями (прил. 23).

При этом трубопроводы укладываются на скользящих опорах, которые опираются на железобетонные подушки, устанавливаемые на дне канала. Рекомендуемые способы размещения трубопроводов приведены на рис. 8.5. и в прил…

При бесканальной прокладке трубопроводы укладываются непосредственно в грунт без канала, а тепловая изоляция или непосредственно соприкасается с грунтом, или имеет защиту в виде какой – либо оболочки.

Рис. 8.5. Размещение в непроходных каналах трубопроводов:

а – двух; б – нескольких

Бесканальная прокладка является одним из самых простых и дешевых, выполняется с наименьшим расходом строительных материалов и в минимальные сроки (конкурируют с надземной прокладкой), но не менее удобна, чем надземная, так как требует разрытия грунта для осмотра и ремонта сетей. Основной недостаток бесканальной прокладки – трудность защиты изоляции от проникновения в нее влаги. Она требует применения специальных гидрофобных материалов и тщательного производства строительных работ. В настоящее время разработаны следующие виды бесканальной прокладки: трубопроводы в моно­литных оболочках, литые (сборно-литые) и засыпные (рис. 8.6) и в за­висимости от характера восприятия весовых нагрузок: разгруженные и неразгруженные .

Рис. 8.6. Типы бесканальных теплопроводов

а - в сборной и монолитной оболочке; б - литые и сборно-литые; в - засыпные

К разгруженным относятся конструкции, в которых теплоизоляци­онное покрытие обладает достаточной механической прочностью и разгружает трубопроводы от внешних нагрузок (веса грунта, веса проходящего на поверхности транспорта и т. п.). К ним относятся ли­тые (сборно-литые) и монолитные оболочки.

В неразгруженных конструкциях внешние механические нагрузки передаются через тепловую изоляцию непосредственно на трубопро­вод. К ним относятся засыпные теплопроводы.

При бесканальной прокладке особенно большое значение имеет за­щита теплопроводов от воздействий грунтовых и поверхностных вод и блуждающих токов. С этой целью применяют антикоррозионные по­крытия поверхности труб, влагозащитные оболочки и электрохимиче­скую защиту, а также устраивают попутный дренаж с песчаной и гравийной подсыпкой.

На рис. 8.7 показан разрез двухтрубного бесканального теплопровода в монолитных оболочках.

Надземные теплопроводы . Надземные теплопроводы обычно укладываются на от­дельно стоящих опорах (низких или высо­ких) (рис. 8.8), на вантовых конструкциях, подвешен­ных к пилонам мачт, на эстакадах (рис. 8.9). В СССР были разработаны типовые конструкции надземных теплопроводов на отдельно стоящих высоких и низких железобетонных опорах (серии ИС-01-06 и ИС-01-07)

Рис. 8.7. Общий вид двухтрубного бесканального теплопровода в монолитных оболочках

1 - подающий теплопровод; 2 - обратный тепло­провод; 3 - гравийный фильтр; 4 - песчаный фильтр; 5 - дренажная труба; 6 - бетонное основа­ние (при слабых грунтах)

При прокладке теплопроводов на низких опорах расстояние между нижней образующей изо­ляционной оболочки трубопровода и по­верхностью земли принимается не менее 0,35 м при ширине группы труб до 1,5 м и не менее 0,5 м при ширине группы труб бо­лее 1,5 м.

Рис. 8.8. Надземный теплопровод на отдельно стоящих опорах (мачтах)

Материалы для мачт выбираются в зави­симости от типа и назначения теплопрово­да. Наиболее подходящим материалом для мачт стационарных конструкций является железобетон. В местах установки арматуры трубопроводов необходимо предусмотреть приспособление для удобного подъема об­служивающего персонала и безопасного об­служивания арматуры. В этих местах обыч­но устраиваются площадки с ограждениями и постоянными лестницами.

Рис. 8.9. Прокладка теплопровода по эстакаде

На подземных теплопроводах оборудование, требующее обслужи­вания (задвижки, сальниковые компенсаторы, дренажные устройства, спускники, воздушники и др.), размещают в специальных камерах, а гибкие компенсаторы - в нишах. Камеры и ниши, как и каналы, со­оружают из сборных железобетонных элементов. Конструктивно каме­ры выполняют подземными или с надземными павильонами. Подзем­ные камеры устраивают при трубопроводах небольших диаметров и применении задвижек с ручным приводом. Камеры с надземными па­вильонами обеспечивают лучшее обслуживание крупногабаритного оборудования, в частности, задвижек с электро- и гидроприводами, которые устанавливают обычно при диаметрах трубопроводов 500 мм и более.

