Центральные тепловые пункты цтп. Цтп - центральный тепловой пункт

ИНСТРУКЦИЯ

по обслуживанию оборудования ЦТП (ИТП)

1. ПОРЯДОК ПОЛЬЗОВАНИЯ ИНСТРУКЦИЕЙ

1. Инструкция должна быть вывешена на рабочем месте.

2. Инструкция выдается под расписку на руки оператору теплового пункта, остальные обязаны расписаться на контрольном экземпляре инструкции.

3. Контрольный экземпляр инструкции должен храниться у главного энергетика (механика) предприятия (организации, учреждения).

2. ОБЩИЕ ПОЛОЖЕНИЯ

1. Оператор теплового пункта находящийся на дежурстве несет ответственность за каждую аварию и за все повреждения или несчастные случаи, происшедшие по причине нарушения правил и инструкций.

2. Оператор теплового пункта непосредственно осуществляет осмотр, подготовку к пуску оборудования центрального теплового пункта, обслуживание и остановку оборудования. При необходимости привлекают других работников предприятия (организации).

3. В ЦТП должна находиться следующая документация:


  • тепломеханического оборудования;

  • электрооборудования;

  • КИП и А;

  • разводящих сетей после ЦТП с присоединенными зданиями и их характеристиками;

б) Температурный график;

в) Сменный журнал.

4. График ППР.

5. Ремонтный журнал.

6. Данная инструкция, должностная инструкция по ТБ и охране труда.

7. Инструкция по эксплуатации автоматики.

8. Инструкция по эксплуатации автоматики включения насосов.

9. Паспорт ЦТП.

В ЦТП должно быть также:

1. Таблица с указанием ответственных за эксплуатацию тепломеханического оборудования, электрооборудования, оборудования КИП и А и их телефонами.

2. На входных дверях табличка с номером ЦТП и указанием его принадлежности.

В ЦТП должен находиться запас эксплуатационных материалов: смазка, сальниковая набивка, паранит и т.д.

В ЦТП должна поддерживаться чистота и порядок, как при эксплуатации, так и при ремонтных работах.

Допуск посторонних лиц в ЦТП возможен только с разрешения руководства или ответственных лиц за исправное состояние и безопасную эксплуатацию ТУ и ТС.

3. Основные технические данные ЦТП

Центральный тепловой пункт - ЦТП предназначается для снабжения теплом систем отопления систем приточной вентиляции, кондиционирования воздуха и централизованного горячего водоснабжения подсоединенных к нему объектов.

ЦТП состоит из объемных элементов-агрегатов заводского изготовления.

Тепломеханическая часть ЦТП собирается из следующих агрегатов:

1. Агрегат теплового узла с водонагревателем горячего водоснабжения.

2. Агрегат водомерного узла с повысительными (хозяйственными) насосами.

3. Агрегат водонагревателя отопления с циркуляционными насосами.

4. Агрегат подпиточных насосов отопления.

5. Агрегат циркуляционных насосов системы горячего водоснабжения.

Источником тепла для ЦТП является __ район ОАО Московской теплосетевой компании с круглосуточной работой тепловых сетей при качественном регулировании. Теплоноситель - перегретая вода с параметрами 150 - 70°С.

ЦТП оборудуется ремонтным освещением при напряжении 36 В, водопроводом, канализацией, приточно-вытяжной вентиляцией, телефоном.

4. Схема центрального теплового пункта

Присоединение ЦТП к тепловым сетям осуществляется следующим образом:

Сетевая вода поступает в межтрубное пространство II-й ступени водоподогревателя горячего водоснабжения, а затем в систему отопления зданий, присоединенных к тепловым сетям по зависимой схеме - через элеваторы. В водоподогревателе отопления сетевая вода, проходя по латунным трубкам, отдает свое тепло местной воде системы отопления, проходящей в межтрубном пространстве.

Вода из обратных трубопроводов систем отопления и из водоподогревателя далее возвращается в наружные тепловые сети.

Водопроводная вода, проходя по трубам водоподогревателя водоснабжения I-й ступени, нагревается обратной водой примерно до 30°С, затем догревается во II-й ступени до 60°С.

В ЦТП для нужд горячего водоснабжения принят к установке скоростной водоподогреватель с латунными трубками диаметром 14-16, длина секции 4,0 м.

Во избежание вскипания нагреваемой воды предусматривается установка приборов автоматики, отключающей подачу сетевой воды при повышении температуры нагреваемой воды выше 60°С и снова включающих подачу сетевой воды при падении температуры ниже 60°С.

Для учета расхода тепла предусмотрен теплосчетчик типа ____________________. Первичные катушки, диаметром ______ мм установлены на прямом и обратном трубопроводах сетевой воды. На линии подпитки системы отопления установлен расходомер типа ____________, диаметром _____ мм.

Для учета расхода воды на горячее водоснабжение предусматривается установка на водопроводной линии, идущей к подогревателю, горячеводного водомера типа ____________, диаметром ____ мм.

Для циркуляции горячей воды в системе горячего водоснабжения устанавливается два насоса (один резервный).

Для циркуляции местной воды системы отопления устанавливается два насоса (один резервный) мощностью в зависимости от теплопотерь и емкости системы.

