Основные особенности процессов сгорания топлива. Горение твёрдого топлива

Задание………………………………………………………………………..3

Введение……………………………………………………………………...4

Теоретическая часть

1. Особенности горения твердого топлива ……………………….....6

2. Сжигание топлива в камерных топках ….………………………….9

3. Место и роль твердого топлива в энергетике России ……………..12

4. Снижение выбросов золовых частиц из топок котлов конструктивными и технологическими методами……………………14

5. Золоулавливание и типы золоуловителей…………………….…….15

6. Циклонные (инерционные) золоуловители…..……………………..16

Расчетная часть

1. Исходные данные…………………………………………………….18

2. Расчет элементарного состава рабочего топлива…………………..19
3. Расчет масс и объемов продуктов сгорания топлива при сжигании в котельных …………………………………...…………………………..19

4. Определение высоты трубы Н…………………………….…………20

5. Расчет рассеивания и нормативов предельно допустимых выбросов вредных веществ в атмосферу……………………………………….…20

6. Определение требуемой степени очистки……………………….… 21

Обоснование выбора циклона……………………………………………..22

Применяемые устройства……………………………………………. ……23

Заключение………………………………………………………………….24

Список использованной литературы……………………………………...26

Задание

1. По заданным расчетным характеристикам твердых топлив определить элементарный состав рабочего топлива.

2. Используя результаты п.1 и исходные данные, рассчитать выбросы и объемы продуктов сгорания твердых частиц А, оксидов серы SO x , оксида углерода CO, оксидов азота NO x , расход газов, поступающих в дымовую трубу при рабочих условиях котельной установки.

3. По результатам п.2 и исходным данным определить диаметр устья дымовой трубы. Определить высоту трубы H.

4. Определить наиболее ожидаемую концентрацию С м (мг/м 3) вредных веществ: оксида углерода СО, сернистого газа SO 2 , оксидов азота NO x , пыли, (золы) в приземном слое атмосферы при неблагоприятных условиях рассеивания.



5. Сравнить фактическое содержание вредных веществ в атмосферном воздухе с учетом фоновой концентрации (С м +С ф) с санитарно-гигиеническими нормами (ПДК), если ПДК СО =5 мг/м 3 , ПДК NO 2 = 0,085, ПДК SO 2 =0,5 мг/м 3 , ПДК пыли =0,5 мг/м 3 .

7. Определить требуемую степень очистки и дать рекомендации по снижению выбросов, если фактический выброс М какого-либо вещества превышает расчетный норматив (ПДВ).

8. Разработать и обосновать применяемые способы и устройства для очистки сбросных вредных веществ.

Теоретическая часть

Введение

Промышленное производство и другие виды хозяйственной деятельности человека сопровождаются выделением загрязняющих веществ в окружающую природную среду.

Значительный ущерб окружающей среде наносят котельные установки, использующие сжигание твёрдых, жидких и газообразных топлив при нагреве воды для систем отопления.

Основным источником негативного воздействия энергетики являются продукты, образующиеся при сжигании органического топлива.

Рабочая масса органического топлива состоит из углерода, водорода, кислорода, азота, серы, влаги и золы. В результате полного сгорания топлив образуются углекислый газ, водяные пары, оксиды серы (сернистый газ, серный ангидрид и зола). К числу токсичных относятся оксиды серы, зола. В ядре факела топочных камекотлов большой мощности происходит частичное окисление азота воздуха топлива с образованием оксидов азота (оксид и диоксид азота).

При неполном сгорании топлива в топках могут образовываться также оксид углерода СО 2 , углеводороды СН 4 , С 2 Н 6 , а также канцерогенные вещества. Продукты неполного сгорания весьма вредны, однако при современной технике сжигания их образование можно исключить или свести к минимуму.

Наибольшую зольность имеют горючие сланцы и бурые угли, а также некоторые сорта каменных углей. Жидкое топливо имеет небольшую зольность; природный газ является беззольным топливом.

Выбрасываемые в атмосферу из дымовых труб электростанций токсичные вещества оказывают вредное воздействие на весь комплекс живой природы и биосферу.