Габаритные размеры камер вы­бирают из условия обеспечения удобства и безопасности обслужи­вания оборудования. Для входа в подземные камеры в углах по диа­гонали устраивают люки - не ме­нее двух при внутренней площади до 6 м 2 и не менее четырех при большей площади. Диаметр люка принимают не менее 0,63 м. Под каждым люком устанавливают лестницы или скобы с шагом не более 0,4 м для спуска в камеры. Днище камер выполняют с уклоном >= >= 0,02 к одному из углов (под люком), где устраивают прикрывае­мые сверху решеткой приямки для сбора воды глубиной не менее 0,3 м и размерами в плане 0,4 0,4 м. Вода из приямков отводится самотеком или при помощи насосов в водостоки либо приемные колодцы. Для защиты камер от грунтовых и поверхностных вод их наруж­ную поверхность оклеивают несколькими слоями гидроизола или металлоизола, а иногда дополнительно накладывают на внутреннюю по­верхность стен и днища цементную штукатурку. Для уменьшения ве­роятности затопления камер в периоды аварий спускные дренажи теп­лопроводов следует выводить за стены камер, особенно при установ­ке оборудования с электроприводами.

Выбор способа прокладки тепловых сетей

Устройство систем теплоснабжения

Тепловые сети по способу прокладки подразделяются на подземные и надземные (воздушные) системы трубопроводов.

Подземная прокладка трубопроводов тепловых сетей выполняется:

1. В каналах непроходного и полупроходного поперечного сечения;

Наиболее простой и легко выполнимой конструкцией непроходных каналов являются каналы прямоугольного сечения из сборных бетонных стеновых блоков и железобетонных плит перекрытия (рис. 1).

Рис. 1. Канал из сборных железобетонных плит и бетонных стеновых блоков:

1 - плита перекрытия; 2 - стеновой блок; 3 - гидроизоляция; 4 - цементный раствор; 5 - плита днища

Работы по сборке канала ведутся одновременно с монтажом трубопроводов. Прежде всего, в открытой траншее выполняется дно канала из бетона. После монтажа и изоляции трубопроводов устанавливают стеновые блоки, а затем укладывают плиты перекрытия. Данная конструкция каналов является шарнирной, устойчивость ее обеспечивается хорошим качеством засыпки и утрамбовки пазух за стенками (одновременно с двух сторон). Скользящие опоры трубопроводов, прокладываемых в каналах, устанавливаются на железобетонных подушках, укладываемых на дно по слою цементного раствора. Конструкция сборных каналов приведена в типовой серии ТС-01-01, а также в альбоме Мосэнергопроекта и может быть применена для прокладки трубопроводов диаметром 50 - 400 мм в непросадочных грунтах.

Институтом «Мосинжпроект» разработана конструкция сводчатых каналов из сборного железобетона для тепловых сетей диаметрами 50 - 500 мм (рис. 2).

Рис. 2 Канал из железобетонных сводов:

1 - железобетонный свод; 2 - гидроизоляция; 3 - железобетонная плита днища

Пролеты сводов составляют 1; 1,42; 1,8 и 2,2 м. Длина элементов сводов 2,95 м. Элементы свода устанавливаются на опорную раму, которая является затяжкой свода. Это позволяет рассчитывать свод как распорную конструкцию. Сводчатые каналы нашли применение в строительстве тепловых сетей многих городов. По расходу материалов сводчатые железобетонные каналы экономичней каналов прямоугольного сечения.

Институтом «Мосэнергопроект» разработана конструкция каналов для прокладки трубопроводов среднего и большого диаметров (400 - 1200 мм), собираемых из железобетонных стеновых блоков тавровой формы, ребристых плит перекрытия и плоских плит днища (рис. 3).

Рис. 3 Канал из железобетонных тавровых стеновых блоков, ребристых плит перекрытия и плит днища с односторонним дренажем из керамзитобетонных трубофильтров:

1 - тавровый стеновой блок; 2 - ребристая плита перекрытия; 3 - плита днища; 4 - трубофильтр; 5 - песок крупнозернистый

Конструкция обладает большей устойчивостью за счет увеличения размеров основания стеновых блоков и устройства зубьев или подрезки на концах плит перекрытия, что обеспечивает передачу горизонтального давления от верха стеновых блоков на плиту перекрытия. Дно каналов выполняется из плоских железобетонных плит, имеющих по концам подрезку для установки основания стеновых блоков, которая устраняет смещение блоков внутрь канала при боковом давлении грунта.