Подпитка независимой системы отопления осуществляется подпиточными насосами (один резервный).

В ЦТП установлены три водопроводных повысительных насоса мощностью и напором, зависящим от количества разбираемой воды и этажности зданий. Во избежание повышения давления в местной системе холодного водоснабжения выше 60 м.вод.ст., устанавливаются 2 регулирующих клапана “после себя”.

5. Тепломеханическая часть

1. В агрегат теплового узла с водоподогревателями горячего водоснабжения входят:

а) стальные головные задвижки;

б) стальные задвижки отопления;

в) стальные секционные задвижки, отключающие:

II-ю ступень от системы отопления;

II-ю ступень от первой ступени;

I-ю ступень от системы отопления.

Помимо этого на агрегате методом сварки установлены грязевики на подающей линии и грязевики на обратной линии из систем отопления, манометры, термометрические гильзы с термометрами, пробковые и 3-х ходовые латунные краны, соединительные импульсные трубки, термореле на линии ГВС, автоматика типа ____________________________________.

6. Ежедневный технический осмотр оборудования ЦТП

Оператор теплового пункта должен ежедневно выполнять следующий объем работ:

1. Произвести внешний осмотр всего оборудования.

2. Проверить нет ли подтекания воды через сальники насосов, задвижек и фланцевые соединения трубопроводов, при необходимости подтянуть сальники и фланцевые соединения.

3. Проверить работу резервных и дополнительных насосов путем кратковременного включения их в работу с щита управления.

4. Включить подпиточный насос, проверить работу подпитки местной системы отопления.

5. Проверить работу насосов и электродвигателей на нагрев подшипников, вибрацию и посторонние шумы; при необходимости принять меры по выявлению причин и устранению неисправностей.

6. Проверить на щите управления автоматикой положение переключателей режимов работы и состояние сигнальных ламп; переключатели должны быть установлены в положение “Автоматическое”, на щите должны гореть сигнальные лампы работающих насосов и сигнальная лампа “Питание”.

7. Убедиться в закрытии дверей электрошкафов.

8. Снять показания контрольно-измерительных приборов (каждые ___ часа), записать их в сменный журнал и сравнить о нормативными параметрами:

(давление на прямом и обратном трубопроводах, температуру на прямом и обратном теплопроводах, давление и температуру в местных системах теплопотребления и т.д.).

В случае расхождения параметров принять меры по выявлению и устранению причин.

7. Устройство оборудования ЦТП

Водоподогреватели горячего водоснабжения набираются из отдельных секций в зависимости от нагрузки горячего водоснабжения.

Подогреватели рассчитаны на рабочее давление 10 атм и температуру 150°С и должны подвергаться гидравлическим испытаниям с обеих сторон на 12,5 атм.

К водоподогревателю относится также входной и выходной патрубки и соответствующее количество калачей для соединения трубного пучка. Патрубок для выхода местной нагретой воды имеет штуцер для ввертывания термореле. Отдельные секции водоподогревателя соединяются посредством фланцев и болтов.

Водоподогреватели покрываются изоляцией.

Оператор ЦТП обязан:

1. Следить за плотностью фланцевых соединений водоподогревателей (крепление фланцевых соединений производится постепенным завинчиванием гаек “накрест”).

2. Следить за запорной арматурой, задвижки должны всегда находиться в таком состоянии, чтобы их можно было легко открыть и закрыть. Это достигается периодической смазкой шпинделя, нормальной затяжкой сальника и предотвращением прикипания уплотнительных поверхностей.

3. При появлении течи в сальнике, последний необходимо затягивать.

4. Следить за наружной поверхностью задвижек, вентилей, кранов, поверхность должна быть чистой, а резьба болтов смазана маслом с разведенным в нем графите.

Примечание : обслуживающий персонал должен знать, что запрещается применение добавочных рычагов при открывании и закрывании задвижек.

5. В период летнего ремонта производить снятие калачей, промывку, чистку труб.

Уход за грязевиками.

При необходимости прочистки грязевика:

1. Отключают ЦТП на входе и выходе.

2. Разбалчивают люк, вытаскивают сетки и промывают их. Грязь, скопившуюся, на дне, убирают.

3. Частичные чистки грязевиков осуществляются периодическими продувками незначительных количеств сетевой воды.

Уход за кранами.

1. Не реже одного раза в смену, провернуть латунный кран.

2. При профилактических ремонтах запорные органы кранов очищать и смазывать.

3. Набивать сальники пробковых кранов новой набивкой.

Уход за обратными клапанами.

В случае поломки сетевой шпильки или ушек заслонки клапана необходимо:

1. Закрыть задвижки до и после клапанов.

2. Вскрыть крышку клапана и произвести необходимый ремонт.

3. При обнаружении течи из-под крышки обратного клапана меняется прокладка.

4. При нарушении плотности корпуса обратного клапана заменяют новыми.

Работа насосов и правила их включения и отключения.

Пуск насоса:

Перед началом пуска насоса необходимо:

1. Проверять наличие масла в подшипниках и заполнение насоса водой.