Комплексное решение проблемы защиты окружающей среды от воздействия вредных выбросов при сжигании топлив в котельных агрегатах включает:

· Разработку и внедрение технологических процессов, снижающих выбросы вредных веществ за счет полноты сгорания топлив и др.;

· Внедрение эффективных методов и способов очистки сбросных газов.

Наиболее эффективный путь решения экологических проблем на современном этапе – создание технологий, приближенных к безотходным. При этом одновременно решается проблема рационального использования природных ресурсов, как материальных, так и энергетических.

Особенности горения твердого топлива

Горение твердого топлива включает два периода: тепловую подготовку и собственно горение. В процессе тепловой подготовки топливо прогревается, высушивается, и при температуре около 110 начинается пирогенетическое разложение составляющих его компонентов с выделением газообразных летучих веществ. Длительность этого периода зависит главным образом от влажности топлива, размера его частиц и условий теплообмена между окружающей топочной средой и частицами топлива. Протекание процессов в период тепловой подготовки связано с поглощением теплоты главным образом на подогрев, подсушку топлива и термическое разложение сложных молекулярных соединений.

Собственно горение начинается с воспламенения летучих веществ при температуре 400-600, а выделяющаяся в процессе горения теплота обеспечивает ускоренный прогрев и воспламенение коксового остатка.

Горение кокса начинается при температуре около 1000 и является наиболее длительным процессом.

Это определяется тем, что часть кислорода в зоне у поверхности частицы израсходована на сжигание горючих летучих веществ и оставшаяся концентрация его снизилась, кроме того, гетерогенные реакции всегда уступают по скорости гомогенным для однородных по химической активности веществ.

В итоге общая длительность горения твердой частицы в основном определяется горением коксового остатка (около 2/3 общего времени горения). У молодых топлив, имеющих большой выход летучих веществ, коксовый остаток составляет менее половины начальной массы частицы, поэтому их сжигание (при равных начальных размерах) происходит достаточно быстро и возможность недожога снижается. Старые виды твердых топлив обладают крупным коксовым остатком, близким к начальному размеру частицы, горение которого занимает все время пребывания частицы в топочной камере. Время сгорания частицы с начальным размером 1мм составляет от 1 до 2,5 с в зависимости от вида исходного топлива.

Коксовый остаток большинства твёрдых топлив в основном, а для ряда твердых топлив почти целиком состоит из углерода (от 60 до 97 % органической массы топлива). Учитывая, что углерод обеспечивает основное тепловыделение при сжигании топлива, рассмотрим динамику горения углеродной частицы с поверхности. Кислород подводится из окружающ0щей среды к частице углерода за счет турбулентной диффузии (турбулентного массопереноса), имеющей достаточно высокую интенсивность, однако непосредственно у поверхности частицы сохраняется тонкий газовый слой (пограничный слой), перенос окислителя через который осуществляется по законам молекулярной диффузии.

Этот слой в значительной мере тормозит подвод кислорода к поверхности. В нем происходит догорание горючих газовых компонентов, выделяющихся с поверхности углерода в ходе химической реакции.

Выделяют диффузионную, кинетическую и промежуточную область горения. В промежуточной и особенно в диффузионной области интенсификация горения возможна усилением подвода кислорода, активизацией обдувания потоком окислителя горящих частиц топлива. При больших скоростях потока уменьшаются толщина и сопротивление ламинарного слоя у поверхности и усиливается подвод кислорода. Чем выше эта скорость, тем интенсивнее перемешивание топлива с кислородом и тем при более высокой температуре происходит переход из кинетической в промежуточную зону, а из промежуточной - в диффузионную зону горения.

Аналогичный эффект в части интенсификации горения достигается уменьшением размера частиц пылевидного топлива. Частицы малых размеров имеют более развитый тепломассообмен с окружающей средой. Таким образом, при уменьшении размера частиц пылевидного топлива расширяется область кинетического горения. Повышение температуры приводит к смещению в область диффузионного горения.