Монтаж трубопроводов и их теплоизоляция выполняются в открытой траншее после укладки плит днища. Стеновые блоки устанавливаются на днище по слою цементного раствора, а поверх стеновых блоков также на цементном растворе укладываются плиты перекрытия. При прокладке каналов в условиях мокрых грунтов устраивается попутный трубчатый дренаж (односторонний или двухсторонний), а в ряде случаев - оклеенная гидроизоляция днища и стенок. Оклеенная гидроизоляция перекрытия выполняется во всех случаях.

Широкое применение в строительстве двухтрубных водяных тепловых сетей нашли сборные каналы серии МКЛ, разработанные институтом «Мосинжпроект» для теплопроводов диаметром от 50 до 1400 мм. Каналы выполняются из двух сборных железобетонных элементов: верхней рамы и плиты днища (рис. 4).

Рис. 4 Канал рамной конструкции (серии МКЛ):

1 - железобетонная рамная секция; 2 - железобетонная плита днища; 3 - опорная подушка сколь­зящей опоры; 4 - песчаная подготовка; 5 - бетонная подготовка; 6- гидроизоляция

Строительство тепловых сетей с приме­нением этой конструкции каналов ведется в обычной последовательности: на песчаную подготовку, выполненную по дну траншеи, укладывают плиты днища с заделкой швов цементным раствором; на дно канала устанавливают на цементном растворе опорные подушки скользящих опор, производят монтаж и изолирование трубопроводов, после чего устанавливают рамные элементы перекрытия канала. Стыковые соединения элементов днища и перекрытия (типа «паз - гребень») заполняют цементным раствором или герметизирующими мастиками и эластичными прокладками. В зависимости от гидрогеологических условий трассы наружные поверхности канала защищают гидроизоляцией. При наличии грунтовых вод или глинистых грунтов устраивают попутные дренажи.

На рис. 5 приведена конструкция полупроходного канала круглого сечения. В таких каналах могут быть проложены теплопроводы диаметром до 600 мм.

Рис.5 Канал круглого сечения из железобетонных труб (полупроходной):

1- трубопроводы; 2 - железобетонная труба; 3 - опорная подушка; 4 - бетонный пол

Серия 3.006-2 «Типовые конструкции и детали зданий и сооружений» содержит рабочие чертежи сборных железобетонных каналов и туннелей из лотковых элементов, разработанных Харьковским институтом «Промстройниипроект». Конструкции предназначены для прокладки трубопроводов различного назначения, электрокабелей и электрошин. К каналам отнесены подземные сооружения при высоте до 1500 мм включительно, а к туннелям - при высоте 1800 мм и более.

Каналы по конструктивному решению различны и запроектированы трех марок: КЛ, КЛп и КЛс (рис. 6).

Рис. 4.12. Каналы лотковые серии 3.006-2 (габаритные схемы):

а - марка КЛ; б - марка КЛп; в - марка КЛс

Каналы марки КЛ собираются из лотковых элементов, перекрываемых плоскими съемными плитами, каналы марки КЛп - из лотковых элементов, опирающихся на плиты, каналы марки КЛс - из нижних и верхних лотковых элементов, соединяемых с помощью коротышей из швеллеров, которые закладываются в продольные швы.

Большие неудобства создаются при выполнении подвесной теплоизоляции на трубопроводах, уложенных в лотковых каналах, когда необходимо наносить основной и покровный слой при наличии стенок. Особенно это относится к выполнению теплоизоляции в нижней части изолируемых труб. Некачественное выполнение теплоизоляции в ее нижней части создает предпосылки для разрушения всей конструкции теплоизоляции и коррозионных повреждений трубопроводов, поскольку эта часть постоянно увлажняется при подтапливании дна канала грунтовыми или случайными водами. Вследствие этого возрастают тепловые потери и возникают местные очаги коррозии стальных труб.