2. Открыть задвижку на всасывающей линии и проверить закрытие задвижки на нагнетательной линии.

3. Проверить исправность пускового устройства электродвигателя.

4. Включить электродвигатель, проверяя при этом направление его вращения.

5. После того, как насос развил нормальное число оборотов и нормальное давление, медленно открывают запорную задвижку на нагнетательной линии.

При работе насоса необходимо:

1. Следить за смазкой подшипников, периодически доливать чистое масло.

2. При повышении температуры подшипников более 60 0 С нужно усиленно подавать смазку для охлаждения и выяснить причину повышения температуры.

3. После каждых 500 часов работы насосов полностью менять в подшипниках грязное масло, а камеры промывать керосином.

Остановка центробежного насоса производится в следующей последовательности:

1. Закрыть задвижку на нагнетательной линии и кран на манометре.

2. Выключить электродвигатель.

3. Закрыть задвижку на всасывающей линии.

4. При переходе на другой насос дождаться полной остановки первого.

Неисправности в работе центробежного насоса.

1. Насос не подает воду (вращение вала в обратном направлении, насос не залит водой, велика высота всасывания).

2. Просачивается вода через сальниковое уплотнение.

3. Не открывается или перекошен обратный клапан на нагнетательном патрубке.

4. Недостаточное напряжение электрической сети (недостаточное число оборотов).

5. Неправильное включение фазы или нет одной фазы (вращение эл. двигателя в обратном направлении, гудение эл. двигателя).

6. Снижен напор насоса (изношено колесо, загрязнение насоса).

Обслуживание систем автоматики и КИП.

Обслуживающий персонал обязан:

1. Периодически продувать импульсные линии и 3-ходовые краны под манометрами и электро-контактными манометрами (ЭКМ).

2. Знать и уметь отключать в шкафу автоматики аварийно-включенный циркуляционный или хозяйственный насос.

3. Уметь заменить импульсные трубки и термореле.

4. Вовремя заливать термометрические гильзы маслом.

5. Следить за исправным состоянием термометров и манометров.

8. Еженедельное техническое обслуживание ЦТП

Провести следующие работы:

1. Очистить оборудование от ржавчины, пыли и подтеков масла;

2. Проверить наличие смазки на шпинделях задвижек, при необходимости смазать.

3. Проверить состояние сальниковых уплотнений задвижек (подтекание воды через сальниковые уплотнения не допускается).

4. На ощупь проверить нагрев корпусов насосов и электродвигателей во время работы насосных агрегатов, в случае, если температура корпуса окажется выше 60-70°С выявить причины, способствующие перегреву и устранить их.

5. Проверить состояние сальниковых уплотнений насоса (при работе насоса вода из сальника должна просачиваться отдельными каплями или тонкой струйкой), при необходимости подтянуть сальниковые уплотнения или заменить сальниковую набивку.

6. Определить по маслоуказателям наличие смазки в масляных ваннах (корпусах подшипников), при необходимости пополнить смазку до установленного уровня.

7. Определить состояние упругих муфт насосных агрегатов прокручиванием (вручную) вала остановленного агрегата, в случае износа резиновых пальцев - заменить их.

8. Проверить надежность крепления насосных агрегатов к рамам, подтянуть болтовые соединения.

9. Проверить работу всех резервных и дополнительных насосов кратковременным включением их в работу путем имитации изменения параметров настройки на ЭКМ или другим методом в ручном режиме.

10. Внешним осмотром проверить надежность заземления всего электрооборудования.

11. Определить работоспособность аварийного освещения ЦТП.

12. Убедиться в отсутствии внутри сборок и электрических шкафов посторонних предметов, а также влаги и коррозии деталей.

13. Установить характер гудения работающих контакторов и магнитных пускателей (чрезмерного гудения, дребезжания не должно быть).

14. Визуально проверить, нет ли перегрева контактных соединений шин и других контактных деталей (подгорания, изменения цвета шин или контактных частей, запаха озона).

15. Определить состояние предохранителей, перегоревшие или нестандартные плавкие предохранители - заменить).

16. Убедиться в целостности манометров и термометров и правильности их показаний.

17. Проверить состояние гильз термометров, при необходимости очистить их от грязи и долить масло.

18. Продуть манометры кратковременным открытием трехходовых кранов.

19. Произвести корректировку настройки тепловой автоматики.

20. Подкрасить оборудование и трубопроводы (при необходимости).

21. Сделать химический анализ сетевой воды с целью определения гидравлической плотности подогревателей (1 раз в месяц).

22. Проверить наличие и ведение технической документации теплового пункта.

23. Установить наличие и исправность защитных диэлектрических и противопожарных средств (защитные средства с истекшими сроками годности или неисправные - заменить).

24. Произвести влажную уборку помещения теплового пункта.

25. Сделать запись в оперативном: журнале о выполнении еженедельного технического обслуживания.

Все замечания и неисправности, выявленные при техническом осмотре и обслуживании, подлежат устранению. После устранения неисправностей убедиться в нормальной работе инженерных систем и оборудования. По окончании технического обслуживания все инженерные системы и оборудование тепловых пунктов должны быть приведены в исходное состояние, обеспечивающее нормальную работу всех систем.