Область чисто диффузионного горения пылевидного топлива ограничена преимущественно ядром факела, отличающимся наиболее высокой температурой горения, и зоной догорания, где концентрации реагирующих веществ уже малы и их взаимодействие определяется законами диффузии. Воспламенение любого топлива начинается при относительно низких температурах, в условиях достаточного количества кислорода, т.е. в кинетической области.

В кинетической области горения определяющую роль играет скорость химической реакции, зависящая от таких факторов, как реакционная способность топлива и уровень температуры. Влияние аэродинамических факторов в этой области горения незначительно.


В связи с возрастающей популярностью твердотопливных котлов , огромное количество потенциальных покупателей данного оборудования интересует вопрос какому виду твердого топлива отдать предпочтение как основному, и в зависимости от принятого решения заказывать тот или иной вид отопительного оборудования.

Основным показателем любого топлива, не только твердого, является его теплоотдача, которую обеспечивает горение твердого топлива. При этом теплоотдача твердого топлива напрямую связана с его видом, свойствами и составом.

Немного химии

В состав твердого топлива входят следующие вещества: углерод, водород, кислород и минеральные соединения. При его сжигании топлива, углерод и водород соединяются с кислородом воздуха (сильнейшем природным окислителем) – происходит реакция горения с выделением большого количества тепловой энергии. Далее, газообразные продукты горения удаляются через систему дымоотведения, а твердые продукты горения (зола и шлак) выпадают в виде отходом сквозь колосниковую решетку.

Соответственно, основная задача, стоящая перед конструктором отопительного оборудования работающего на твердом топливе – обеспечить наиболее длительное горение печь твёрдое топливо или котел на твердом топливе. На данный момент времени в этой области достигнут определенный прогресс – в продаже появились твердотопливные котлы длительного горения работающие по принципу верхнего горения и процесса пиролиза .

Теплотворная способность основных видов твердого топлива

  • Дрова. В среднем (в зависимости от породы древесины) и влажности от 2800 до 3300 ккал/кг.
  • Торф – в зависимости от влажности от 3000 до 4000 ккал/кг.
  • Уголь – в зависимости от вида (антрацит, бурый или пламенный) от 4700 до 7200 ккал/кг.
  • Прессованные брикеты и пеллеты – 4500 ккал/кг.

Другими словами процесс горения твердого топлива различных видов сопровождается различным количеством выделяемой тепловой энергии, поэтому к выбору основного вида топлива следует походить очень ответственно – руководствоваться в этом вопросе сведениями, указанными в эксплуатационной документации (паспорте или Инструкции по Эксплуатации) на то или иное твердотопливное оборудование.

Краткая характеристика основных видов твердого топлива

Дрова

Наиболее доступный, поэтому наиболее распространенный в России вид топлива. Как уже было сказано, количество выделяемого тепла в процессе горение зависит от породы древесины и ее влажности. Стоит отметить, что при использовании дров в качестве топлива для пиролизного котла существует ограничение по влажности, которая в этом случае не должна превышать 15-20%.

Торф

Торф – это спрессованные остатки перегнивших растений, залегающие длительное время в толще почвы. По способу добычи различают верховой и низовой торф. А по агрегатному состоянию торф может быть: резной, кусковой и прессованный в виде брикетов. По количеству выделяемой тепловой энергии торф аналогичен дровам.

Уголь

Уголь является самым «калорийным» видом твердого топлива, который требует специальной технологии розжига. В общем случае, чтобы растопить печь или котел на каменном угле требуется вначале разжечь топку дровами и только потом, на хорошо разгоревшиеся дрова загружать каменный уголь (бурый, пламенный или антрацит).

Брикеты и пеллеты

Это новый вид твердого топлива, различающийся размерами отдельных элементов. Брикеты - более крупные, а пеллеты более мелкие. Исходным материалом для изготовления брикетов и пеллет может служить любое «горючее» вещество: древесная стружка, древесная пыль, солома, шелуха орехов, торф, шелуха подсолнечнике, кора, картон и прочие «массовые» горючие вещества, находящиеся в свободном доступе.

