Процесс плазменной резки металла. Ручная плазменная резка: аппараты, оборудование, видео

Резка металлов необходима во множестве технологических процессов. Почти всегда механическая обработка начинается с раскраивания и резки материала. Одним из наиболее удобных и экономичных способов является плазменная резка металла. Она позволяет получать заготовки любой формы, которые почти не требуют последующей обработки.

Принцип работы

Для плазменной резки металла применяется воздействие струёй плазмы на заготовку. Плазма - это поток ионизированного газа, разогретого до температуры в тысячи градусов, который обладает электропроводностью и движется с большой скоростью. Формирование плазменной дуги из электрической производится аппаратом плазморез. Принцип работы плазмореза и этапы технологического процесса резки:

  • Формируется дежурная электрическая дуга, которая зажигается между электродом плазмореза и его соплом или обрабатываемым металлом.
  • После формирования дежурной дуги в камеру подаётся сжатый газ. Он расширяется в объёме и разогревается до температуры 20000 °C.
  • Электрическая дуга ионизирует газ, он становится проводником электричества и превращается в струю плазмы. Эта струя разогревает металл в зоне обработки, расплавляет его и производит резку.

Для металлов и неметаллических материалов применяются разные принципы газоплазменной резки. Имеются два способа обработки материалов:

  • Дуга горит между плазмотроном и изделием. Так работает резак прямого действия. Изделие при этом должно быть токопроводящим. Если требуется разрезать неметаллические изделия, применяется косвенный метод.
  • Дуга зажигается в самом плазмотроне между электродом и соплом. Электрод является катодом, а на сопло подаётся положительный потенциал.

Во втором случае обработке могут подвергаться любые материалы: пластмассы, камень, бетон. Потенциал к детали не подводится и электропроводность не требуется.

Оборудование для резки плазмой

Для резки металла плазмой выпускаются аппараты промышленного и бытового назначения. Все агрегаты для резки плазмой имеют в своём составе:

  • источник питания;
  • плазмотрон;
  • компрессор для нагнетания сжатого газа;
  • кабели и шланги, служащие для соединения элементов оборудования.

Источник питания может представлять собой инвертор или трансформатор. Инверторные агрегаты лёгкие, экономичные, обладают высоким коэффициентом полезного действия. Их часто применяют в небольших производствах. Имеют ограничение по силе тока - 70 А, способны резать материал только небольшой толщины до 30 мм.

Трансформаторные устройства более мощные, имеют больший вес и размеры. Они более устойчивы к перепадам напряжений, способны к долгой непрерывной работе и часто используются в станках с ЧПУ. Оборудование с системой водяного охлаждения способно резать металл толщиной до 100 мм. Источники питания для резки с применением кислорода имеют силу тока в диапазоне 100-400 А. При использовании азота, как плазмообразующего газа, этот диапазон увеличивается до 600 А.

Плазмотрон - это основной узел всех установок. В его состав входит:

  • внутренний электрод;
  • рабочее сопло;
  • изолирующий корпус с охлаждением;
  • устройство подачи плазмообразующего вещества.

В зависимости от условий обработки применяют разные газы для плазменной резки. Для сталей и сплавов применяют кислород и воздух. Воздушно-плазменная резка используется для обработки низколегированных сталей. При обработке цветных металлов плазмообразующими газами могут быть аргон, азот, водород. Это обусловлено тем, что в среде кислорода цветные металлы начинают окисляться. Смесь аргона с водородом чаще используется для резки нержавеющей стали и алюминия.

Температура потока газа находится в пределах 5000-30000 °C. При нижних значениях температур обрабатываются цветные металлы, при верхних - тугоплавкие стали.

Скорость потока находится в пределах 500-1500 м/с. Настройка производится в зависимости от толщины, характеристик обрабатываемого материала и длительности работы.

Обработка в ручном режиме

Перед началом работы инвертор или трансформатор подключают к сети переменного тока. Обрабатываемую деталь подсоединяют к источнику питания. Следующий этап - сближение сопла и заготовки. Между ними должно оставаться 40 мм. После этого можно зажигать дежурную дугу. Когда дуга загорается, в сопло подаётся воздушный поток, который ионизируется и формирует струю плазмы.

При работах с плазморезом необходимо соблюдать правила техники безопасности. Нужно использовать специальный костюм и защитный лицевой щиток. Температуры при плазморезке достигают тысяч градусов, и для человека это может быть опасно. Поэтому надо стремиться автоматизировать процесс.