9. Ремонт ЦТП

В соответствии с графиком ППР производятся ремонты: текущие - один раз в три месяца, капитальные не реже одного раза в год.

Водоподогреватели подлежат ежегодной промывке, а при сопротивлении более 0,3 мм.в.ст. механической чистке или кислотной промывке, а затем гидравлическим испытаниям на 12 атм.

10. Оператором теплового пункта запрещено:

1. Открывать эл.шкафы и производить в них ремонтные работы.

2. Отключать зл.двигатели от сети.

3. Производить работы на эл. оборудовании ЦТП.

11. Оператор теплового пункта должен:

1. Вести периодическую запись параметров теплоносителя и горячей воды.

2. Следить за часовым расходом сетевой и горячей воды.

4. Вести запись в журнале выявленных дефектов оборудования.

5. Записывать в журнале, какие насосы работают в настоящее время, какие переключения произошли или произведены оператором теплового пункта.

6. Периодически обходить ЦТП записывать дефекты и параметры в специальном журнале обхода.

7. Совместно с ответственным лицом за исправное состояние и безопасную эксплуатацию ТУ и ТС допускать инспектора “Мосгосэнергонадзора” к проверке работы оборудования ЦТП и технической документации.

12. Прием и сдача дежурства

1. Принимающий смену оператор теплового пункта обязан явиться на дежурство согласно утвержденному графику (в случае болезни он должен заблаговременно, до начала смены, поставить в известность главного энергетика (механика) или инженера.

2. Принимающий смену оператор теплового пункта обязать явиться для приемки смены за 20 минут до начала работы и ознакомиться с записями в журнале со всеми распоряжениями поступившими во время его предыдущего дежурства, с изменениями в графике, с неполадками в работе оборудования.

3. Сдавший смену обязан ознакомить принимающего дежурство с состоянием и режимом работы сдаваемого им оборудования. Необходимо сообщить какие насосы находятся в резерве или в ремонте, какие ремонтные работы производились или будут производиться в ближайшую смену.

4. Сдающий смену обязан произвести уборку в помещении ЦТП и оборудования.

13. Принимающий смену оператор теплового пункта отвечает:

1. За неисправность и неудовлетворительное состояние оборудования предыдущей смены, на неотмеченные записи в журнале при приеме смены.

2. За наличие записей в журнале выявленных дефектов оборудования и за снятие показателей.

Тепловым пунктом называется сооружение, которое служит для присоединения местных систем теплопотребления к тепловым сетям. Тепловые пункты подразделяются на центральные (ЦТП) и индивидуальные (ИТП). ЦТП служат для теплоснабжения двух и более зданий, ИТП - для теплоснабжения одного здания. При наличии ЦТП в каждом отдельном здании обязательно устройство ИТП, который выполняет только те функции, которые не предусмотрены в ЦТП и необходимы для системы теплопотребления данного здания. При наличии собственного источника теплоты (котельной) тепловой пункт, как правило, располагается в помещении котельной.

В тепловых пунктах размещается оборудование, трубопроводы, арматура, приборы контроля, управления и автоматизации, посредством которых осуществляются:

Преобразование параметров теплоносителя, например, для снижения температуры сетевой воды в расчетном режиме со 150 до 95 0 С;

Контроль параметров теплоносителя (температуры и давления);

Регулирование расхода теплоносителя и распределение его по системам потребления теплоты;

Отключение систем потребления теплоты;

Защита местных систем от аварийного повышения параметров теплоносителя (давления и температуры);

Заполнение и подпитка систем потребления теплоты;

Учет тепловых потоков и расходов теплоносителя и др.

На рис. 8 приведена одна из возможных принципиальных схем индивидуального теплового пункта с элеватором для отопления здания. Через элеватор система отопления присоединяется в том случае, если надо снижать температуру воды для системы отопления, например, со 150 до 95 0 С (в расчетном режиме). При этом располагаемый напор перед элеватором, достаточный для его работы, должен быть не менее 12-20 м вод. ст., а потеря напора не превышает 1,5 м вод. ст. Как правило, к одному элеватору присоединяется одна система или несколько мелких систем с близкими гидравлическими характеристиками и с суммарной нагрузкой не более 0,3 Гкал/ч. При больших необходимых напорах и теплопотреблении применяются смесительные насосы, которые также используются и при автоматическом регулировании работы системы теплопотребления.

Подключение ИТП к тепловой сети производится задвижкой 1. Вода очищается от взвешенных частиц в грязевике 2 и поступает в элеватор. Из элеватора вода с расчетной температурой 95 0 С направляется в систему отопления 5. Охлажденная в отопительных приборах вода возвращается в ИТП с расчетной температурой 70 0 С. Часть обратной воды используется в элеваторе, а остальная вода очищается в грязевике 2 и поступает в обратный трубопровод теплосети.

Постоянный расход горячей сетевой воды обеспечивает автоматический регулятор расхода РР. Регулятор РР получает импульс на регулирование от датчиков давления, установленных на подающем и обратном трубопроводах ИТП, т.е. он реагирует на разность давлений (напор) воды в указанных трубопроводах. Напор воды может меняться по причине увеличения или уменьшения давления воды в теплосети, что обычно связано в открытых сетях с изменение расхода воды на нужды ГВС.