Преимущества брикетов и пеллет

  • Экологически чистое восполняемое топливо, имеющее высокую теплотворную способность.
  • Долгое горение, обусловленное высокой плотностью материала.
  • Удобство и компактность хранения.
  • Минимальное количество золы после сгорания – от 1до 3% от объема.
  • Низкая относительная стоимость.
  • Возможность автоматизации процесса работы котла.
  • Подходят для всех видов твердотопливных котлов и отопительных бытовых печей.

В отопительных котлах твердое топливо сжигают в слое в основном на ручных колосниковых решетках с ручным обслуживанием. В последнее время начинают внедрять механические топки типа "шурующая планка". Основными элементами топки для сжигания твердого топлива в отопительных котах с ручным обслуживанием является колосниковая решетка, поддерживающая слой кускового топлива, через который проходит необходимый для горения воздух, и топочное пространство, в котором сгорают горючие летучие вещества. При постоянной тяге количество воздуха, проходящего в топку слой топлива в период между а грузка ми, постоянно повышается следствие прогорания слои и уменьшения его сопротивления. Из поступившего в топку воздуха часть используется на сжигание твердого топлива в слое, часть - на сгорание летучих веществ топочном пространстве и какое-то количество воздуха остается неиспользованным.

Загруженное на горящий слой топливо сначала подсыхает, потом начинается процесс горения, этот период из-за недостатка воздуха может возникнуть неполнота сгорания топлива, которая исчезает по мере потухания процесса коксования порции топлива. К концу периода между загрузками топлива в тонком слое горит главным образом. Обычно этот период горения характеризуется полным сгоранием топлива с большим избытком воздуха.

Таким образом, в первые моменты после загрузки топлива на решетку его сгорание происходит с химической неполнотой, а в конце процесса сгорания - с повышенными избытками воздуха и, следовательно, с увеличенной потерей теплоты с уходящими газами. Поэтому правильно выбранная толщина слоя топлива обеспечивает минимальную сумму потерь теплоты от химической полноты сгорания и с уходящими азами при минимальном избытке воздуха. Эти условия лучше всего можно создать при более частой загрузке топлива мелкими порциями.

Последнее обстоятельство следует подчеркнуть, так как машинисты часто его игнорируют, и в результате происходит загрязнение атмосферы оксидом углерода. Периоды между загрузкой топлива, например антрацита, должны составлять 10-15 мин, для остальных еще меньше. Контроль за правильностью выбранной толщины слоя топлива производят либо с помощью газоанализаторов, по показаниям которых оценивают полноту сгорания и избыток воздуха, либо визуально по цвету пламени при отсутствии приборов. Визуально химическая неполнота сгорания определяется по степени прозрачности дыма, а избыток воздуха - по форме и цвету факела. Полное сжигание твердого топлива при малом избытке воздуха дает прозрачное пламя, соломенно-желтого цвета. При большом избытке воздуха пламя, не изменяя своей прозрачности, становится коротким. При неполном сгорании пламя, оставаясь длинным, краснеет и на нем появляются темные прослойки. Неполное сжигание твердого топлива, имеющего малый выход летучих веществ проявляется в голубых языках горящего оксида углерода, возникающих над слоем топлива.

Сжигание твердого топлива может включать в себя использование углей низкого качества. Но это приводит к резкому снижению КПД котлов и, как следствие, к перерасходу топлива и сооружению дополнительных котельных либо при нормированной поставке топлива к недодаче теплоты потребителям и, кроме того к загрязнению атмосферы не только продуктами неполного сгорания, но и меткими частицами несгоревшего топлива (уносом).

Большая влажность (св. 30 %) при высокой зольности (св. 35 %) ухудшает топочный процесс и снижает экономичность работы котлов. Академией коммунального хозяйства имени К. Д. Памфилова на основании Диализа экспериментальных данных установлено, что для эффективного сжигания каменных углей и антрацитов в чугунных и стальных котлах предельная величина зольности. Опыт эксплуатации котлов показывает, что максимальный размер кусков угля не должен превышать 50 мм.