Конструкция каналов и туннелей марки КЛс не только не отвечает требованиям выполнения монтажно-сварочных и теплоизоляционных работ, но и не обеспечивает условий прочности и плотности сооружения в целом. Стендовое испытание этой конструкции выявило повреждаемость шарнирных стыковых соединений при одностороннем действии горизонтальной временной нагрузки. Это указывает на возможность разрушения каналов и туннелей при реальном воздействии на них транспортных нагрузок (в местах пересечения железных и автомобильных дорог). Неприемлемым является соединение верхнего и нижнего лотковых элементов при помощи укладки обрезков швеллеров, защита которых от коррозии практически не может быть выполнена в тяжелых температурно-влажностных условиях среды под­земных конструкций тепловых сетей. Установлена нецелесообразность применения металлических закладных и других деталей в строительных конструкциях тепловых сетей, подверженных быстрому коррозионному разрушению.

Рассмотренная выше конструкция рамных каналов (серии МКЛ) охватывает все диаметры тепловых сетей при восьми габаритных схемах, выбранных исходя из диаметра прокладываемых трубопроводов, что обеспечивает их экономичность, облегчает заводское серийное изготовление железобетонных элементов и снижает за­трату металла на изготовление форм.

2. В туннелях (проходных каналах) высотой 2 м и более, в общих коллекторах для совместной прокладки трубопроводов и кабелей различного назначения; во внутриквартальных коллекторах, в технических подпольях и коридорах;

Наибольшее применение в строительстве туннелей и коллекторов получили конструкции сборных железобетонных коллекторов, разработанные институтом «Мосинжпроект», рабочие чертежи которых приведены в серии альбомов (РК 1101-70, РК 1102-75). Конструкции вошли в Каталог унифицированных индустриальных изделий и предназначены для сооружения городских и внутриквартальных коллекторов открытым способом.

Рис. 7. Габаритные схемы коллекторов (Мосинжпроект):

а - из объемных секций; б - из отдельных элементов

Строительная конструкция коллектора из объемных секций состоит из рамных цельноформованных элементов, монтируемых на подготовке из монолитного бетона (рис. 8).

Рис. 4.14. Коллектор из объемных секций:

1 - объемная секция; 2 - гидроизоляция оклеечная; 3 - цементный слой; 4 - защитный слой из бетона; 5 - асбоцементная плита; 6 - гидроизоляция оклеечная стен и днища; 7 - бетонная подготовка; 8 - песчаное основание; 9 - асфальт; 10 - цементный раствор

Коллектор из отдельных железобетонных элементов монтируется из стеновых блоков L-образной формы, плит перекрытия и днища (рис. 9).

Рис. 9. Коллектор из отдельных железобетонных элементов:

1 - плита днища; 2 - L-образный стеновой блок; 3 - ребристая плита перекрытия; 4 - гидроизоля­ция оклеечная; 5 - цементный выравнивающий слой; б - защитный слой из бетона; 7 - асбо­цементная плита; 8 - бетонная подготовка; 9 - замоноличивание бетоном В25; 10 - песок; 11 - асфальт

Связь между плитами днища и стеновыми блоками обеспечивается за счет петлевых выпусков, через которые пропускается продольная арматура. Стыки замоноличиваются бетоном. Плиты перекрытия имеют на опорах подсечки и укладываются враспор на цементный раствор по верху стеновых блоков. Монтаж сборных железобетонных элементов осуществляется на бетонной подготовке по слою свежеуложенного раствора. Швы между элементами заполняются це­ментным раствором. Образующиеся цементные шпонки связывают смежные элементы между собой и обеспечивают заделку швов. Максимальная длина элементов (вдоль коллектора) 2,7 м для стеновых блоков, 3,0 м для плит перекрытия и 2,1 м для плит днища.

Наряду с конструкцией линейной части коллекторов в типовом проекте разработаны конструктивные решения углов поворота коллекторов, камер для обслуживания двухсторонних сальниковых компенсаторов, водопроводных камер, камер для разводки кабелей. Габариты камер определены на основании анализа наиболее часто встречающихся технологических схем и могут корректироваться при конкретном проектировании. Углы поворота коллекторов, камеры и узлы монтируются как из элементов линейной части, так и из угловых блоков, доборных стеновых и доборных плит перекрытия, балок, колонн и фундаментного блока (рис. 10).