Например , если напор воды возрастает, то расход воды в системе увеличивается. Во избежание перегрева воздух в помещениях регулятор уменьшит свое проходное сечение, чем восстановит прежний расход воды.

Постоянство давления воды в обратном трубопроводе системы отопления автоматически обеспечивает регулятор давления РД. Падение давления может быть следствием утечек воды в системе. В этом случае регулятор уменьшит проходное сечение, расход воды снизится на величину утечки и давление восстановится.

Расход воды (теплоты) измеряется водомером (теплосчетчиком) 7. Давление и температура воды контролируются, соответственно, манометрами и термометрами. Задвижки 1, 4, 6 и 8 используются для включения или отключения теплового пункта и системы отопления.

В зависимости от гидравлических особенностей тепловой сети и местной системы отопления в тепловом пункте могут также устанавливаться:

Подкачивающий насос на обратном трубопроводе ИТП, если располагаемый напор в тепловой сети недостаточен для преодоления гидравлического сопротивления трубопроводов, оборудования ИТП и систем теплопотребления. Если при этом давление в обратном трубопроводе будет ниже статического давления в этих системах, то подкачивающий насос устанавливается на подающем трубопроводе ИТП;

Подкачивающий насос на подающем трубопроводе ИТП, если давление сетевой воды недостаточно для предотвращения вскипания воды в верхних точках систем потребления теплоты;

Отсекающий клапан на подающем трубопроводе на вводе и подкачивающий насос с предохранительным клапаном на обратном трубопроводе на выходе, если давление в обратном трубопроводе ИТП может превысить допускаемое давление для системы теплопотребления;

Отсекающий клапан на подающем трубопроводе на входе в ИТП, а также предохранительный и обратный клапаны на обратном трубопроводе на выходе из ИТП, если статическое давление в тепловой сети превышает допускаемое давление для системы теплопотребления и др.

Рис 8. Схема индивидуального теплового пункта с элеватором для отопления здания:

1, 4, 6, 8 - задвижки; Т - термометры; М - манометры; 2 - грязевик; 3 - элеватор; 5 -радиаторы системы отопления; 7 - водомер (теплосчетчик); РР - регулятор расхода; РД - регулятор давления

Как было показано на рис. 5 и 6, системы ГВС подсоединяются в ИТП к подающему и обратному трубопроводам через водоподогреватели или непосредственно, через регулятор температуры смешения типа ТРЖ.

При непосредственном водоразборе вода на ТРЖ подается из подающего или из обратного или из обоих трубопроводов вместе в зависимости от температуры обратной воды (рис.9). Например , летом, когда сетевая вода имеет 70 0 С, а отопление отключено, в систему ГВС поступает только вода из подающего трубопровода. Обратный клапан служит для предотвращения перетекания воды из подающего трубопровода в обратный при отсутствии водоразбора.

Рис. 9. Схема узла присоединения системы ГВС при непосредственном водоразборе:

1, 2, 3, 4, 5, 6 - задвижки; 7 - обратный клапан; 8 - регулятор температуры смешения; 9 - датчик температуры смеси воды; 15 - водоразборные краны; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Ш - штуцер; Т - термометр; РД - регулятор давления (напора)

Рис. 10. Двухступенчатая схема последовательного присоединения водоподогревателей ГВС:

1,2, 3, 5, 7, 9, 10, 11, 12, 13, 14 - задвижки; 8 - обратный клапан; 16 - циркуляционный насос; 17 - устройство для отбора импульса давления; 18 - грязевик; 19 - водомер; 20 - воздухоотводчик; Т - термометр; М - манометр; РТ - регулятор температуры с датчиком

Для жилых и общественных зданий также широко применяется схема двухступенчатого последовательного присоединения водоподогревателей ГВС (рис.10). В данной схеме водопроводная вода вначале подогревается в подогревателе I-ой ступени, а затем в подогревателе II-ой ступени. При этом водопроводная вода проходит через трубки подогревателей. В подогревателе I-ой ступени водопроводная вода греется обратной сетевой водой, которая после охлаждения идет в обратный трубопровод. В подогревателе II-ой ступени водопроводная вода греется горячей сетевой водой из подающего трубопровода. Охлажденная сетевая вода поступает в систему отопления. В летний период эта вода подается в обратный трубопровод по перемычке (в обвод системы отопления).

Расход горячей сетевой воды на подогреватель II-ой ступени регулирует регулятор температуры (клапан термореле) в зависимости от температуры воды за подогревателем II-ой ступени.