Бурые угли могут быть использованы в чугунных котлах в виде брикетов, поэтому необходимо ускорить решение комплексной технической проблемы облагораживания их на месте добычи получать полукокс, смолу, газ, брикетировать полукокс с добавлением в качестве вяжущего вещества смолы. Таким образом, для чугунных котлов необходимо: использовать уголь по размеру кусков двух классов:13-25 и 25 - 50 мм: бурые угли заменить каменным углем и антрацитом; при решении проблемы промышленного облагораживания на месте добычи использовать уголь в виде брикетов; использовать угли с влажностью не выше 8 % и содержанием мелочи не более 20 %.

Горение твердого топлива, неподвижно лежащего на колосниковой решетке, при верхней загрузке топлива показана на рис. 6.2.

В верхней части слоя после загрузки находится свежее топливо. Под ним располагается горящий кокс, а непосредственно над решеткой - шлак. Указанные зоны слоя частично перекрывают друг друга. По мере выгорания топливо постепенно проходит все зоны. В первый период после поступления свежего топлива на горящий кокс происходит его тепловая подготовка (прогрев, испарение влаги, выделение летучих), на что затрачивается часть выделяющейся в слое теплоты. На рис. 6.2 показано примерное горение твердого топлива и распределение температуры по высоте слоя топлива. Область наиболее высокой температуры располагается в зоне горения кокса, где выделяется основное количество теплоты.

Образующийся при горении топлива шлак капельками стекает с раскаленных кусочков кокса навстречу воздуху. Постепенно шлак охлаждается и уже в твердом состоянии достигает колосниковой решетки, откуда он удаляется. Шлак, лежащий на решетке, защищает ее от перегрева, подогревает и равномерно распределяет воздух по слою. Воздух, проходящий через решетку и поступающий в слой топлива, называют первичным. Если первичного воздуха для полного горения топлива не хватает и над слоем имеются продукты неполного горения, то дополнительно подают воздух в надслойное пространство. Такой воздух называют вторичным.

При верхней подаче топлива на решетку осуществляются нижнее воспламенение топлива и встречное движение газовоздушного и топливного потоков. При этом обеспечиваются эффективное зажигание топлива и благоприятные гидродинамические условия его горения. Первичные химические реакции между топливом и окислителем происходят в зоне раскаленного кокса. Характер газообразования в слое горящего топлива показан на рис. 6.3.

В начале слоя, в кислородной зоне (К),в которой происходит интенсивное расходование кислорода, одновременно образуется оксид и диоксид углерода СО 2 и СО. К концу кислородной зоны концентрация О 2 снижается до 1- 2 %, а концентрация СО 2 достигает своего максимума. Температура слоя в кислородной зоне резко возрастает, имея максимум там, где устанавливается наибольшая концентрация СО 2 .

В восстановительной зоне (В) кислород практически отсутствует. Диоксид углерода взаимодействует с раскаленным углеродом с образованием оксида углерода:

По высоте восстановительной зоны содержание СО 2 в газе уменьшается, а СО - соответственно увеличивается. Реакция взаимодействия диоксида углерода с углеродом эндотермическая, поэтому температура по высоте восстановительной зоны падает. При наличии в газах водяных паров в восстановительной зоне возможна также эндотермическая реакция разложения Н 2 О.

Соотношение количеств получающихся в начальном участке кислородной зоны СО и СО 2 зависит от температуры и изменяется согласно выражению

где Е со и E СO2 - энергии активации образования соответственно СО и СО 2 ; А - численный коэффициент; R - универсальная газовая постоянная; Т - абсолютная температура.
Температура слоя в свою очередь зависит от концентрации окислителя, а также от степени подогрева воздуха.В восстановительной зоне горение твердого топлива и температурный фактор также имеет решающее влияние на соотношение между СО и СО 2 . С повышением температуры реакции СО 2 +С=Р 2 СО смещается вправо и содержание оксида углерода в газах повышается.
Толщины кислородной и восстановительной зон зависят в основном от типа и размера кусков горящего топлива и температурного режима. С увеличением крупности топлива толщина зон увеличивается. Установлено, что толщина кислородной зоны составляет примерно три-четыре диаметра горящих частиц. Восстановительная зона толще кислородной в 4-6 раз.