Рис10. Камера сборного железобетон­ного коллектора:

1 - колонна; 2 - угловой блок; 3 - балка перекры­тия; 4 - плита перекрытия; 5 - стеновой блок; б - блок днища; 7 - гидроизоляция; 8 - защитная стенка; 9 - двухслойная подготовка из щебня и бетона

Конструкции туннелей и коллекторов должны быть защищены от проникания в них поверхностных и грунтовых вод. Перекрытия туннелей и коллекторов, располагаемых выше уровня грунтовых вод, следует защищать оклеенной гидроизоляцией из двух слоев изола, а стены обмазывать битумной эмульсией. В туннелях и коллекторах необходимо предусматривать продольный уклон не менее 0,002.

В перекрытиях камер должны предусматриваться люки диаметром 0,63 м с двойной крышкой и запорным устройством в количестве не менее двух. В местах размещения оборудования и крупногабаритной арматуры следует дополнительно устраивать монтажные проемы длиной не менее 4 м и шириной не менее наибольшего диаметра прокладываемой трубы плюс 0,1 м, но не менее 0,7 м.

Неподвижные опоры следует, как правило, выполнять щитовой конструкции из монолитного или сборного железобетона. Скользящие опоры трубопроводов, располагаемые в верхних ярусах, проектируются из металлоконструкций, привариваемых к закладным деталям в элементах стен и дна коллектора.

Внутренние габариты проектируемых коллекторов следует устанавливать с учетом следующих требований:

Ширина прохода не менее 800 мм, высота - 2000 мм (в свету);

Расстояние в свету от поверхности изоляции трубопроводов диаметром 500 - 700 мм до стенки и пола коллектора 200 мм, для трубопроводов диаметром 800 - 900 220 мм и до перекрытия коллектора соответственно 120 и 150 мм;

Расстояние между поверхностями изоляции теплопроводов по вертикали 200 мм для трубопроводов диаметром 500 - 900 мм;

Расстояние от поверхности труб водопровода, напорной канализации и воздухопроводов до строительных конструкций коллектора и до кабелей не менее 200 мм;

Вертикальное расстояние между консолями для укладки силовых кабелей 200 мм, для укладки контрольных кабелей и кабелей связи 150 мм, горизонтальное расстояние в свету между силовыми кабелями 35 мм, но не менее диаметра кабеля.

Силовые кабели располагаются над ка­белями связи, каждый горизонтальный ряд силовых кабелей отделяется от других рядов и от кабелей связи несгораемой прокладкой из асбестоцементных листов. Над трубопроводами допускается прокладывать только кабели связи.

Пример технологического сечения городского коллектора дан на рис. 11.

Рис. 11. Технологическое сечение коллектора

(В х Н = 3000 х 3200 мм):

1- трубопроводы Dу 600 мм; 2 - кабели связи; 3 - силовые кабели; 4 - водопровод D у 500 мм

Нормальная и безопасная эксплуатация городских коллекторов возможна только при условии их специального оборудования, в комплекс которого входят вентиляция, электроосвещение, водоудаление и прочие устройства. В газифицированных городах общие коллекторы должны оборудоваться сигнализацией загазованности. Коллекторы необходимо оборудовать приточной естественной и механической вентиляцией для обеспечения внутренней температуры в пределах 5 - 30 °С и не менее трехкратного обмена воздуха за 1 ч. Способ вентиляции должен приниматься в соответствии с санитарными правилами в зависимости от назначения коллектора. Вентиляционные шахты, как правило, совмещаются с входами в туннель. Расстояние между приточными и вытяжными шахтами должно определяться расчетом. Вентиляция теплофикационных туннелей должна обеспечивать как в зимнее, так и в летнее время температуру воздуха в туннелях не выше 50 °С, а на время производства ремонтных работ и обходов - не выше 40° С. Снижение температуры воздуха с 50 до 40 °С допускается предусматривать с помощью передвижных вентиляционных установок.

3. Бесканальная прокладка.

Конструкция бесканального трубопровода состоит из четырех слоев: антикоррозионного, теплоизоляционного, гидроизоляционного и защитно-механического (рис. 12), некоторые слои могут отсутствовать. В этом случае функции отдельных слоев совмещаются или передаются другим.

Рис. 12. Принципиальная схема бесканального трубопровода:

1 - защитно-механический слой; 2 - антикоррозионный слой; 3 - тепловая изоляция; 4 - гидроизоляционный слой

Принято делить бесканальные прокладки на засыпные, сборные, литые и монолитные.

Засыпные прокладки. Трубы укладываются на опоры или сплошное бетонное основание и засыпаются сыпучими теплоизоляционными материалами (торф, термоторф, гидрофобный мел, асфальтоизол и др.).