При централизованном теплоснабжении тепловой пункт может бытьместным - индивидуальным (ИТП) для теплопотребляющих систем конкретного здания игрупповым - центральным (ЦТП) для систем группы зданий. ИТП размещается в специальном помещении здания, ЦТП чаще всего представляет собой отдельно стоящее одноэтажное строение. Проектирование тепловых пунктов ведётся в соответствии с нормативными правилами.
Роль теплогенератора при независимой схеме присоединения теплопотребляющих систем к наружной тепловой сети выполняет водяной теплообменник.
В настоящее время применяют так называемые скоростные теплообменники различных типов. Кожухотрубный водяной теплообменник состоит из стандартных секций длиной до 4 м. Каждая секция представляет собой стальную трубу диаметром до 300 мм, внутрь которой помещены несколько латунных трубок. В независимой схеме системы отопления или вентиляции греющая вода из наружного теплопровода пропускается по латунным трубкам, нагреваемая - противотоком в межтрубном пространстве, в системе горячего водоснабжения нагреваемая водопроводная вода пропускается по трубкам, а греющая вода из тепловой сети - в межтрубном пространстве. Более совершенный и значительно более компактный, пластинчатый теплообменник, набирается из определённого количества стальных профилированных пластин. Греющая и нагреваемая вода протекает между пластинами противотоком или перекрёстно. Длину и число секций кожухотрубного теплообменника или размеры и число пластин в пластинчатом теплообменнике определяют в результате специального теплового расчета.
Для нагревания воды в системах горячего водоснабжения, особенно в индивидуальном жилом доме, больше подходит не скоростной, а емкостной водонагреватель. Его объём определяется исходя из расчётного количества одновременно работающих точек водоразбора и предполагаемых индивидуальных особенностей водопотребления в доме.
Общим для всех схем, является применение насоса для искусственного побуждения движения воды в теплопотребляющих системах. В зависимых схемах насос помещают на тепловой станции, и он создаёт давление, необходимое для циркуляции воды, как в наружных теплопроводах, так и в местных теплопотребляющих системах.
Насос, действующий в замкнутых кольцах систем, заполненных водой, не поднимает, а только перемещает воду, создавая циркуляцию, и поэтому называется циркуляционным. В отличие от циркуляционного насоса насос в системе водоснабжения перемещает воду, поднимая её к точкам разбора. При таком использовании насос называют повысительным.
В процессах заполнения и возмещения потери (утечки) воды в системе отопления циркуляционный насос не участвует. Заполнение происходит под воздействием давления в наружных теплопроводах, в водопроводе или, если этого давления недостаточно, с помощью специального подпиточного насоса.
До последнего времени циркуляционный насос включался, как правило, в обратную магистраль системы отопления для увеличения срока службы деталей, взаимодействующих с горячей водой. Вообще же для создания циркуляции воды в замкнутых кольцах местоположение циркуляционного насоса безразлично. При необходимости несколько понизить гидравлическое давление в теплообменнике или котле насос может быть включён и в подающую магистраль системы отопления, если его конструкция рассчитана на перемещение более горячей воды. Все современные насосы обладают этим свойством и устанавливаются чаще всего после теплогенератора (теплообменника). Электрическая мощность циркуляционного насоса определяется количеством перемещаемой воды и развиваемым при этом давлением.
В инженерных системах, как правило, применяют специальные бесфундаментные циркуляционные насосы, перемещающие значительное количество воды и развивающие сравнительно небольшое давление. Это бесшумные насосы, соединённые в единый блок с электродвигателями и закрепляемые непосредственно на трубах. В систему включают два одинаковых насоса, действующих попеременно: при работе одного из них второй находится в резерве. Запорная арматура (задвижки или краны) до и после обоих насосов (действующего и бездействующего) постоянно открыты, особенно, если предусмотрено автоматическое их переключение. Обратный клапан в схеме препятствует циркуляции воды через бездействующий насос. Легко монтируемые бесфундаментные насосы иногда устанавливают в системах по одному. При этом резервный насос хранят на складе.
Понижение температуры воды в зависимой схеме со смешением до допустимой происходит при смешении высокотемпературной воды с обратной (охлаждённой до заданной температуры) водой местной системы. Снижение температуры теплоносителя осуществляется путем смешения обратной воды от инженерных систем при помощи смесительного аппарата - насоса или водоструйного элеватора. Насосная смесительная установка имеет преимущество перед элеваторной. Ее КПД выше, в случае аварийного повреждения наружных теплопроводов возможно, как и при независимой схеме присоединения, сохранение циркуляции воды в системах. Смесительный насос можно применять в системах со значительным гидравлическим сопротивлением, тогда как при использовании элеватора потери давления в теплопотребляющей системе должны быть сравнительно небольшими. Водоструйные элеваторы получили широкое распространение благодаря безотказному и бесшумному действию.
Внутреннее пространство всех элементов теплопотребляющих систем (труб, отопительных приборов, арматуры, оборудования и т. д.) заполнено водой. Объём воды в процессе эксплуатации систем претерпевает изменения: при повышении температуры воды он увеличивается, при понижении температуры - уменьшается. Соответственно изменяется внутреннее гидростатическое давление. Эти изменения не должны отражаться на работоспособности систем и, прежде всего, не должны приводить к превышению предела прочности любых их элементов. Поэтому в систему вводится дополнительный элемент - расширительный бак.
Расширительный бак может бытьоткрытым, сообщающимся с атмосферой, и закрытым, находящимся под переменным, но строго ограниченным избыточным давлением. Основное назначение расширительного бака - приём прироста объёма воды в системе, образующегося при её нагревании. При этом в системе поддерживается определённое гидравлическое давление. Кроме того, бак предназначен для восполнения убыли объёма воды в системе при небольшой утечке и при понижении её температуры, для сигнализации об уровне воды в системе и управления действием подпиточных устройств. Через открытый бак удаляется вода в водосток при переполнении системы. В отдельных случаях открытый бак может служить воздухоотводчиком из системы.
Открытый расширительный бак размещают над верхней точкой системы (на расстоянии не менее 1 м) в чердачном помещении или в лестничной клетке и покрывают тепловой изоляцией. Иногда (например, при отсутствии чердака) устанавливают неизолированный бак в специальном утепленном боксе (будке) на крыше здания.
Современная конструкция закрытого расширительного бака представляет собой стальной цилиндрический сосуд, разделённый на две части резиновой мембраной. Одна часть предназначена для воды системы, вторая заполнена в заводских условиях инертным газом (обычно азотом) под давлением. Бак может быть установлен непосредственно на пол котельной или теплового пункта, а также закреплён на стене (например, при стеснённых условиях в помещении).
В крупных теплопотребляющих системах группы зданий расширительные баки не устанавливаются, а гидравлическое давление регулируется при помощи постоянно действующих подпиточных насосов. Эти насосы также возмещают обычно имеющие место потери воды через неплотные соединения труб, в арматуре, приборах и других местах систем.
Помимо рассмотренного выше оборудования в котельной или тепловом пункте размещаются устройства автоматического регулирования, запорно-регулирующая арматура и контрольно-измерительные приборы, с помощью которых обеспечивается текущая эксплуатация системы теплоснабжения. Используемая при этом арматура, а также материал и способы прокладки теплопроводов рассмотрены в разделе "Отопление зданий".