Увеличение интенсивности дутья на толщину зон практически не влияет. Это объясняется тем, что скорость химической реакции в слое значительно выше скорости смесеобразования и весь поступающий кислород мгновенно реагирует с первыми же рядами частиц раскаленного топлива. Наличие кислородной и восстановительной зон в слое характерно для горения как углерода, так и натуральных топлив (рис. 6.3). С увеличением реакционной способности топлива, а также при уменьшении его зольности толщина зон сокращается.

Характер газообразования в слое топлива показывает, что в зависимости от организации горения на выходе из слоя могут быть получены или практически инертные или горючие и инертные газы. Если целью является максимальное превращение теплоты топлива в физическую теплоту газов, то процесс следует проводить в тонком слое топлива с избытком окислителя. Если же задачей является получение горючих газов (газификация), то процесс проводят с развитым по высоте слоем при недостатке окислителя.

Сжигание топлива в топке котла соответствует первому случаю. И горение твердого топлива организуют в тонком слое, обеспечивающем максимальное течение окислительных реакций. Так как толщина кислородной зоны зависит от крупности топлива, то чем больше размер кусков, тем более толстым должен быть слой. Так, при сжигании в слое мелочи бурых и каменных углей (крупностью до 20 мм) толщину слоя поддерживают около 50 мм. При тех же углях, но кусками размером более 30 мм толщину слоя увеличивают до 200мм. Необходимая толщина слоя топлива зависит также и от его влажности. Чем больше влажность топлива, тем больше должен быть запас горящей массы в слое, чтобы обеспечить устойчивое воспламенение и горение свежей порции топлива.

Процесс горения твёрдого топлива можно представить в виде ряда последовательно протекающих стадий. Вначале происходит прогрев топлива и испарение влаги. Затем при температуре выше 100 °С начинаются пирогенное разложение сложных высокомолекулярных органических соединений и выделение летучих веществ, при этом температура начала выхода летучих зависит от вида топлива и степени его углефикации (химического возраста). Если температура окружающей среды превышает температуру воспламенения летучих веществ, они загораются, тем самым обеспечивая дополнительный прогрев коксовой частицы до её воспламенения. Чем выше выход летучих, тем ниже температура их воспламенения, при этом тепловыделение увеличивается.

Коксовая частица прогревается за счёт тепла окружающих дымовых газов и тепловыделения в результате сгорания летучих и загорается при температуре 800÷1000 °С. При сжигании твёрдого топлива в пылевидном состоянии обе стадии (горение летучих и кокса) могут накладываться друг на друга, поскольку прогрев мельчайшей угольной частицы происходит очень быстро. В реальных условиях мы имеем дело с полидисперсным составом угольной пыли, поэтому в каждый момент времени одни частицы только начинают прогреваться, другие находятся на стадии выхода летучих, а третьи – на стадии горения коксового остатка.

Процесс горения коксовой частицы играет решающую роль при оценке как суммарного времени горения топлива, так и суммарного тепловыделения. Даже для топлива с высоким выходом летучих (например, подмосковного бурого угля) коксовый остаток составляет 55 % по массе, а его тепловыделение – 66 % общего. А для топлива с очень низким выходом летучих (например, АШ) коксовый остаток может составлять более 96 % веса сухой исходной частицы, а тепловыделение при его сгорании, соответственно, около 95 % полного.

Исследования горения коксового остатка выявили сложность этого процесса.

При горении углерода возможны две первичные реакции прямого гетерогенного окисления:

С + О 2 = СО 2 + 34 МДж/кг; (14)

2С + О 2 = 2СО + 10,2 МДж/кг. (15)

В результате образования СО 2 и СО могут протекать две вторичные реакции:

окисление оксида углерода 2СО + О 2 = 2СО 2 + 12,7 МДж/кг; (16)

восстановление диоксида углерода СО 2 + С = 2СО – 7,25 МДж/кг. (17)

Кроме того, в присутствии водяных паров на раскалённой поверхности частицы, т.е. в высокотемпературной области, происходит газификация с выделением водорода:

С + Н 2 О = СО + Н 2 . (18)

Гетерогенные реакции (14, 15, 17 и 18) свидетельствуют о непосредственном горении углерода, сопровождающемся убылью углеродной частицы в весе. Гомогенная реакция (16) протекает около поверхности частицы за счёт кислорода, диффундирующего из окружающего объёма, и компенсирует снижение температурного уровня процесса, возникающее как следствие эндотермической реакции (17).