Сборные прокладки. Тепловая изоляция накладывается на трубы из штучных элементов (кирпичей, сегментов, скорлуп).

Литые прокладки. Литая тепловая изоляция выполняется на трассе (или привозится) заливкой раствора из пенобетона, пеносиликата или расплавленного материала на битумной основе в инвентурную опалубку или форму. В литых конструкциях путем нанесения на трубы смазочных материалов создаются условия для перемещения их внутри тепловой изоляции при температурных удлинениях.

Монолитные прокладки являются разновидностью литых конструкций, но изготовляются в заводских условиях. В некоторых из них теплоизоляционный слой прочно сцепляется с поверхностью трубы (автоклавный армированный пенобетон, фенольный поропласт ФЛ и др.), в других (конструкции на битумной основе) трубы перемещаются внутри тепловой изоляции.

4. Надземная прокладка трубопроводов выполняется на отдельно стоящих мачтах или низких опорах, на эстакадах со сплошным пролетным строением, на мачтах с подвеской труб на тягах (вантовая конструкция) и на кронштейнах.

К особой группе конструкций относятся специальные сооружения: мостовые переходы, подводные переходы, тоннельные переходы и переходы в футлярах. Эти сооружения, как правило, проектируются и строятся по отдельным проектам с привлечением специализированных организаций.

В настоящее время находят применение следующие типы надземных прокладок:

На отдельно стоящих мачтах и опорах (рис. 13);

Рис. 13. Прокладка трубопроводов на отдельно стоящих мачтах

На эстакадах со сплошным пролетным строением в виде ферм или балок (рис. 14);

Рис. 14 Эстакада с пролетным строением для прокладки трубопроводов

На тягах, прикрепленных к верхушкам мачт (вантовая конструкция, рис. 15);

Рис. 15 Прокладка труб с подвеской на тягах (вантовая конструкция)

Прокладки первого типа наиболее ра­циональны для трубопроводов диаметром 500 мм и более. Трубопроводы большего диаметра при этом могут быть использо­ваны в качестве несущих конструкций для укладки или подвески к ним нескольких тру­бопроводов малого диаметра, требующих более частой установки опор.

Прокладки по эстакаде со сплошным настилом для прохода целесообразно применять только при большом количестве труб (не менее 5 - 6 шт.), а также при необходимости регулярного надзора за ними. По стоимости конструкции проходная эстакада наиболее дорогая и требует наибольшего расхода металла, так как фермы или балочный настил обычно изготовляются из прокатной стали.

Прокладка третьего типа с подвесной (вантовой) конструкцией пролетного строения является более экономичной, так как позволяет значительно увеличить расстояния между мачтами и тем самым уменьшить расход строительных материалов. Наиболее простые конструктивные формы подвесная прокладка получает при трубопроводах равных или близких диаметров.

При совместной укладке трубопроводов большого и малого диаметра применяется несколько видоизмененная вантовая конструкция с прогонами из швеллеров, подвешенных на тягах. Прогоны позволяют устанавливать опоры трубопроводов между мачтами. Однако возможность прокладки трубопроводов на эстакадах и с подвеской на тягах в городских условиях ограничена и применима только в промышленных зонах. Наибольшее применение получила прокладка водяных трубопроводов на отдельно стоящих мачтах и опорах или на кронштейнах. Мачты и опоры, как правило, выполняются из железобетона. Металлические мачты применяются в исключительных случаях при малом объеме работ и реконструкции существующих тепловых сетей.

Выбор способа и конструкций прокладки трубопроводов обуславливается многими факторами, основными из которых являются: диаметр трубопроводов, требования эксплуатационной надежности теплопроводов, экономичность конструкций и способ выполнения строительства. При выборе способов и конструкций прокладки тепловых сетей должны учитываться особые условия строительства в районах: с сейсмичностью 8 баллов и более, распространения вечномерзлых и просадочных от замачивания грунтов, а также при наличии торфяных и илистых грунтов. Дополнительные требования к тепловым сетям в особых условиях строительства изложены в СНиП 2.04.07-86*.