Прежде чем описывать устройство и функции ЦТП (центральный тепловой пункт) приведем общее определение тепловых пунктов. Тепловой пункт или сокращенно ТП это комплекс оборудования расположенный в отдельном помещении обеспечивающий отопление и горячее водоснабжение здания или группы зданий. Основное отличие ТП от котельной заключается в том, что в котельной происходит нагрев теплоносителя за счет сгорания топлива, а тепловой пункт работает с нагретым теплоносителем, поступающим из централизованной системы. Нагрев теплоносителя для ТП производят теплогенерирующие предприятия - промышленные котельные и ТЭЦ. ЦТП это тепловой пункт обслуживающий группу зданий , например, микрорайон, поселок городского типа, промышленное предприятие и т.д. Необходимость в ЦТП определяется индивидуально для каждого района на основании технических и экономических расчетов, как правило, возводят один центральный тепловой пункт для группы объектов с расходом теплоты 12-35 МВт.

Для лучшего понимания функций и принципов работы ЦТП дадим краткую характеристику тепловым сетям. Тепловые сети состоят из трубопроводов и обеспечивают транспортировку теплоносителя. Они бывают первичные, соединяющие теплогенерирующие предприятия с тепловыми пунктами и вторичные, соединяющие ЦТП с конечными потребителями. Из этого определения можно сделать вывод, что ЦТП являются посредником между первичными и вторичными тепловыми сетями или теплогенерирующими предприятиями и конечными потребителями. Далее подробно опишем основные функции ЦТП.

Функции центрального теплового пункта (ЦТП)

Как мы уже писали основная функция ЦТП служить посредником между централизованными теплосетями и потребителями, то есть распределение теплоносителя по системам отопления и горячего водоснабжения (ГВС) обслуживаемых зданий, а так же функции обеспечения безопасности, управления и учета.

Подробнее распишем задачи, решаемые центральными тепловыми пунктами:

  • преобразование теплоносителя, например, превращение пара в перегретую воду
  • изменение различных параметров теплоносителя, таких как давление, температура и т. д.
  • управление расходом теплоносителя
  • распределение теплоносителя по системам отопления и горячего водоснабжения
  • водоподготовка для ГВС
  • защита вторичных тепловых сетей от повышения параметров теплоносителя
  • обеспечение отключения отопления или горячего водоснабжения в случае необходимости
  • контроль расхода теплоносителя и других параметров системы, автоматизация и управление

Итак, мы перечислили основные функции ЦТП. Далее постараемся описать устройство тепловых пунктов и установленное в них оборудование.

Устройство ЦТП

Как правило, центральный тепловой пункт - это отдельно стоящее одноэтажное здание с расположенным в нем оборудованием и коммуникациями.

Перечислим основные узлы ЦТП:

  • теплообменник, в ЦТП является аналогом отопительного котла в котельной, т.е. работает в качестве теплогенератора. В теплообменнике происходит нагрев теплоносителя для отопления и ГВС, но не посредством сжигания топлива, а за счёт передачи тепла от теплоносителя в первичной тепловой сети.
  • насосное оборудование, выполняющее различные функции представлено циркуляционными, повысительными, подпиточными и смесительными насосами.
  • клапаны регуляторы давления и температуры
  • грязевые фильтры на вводе и выходе трубопровода из ЦТП
  • запорная арматура (краны для перекрытия различных трубопроводов в случае необходимости)
  • системы контроля и учета расхода теплоты
  • системы электроснабжения
  • системы автоматизации и диспетчеризации

Подводя итог, скажем, что основная причина, по которой возникает необходимость в строительстве ЦТП, является несоответствие параметров теплоносителя поступающего от теплогенерирующих предприятий параметрам теплоносителя в системах потребителей тепла. Температура и давление теплоносителя в магистральном трубопроводе значительно выше, чем должна быть в системах отопления и горячего водоснабжения зданий. Можно сказать, теплоноситель с заданными параметрами является основным продуктом работы ЦТП.