Соотношение между СО и СО 2 у поверхности частицы зависит от температуры газов в этой области. Так, например, согласно экспериментальным исследованиям, при температуре 1200 °С протекает реакция

4С + 3О 2 = 2СО + 2СО 2 (Е = 84 ÷ 125 кДж/г-моль),

а при температуре выше 1500 °С

3С + 2О 2 = 2СО + СО 2 (Е = 290 ÷ 375 кДж/г-моль).

Очевидно, что в первом случае СО и СО 2 выделяются примерно в равных количествах, тогда как при повышении температуры объём выделившегося СО в 2 раза превышает СО 2 .

Как уже было отмечено, скорость горения в основном зависит от двух факторов:

1) скорости химической реакции , которая определяется законом Аррениуса и стремительно растёт с увеличением температуры;

2) скорости подвода окислителя (кислорода) к зоне горения за счёт диффузии (молекулярной или турбулентной).

В начальный период процесса горения, когда температура ещё недостаточно высока, скорость химической реакции также невысока, а в окружающем частицу топлива объёме и у её поверхности окислителя более чем достаточно, т.е. наблюдается местный избыток воздуха. Никакое совершенствование аэродинамики топки или горелки, приводящее к интенсификации подвода кислорода к горящей частице, не повлияет на процесс горения, который тормозится только низкой скоростью химической реакции, т.е. кинетикой. Это – область кинетического горения .

По мере протекания процесса горения выделяется теплота, увеличивается температура, а, следовательно, и скорость химической реакции, что приводит к стремительному росту потребления кислорода. Концентрация его у поверхности частицы неуклонно падает, и в дальнейшем скорость горения будет определяться лишь скоростью диффузии кислорода в зону горения, которая почти не зависит от температуры. Это – область диффузионного горения .

В переходной области горения скорости химической реакции и диффузии являются величинами одного порядка.

По закону молекулярной диффузии (закон Фика), скорость диффузионного переноса кислорода из объёма к поверхности частицы

где – коэффициент диффузионного массообмена;

и – соответственно, парциальные давления кислорода в объёме и у поверхности.

Потребление кислорода у поверхности частицы определяется скоростью химической реакции:

, (20)

где k – константа скорости реакции.

В переходной зоне в установившемся состоянии

,

откуда
(21)

Подставив (21) в (20), получим выражение для скорости горения в переходной области по расходу окислителя (кислорода):

(22)

где
– эффективная константа скорости реакции горения.

В зоне сравнительно низких температур (кинетическая область)
, следовательно, k эф = k , и выражение (22) принимает вид:

,

т.е. концентрации кислорода (парциальные давления) в объёме и у поверхности частицы мало отличаются друг от друга, а скорость горения практически полностью определяется химической реакцией.

С повышением температуры константа скорости химической реакции растёт согласно экспоненциальному закону Аррениуса (см. рис.22), в то время как молекулярный (диффузионный) массообмен слабо зависит от температуры, а именно

.

При некотором значении температуры Т * скорость потребления кислорода начинает превышать интенсивность его подвода из окружающего объёма, коэффициенты α Д и k становятся соизмеримыми величинами одного порядка, концентрация кислорода у поверхности начинает заметно снижаться, а кривая скорости горения отклоняется от теоретической кривой кинетического горения (закона Аррениуса), но ещё заметно возрастает. На кривой появляется перегиб – процесс переходит в промежуточную (переходную) область горения. Сравнительно интенсивный подвод окислителя объясняется тем, что за счёт снижения концентрации кислорода у поверхности частицы увеличивается разность парциальных давлений кислорода в объёме и у поверхности.