Трассы тепловых сетей не могут быть сделаны произвольно, по субъективному желанию, они выполняются в соответствии с указаниями СНиП 41-02-2003, СНиП 3.05.03-85 и строго регламентированы

Современные способы прокладки и возведения тепловых сетей (рис. 1) классифицируют следующим образом:

1. Бесканальная прокладка тепловых сетей в грунте. Для тепловых сетей условным диаметром D y ≤ 400 мм следует предусматривать преимущественно бесканальную прокладку.

2. Совмещенная многотрубная прокладка теплопроводов в общей траншее совместно с другими коммуникациями.

3. Прокладка тепловых сетей в подземных непроходных каналах - раздельно или совмещено с другими коммуникациями.

4. Совмещенная прокладка теплопроводов в подземных проходных коллекторах и технических подпольях зданий.

5. Надземная - воздушная прокладка теплопроводов.

Рисунок 1.

Бесканальная прокладка 1 является наиболее экономичным способом сооружения теплосетей, обеспечивающая меньшие объемы земляных и строительно-монтажных работ, экономию сборного железобетона, снижение трудоемкости строительства и повышение производительности труда.

При качественных и долговечных индустриальных конструкциях теплопроводов и материалах и надлежащем выполнении монтажных и изоляционно-сварочных работ способ обеспечивает расчетную долговечность подземных коммуникаций (более 30 лет) и необходимую защиту от коррозии.

При сооружении внутри квартальных подземных коммуникаций от котельных, ЦТП в районах нового жилищного строительства городов наиболее эффективно применяется совмещенная бесканальная прокладка нескольких сетей 2 - горячего и холодного водоснабжения и других в общей траншее. Число труб при этом может достигать до 10-12 шт. Она более экономична, чем раздельная прокладка (на 15 % по стоимости, на 25-30 % по объему земляных работ), сокращаются сроки строительства.

Преимущественное распространение в городах получил способ строительства тепловых сетей в непроходных подземных каналах 3. Канал защищает теплопровод от механических нагрузок, обеспечивает температурные деформации его, защищает от воздействия грунтовой среды и поверхностных вод. Но такой тип прокладки весьма дорог, требует значительного расхода железобетонных конструкций (от 500 до 2000 м 3 на 1 км трассы), больших объемов земляных работ и трудовых затрат.

Ограниченное применение получил способ совмещенной прокладки теплопроводов в тоннелях, проходных коллекторах и технических подпольях зданий 4.

Подземную прокладку тепловых сетей допускается принимать совместно с другими инженерными сетями: в каналах - только с водопроводами, трубопроводами сжатого воздуха давлением до 1,6 МПа, мазутопроводами, с контрольными кабелями связи теплосетей, а в тоннелях - только с водопроводами диаметром до 500 мм, кабелями связи, силовыми кабелями напряжением до 10 кВ, трубопроводами сжатого воздуха давлением до 1,6 МПа и напорной канализации. Прокладка трубопроводов тепловых сетей в каналах и тоннелях с другими инженерными сетями кроме указанных не допускается.

Таким образом, в населенных пунктах для тепловых сетей предусматривается, как правило, подземная прокладка (бесканальная, в каналах или в городских и внутриквартальных тоннелях совместно с другими инженерными сетями), прокладка тепловых сетей по насыпям автомобильных дорог не допускается. Под городскими проездами и площадями с усовершенствованным покрытием, а также при пересечении крупных автомагистралей их следует прокладывать в тоннелях или футлярах.

При обосновании допускается надземная прокладка тепловых сетей 5 на низких или высоких железобетонных опорах, в отдельных случаях - на кронштейнах вдоль стен зданий.

При выборе трассы теплосетей разрешается пересечение водяными сетями диаметром 300 мм и менее жилых и общественных зданий при условии прокладки сетей в технических подпольях, технических коридорах и тоннелях (высотой не менее 1,8 м) с устройством дренирующего колодца в нижней точке на выходе из здания. Пересечение тепловыми сетями детских дошкольных, школьных и лечебно-профилактических учреждений не допускается.

В последние годы надземная прокладка тепловых сетей получает все большее распространение, особенно при реконструкции и капитальных ремонтах существующих подземных сооружений. Их часто выносят на поверхность земли в совершенно неожиданных местах - во дворах жилых микрорайонов, на спортивных площадках, в парковых зонах, на внутриквартальных проездах и т.д., нисколько не считаясь с интересами жителей, учреждений и организаций. При попустительстве архитектурных и административных инспекций «украшают» теплопроводами окружающие пространства. Организации - владельцы теплосетей часто мотивируют такие решения как временный выход из положения.