Тепловой пункт – комплекс устройств, расположенный в обобщенном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, трансформацию, регулирование параметров теплоносителя.

Тепловой пункт является связующим звеном между тепловой сетью и системами потребления теплоты. Системы отопления, вентиляции и горячего водоснабжения производственных, жилых или общественных зданий присоединяются к тепловому пункту. Практика показывает, что существует огромное количество возможных сочетаний схем абонентских присоединений к закрытым и открытым теплосетям водяных и паровых систем центрального теплоснабжения.

Таким образом, основное назначение теплового пункта прием, подготовка теплоносителя и подача его в системы теплопотребления, а также возврат использованного теплоносителя в тепловую сеть. Тепловые пункты бывают центральными и индивидуальными.

Центральный тепловой пункт (ЦТП) – пункт подключения систем теплоснабжения микрорайона к распределительным сетям городской тепловой сети и водопровода и управления системами отопления, вентиляции и водоснабжения зданий.

Центральные тепловые пункты широко применяются на промышленных предприятиях, а также в городских жилых рай онах. Обычно ЦТП размещают в отдельных специальных зданиях. В ЦТП устанавливаются блоки подогревателей горячего водоснабжения (при независимой схеме); групповая смесительная установка сетевой воды; подкачивающие насосы холодной водопроводной воды, а при необходимости и сетевой; регуляторы и контрольно – измерительные приборы (КИП).

При использовании ЦТП уменьшаются затраты на сооружение подогревательной установки горячего водоснабжения, насосных установок и систем автоматического регулирования, но возрастают затраты на сооружение участка тепловой сети между ЦТП и отдельными зданиями, так как вместо двухтрубной сети требуется сооружать четырехтрубную или трехтрубную при тупиковой схеме ГВС. В настоящее время в ЦТП часто размещают не только теплоэнергетическое оборудование, но и водопроводное, насосное противопожарное, электротехническое и низковольтное оборудование, проведя диспетчеризацию и превратив их в энергетические центры обслуживания населения. При этом, после ЦТП прокладываются четырех-, шести-, восьмитрубные распределительные тепловые сети к зданиям, а часто и водопроводные, противопожарные и другие линии и коммуникации .

На рис. 1.3 изображена схема ЦТП, к которому с помощью четырехтрубной сети присоединены потребители отопления и горячего водоснабжения. ЦТП связан с источником прямым (I) и обратным (II) трубопроводами тепловой сети. Отопление осуществляется по подающему (ПО) и обратному (ОО) трубопроводам отопления, а горячее водоснабжение – по подающему (ПГВС) и обратному (ОГВС) трубопроводам ГВС. Сырая вода из водопровода в систему ГВС подается по трубопроводу СВ.


1 – обратный клапан; 2, 7 – подогреватели сырой воды для ГВС; 3 – смесительный насос; 4 – насос системы ГВС; 5 – регулятор отопления; 6 – регулятор температуры горячей воды в системе ГВС; 8, 9 – трубопроводы подачи и рециркуляции горячей воды у потребителей; 10 – смесительный насос – элеватор; 11 – нагревательное устройство отопления.

Для обеспечения постоянной температуры горячей воды в системе ГВС (не ниже 50°С) применяется циркуляционная схема ГВС. Циркуляция производится насосом 4 (рис. 1.3). Во время малого расхода горячей воды (ночное и дневное время) давление воды перед обратным клапаном 1 повышается и возрастает циркуляция воды в системе ГВС. В случае большого водоразбора давление перед клапаном 1 снижается, и уменьшается циркуляционный расход, но возрастает расход воды в подающей линии СВ и стояках 8, поэтому снижается выстывание воды по пути к потребителю.

Устройство индивидуальных тепловых пунктов (ИТП) обязательно в каждом жилом и общественном здании независимо от наличия ЦТП, при этом в ИТП предусматриваются только те функции, которые необходимы для присоединения систем потребления теплоты данного здания и не предусмотрены в ЦТП.

ИТП – пункт подключения систем отопления, вентиляции и водоснабжения здания к распределительным сетям системы теплоснабжения микрорайона.

При теплоснабжении от котельной мощностью 35 МВт и менее рекомендуется предусматривать в зданиях только ИТП. В промышленных зданиях проектируются только ЦТП.

Любая из применяемых на практике схем присоединения потребителей теплоты к тепловым сетям должна обеспечивать минимальные расходы воды в тепловых сетях, экономию теплоты за счет применения регуляторов расхода и ограничителей максимального расхода сетевой воды, корректирующих насосов или элеваторов с автоматическим регулированием, снижающих температуру воды, поступающей в системы отопления, вентиляции и кондиционирования воздуха.