В процессе интенсификации горения концентрация кислорода у поверхности практически становится равной нулю, подвод кислорода к поверхности слабо зависит от температуры и становится практически постоянным, т.е. α Д << k , и, соответственно, процесс переходит в диффузионную область

.

В диффузионной области увеличение скорости горения достигается интенсификацией процесса перемешивания топлива с воздухом (усовершенствование горелочных устройств) или увеличением скорости обдувания частицы потоком воздуха (усовершенствование аэродинамики топки), в результате чего уменьшается толщина пограничного слоя у поверхности, и интенсифицируется подвод кислорода к частице.

Как уже отмечалось, твёрдое топливо сжигается либо в виде крупных (без специальной подготовки) кусков (слоевое сжигание), либо в виде дроблёнки (кипящий слой и низкотемпературный вихрь), либо в виде мельчайшей пыли (факельный способ).

Очевидно, что наибольшая относительная скорость обдувания частиц топлива будет при слоевом сжигании. При вихревом и факельном способах сжигания частицы топлива находятся в потоке дымовых газов, и относительная скорость их обдувания значительно ниже, чем в условиях стационарного слоя. Исходя из этого, казалось бы, переход из кинетической области в диффузионную раньше всего должен происходить для мелких частиц, т.е. для пыли. К тому же ряд исследований показал, что взвешенная в потоке газовоздушной смеси угольная пылинка так слабо обдувается, что выделяющиеся продукты сгорания образуют вокруг неё облако, сильно тормозящее подвод к ней кислорода. А интенсификация гетерогенного горения пыли при факельном способе предположительно объяснялась исключительно значительным увеличением суммарной реагирующей поверхности. Однако очевидное далеко не всегда является истинным .

Подвод кислорода к поверхности определяется законами диффузии. Исследования по теплообмену малой сферической частицы, обтекаемой ламинарным потоком, выявили обобщённую критериальную зависимость:

Nu = 2 + 0,33Re 0,5 .

Для малых коксовых частиц (при Re < 1, что соответствует скорости витания мелких частиц), Nu → 2, т.е.

.

Между процессами тепло- и массопереноса существует аналогия, поскольку и те, и другие определяются движением молекул. Поэтому законы теплообмена (законы Фурье и Ньютона-Рихмана) и массообмена (закон Фика) имеют схожее математическое выражение. Формальная аналогия этих законов позволяет применительно к диффузионным процессам записать:

,

откуда
, (23)

где D – коэффициент молекулярной диффузии (подобен коэффициенту теплопроводности λ в тепловых процессах).

Как следует из формулы (23), коэффициент диффузионного массообмена α Д обратно пропорционален радиусу частицы. Следовательно, с уменьшением размера частиц топлива процесс диффузии кислорода к поверхности частицы интенсифицируется. Таким образом, при сгорании угольной пыли переход к диффузионному горению сдвигается в сторону более высоких температур (несмотря на отмеченное ранее снижение скорости обдувания частиц).

Согласно многочисленным экспериментальным исследованиям, проведённым советскими учёными в середине ХХ в. (Г.Ф.Кнорре, Л.Н. Хитрин, А.С.Предводителев, В.В.Померанцев и др.), в зоне обычных топочных температур (около 1500÷1600 °С) горение коксовой частицы смещается из промежуточной зоны в диффузионную, где большое значение имеет интенсификация подвода кислорода. При этом с увеличением диффузии кислорода к поверхности торможение скорости горения начнётся при более высокой температуре.

Время сгорания сферической углеродной частицы в диффузионной области имеет квадратичную зависимость от начального размера частицы:

,

где r o – начальный размер частиц; ρ ч – плотность углеродной частицы; D o , P o , T o – соответственно, начальные значения коэффициента диффузии, давления и температуры;
– начальная концентрация кислорода в топочном объёме на значительном расстоянии от частицы;β – стехиометрический коэффициент, устанавливающий соответствие весового расхода кислорода на единицу веса сжигаемого углерода при стехиометрических соотношениях; Т m – логарифмическая температура:

где Т п и Т г – соответственно, температуры поверхности частицы и окружающих дымовых газов.