Достоинства и недостатки плазменной обработки

Работа агрегатов плазморезки часто внедряется в различные технологические процессы, связанные с раскроем и резкой металлических и неметаллических материалов. Это обусловлено наличием следующих преимуществ технологии раскроя с помощью плазменной дуги:

Но у метода плазменного раскроя есть и недостатки. К ним относятся:

Несмотря на эти недостатки, плазмотроны находят себе всё большее применение и на крупных предприятиях, и в маленьких домашних мастерских. Использование плазменной резки ускоряет обработку легированных сталей, а точность линии реза и способность вырезать криволинейные фигуры делают плазморезы незаменимыми во многих производственных процессах.

Плазменную резку очень часто используют в таких отраслях промышленности, как судостроение, машиностроение, а также при изготовлении металлоконструкций, коммунальной сфере и т. п. Кроме этого, плазморез довольно часто используется в частной мастерской. С его помощью быстро и качественно разрезают любой материал, проводящий ток, и некоторые нетокопроводящие материалы – дерево, камень и пластик.

Технология плазменной резки позволяет разрезать листовой металл и трубы, выполнять фигурный рез или изготавливать детали. Работа осуществляется при помощи высокотемпературной плазменной дуги . Чтобы ее создать, потребуется только источник тока, воздух и резак. Чтобы работа выполнялась довольно легко, а рез получался ровным и красивым, следует выяснить, как осуществляется принцип работы плазменной резки.

Как устроен плазморез

Этот аппарат состоит из следующих элементов:

  • источник питания;
  • воздушный компрессор;
  • плазменный резак или плазмотрон;
  • кабель-шланговый пакет.

Источник питания для аппарата плазменной резки осуществляет подачу на плазмотрон определенной силы тока. Представляет собой инвертор или трансформатор.

Инверторы довольно легкие, в плане энергопотребления экономные, по цене недорогие, однако, способны разрезать заготовки небольшой толщины. Из-за этого их применяют только в частных мастерских и на маленьких производствах . У инверторных плазморезов КПД на 30% больше, чем у трансформаторных и у них лучше горит дуга. Часто используют их для работ в труднодоступных местах.

Трансформаторы гораздо увесистее, тратят много энергии, но при этом имеют меньшую чувствительность к перепадам напряжения, и с их помощью разрезают заготовки большой толщины.

Плазменный резак считается главным элементом плазмореза. Его основными элементами являются:

  • сопло;
  • охладитель/изолятор;
  • канал, необходимый для подачи сжатого воздуха;

Компрессор требуется для подачи воздуха. Принцип работы плазменной резки предусматривает применение защитных и плазмообразующих газов. Для аппаратов, которые рассчитаны на силу тока до 200 А , применяется только сжатый воздух как для охлаждения, так и для создания плазмы. Они способны разрезать заготовки толщиной в 50 мм.

Кабель-шланговый пакет используется для соединения компрессора, источника питания и плазмотрона. По электрическому кабелю от инвертора или трансформатора начинает поступать ток для возбуждения электрической дуги, а по шлангу осуществляется подача сжатого воздуха, который требуется для возникновения внутри плазмотрона плазмы.

Принцип работы

При нажатии на кнопку розжига начинается подача тока высокой частоты от источника питания (инвертора или трансформатора). В результате этого внутри плазмотрона образуется дежурная электрическая дуга, температура которой достигает 8 тыс. градусов. Столб этой дуги начинает заполнять весь канал.

После того как возникла дежурная дуга, в камеру начинает поступать сжатый воздух. Вырываясь из патрубка, он проходит через электрическую дугу , нагревается, при этом увеличиваясь в объеме в 50 или 100 раз. Кроме того, воздух начинает ионизироваться и перестает быть диэлектриком, приобретая свойства проводить ток.

Сопло плазмотрона, суженное книзу, обжимает воздух, создавая из него поток, которое начинает вырываться оттуда со скоростью 2 – 3 м/с. В этом момент температура воздуха часто достигает 30 тыс. градусов. Именно такой раскаленный ионизированный воздух и является плазмой.

В то время, когда плазма начинает вырываться из сопла, происходит ее соприкосновение с поверхностью обрабатываемого металла, дежурная дуга в этот момент гаснет, а зажигается режущая. Она начинает разогревать заготовку в месте реза . Металл в результате этого плавится и появляется рез. На поверхности разрезаемого металла образуются небольшие частички расплавленного металла, сдуваемые с нее потоком воздуха. Таким образом осуществляется работа плазмотрона.

Преимущества плазменной резки

Работы по резке металла часто осуществляются на стройплощадке, в мастерской или цеху. Можно использовать для этого автоген, но не всех это устраивает. Если объем работ, связанный с резкой металла, слишком большой, а требования, предъявляемые к качеству реза, очень высоки, то следует подумать о том, чтобы использовать плазменный резак, имеющим следующие достоинства:

Недостатки плазменной резки

Недостатки в работе плазменной резки тоже имеются. Первый из них – максимально допустимая толщина реза довольно небольшая, и у самых мощных агрегатов она редко бывает больше 80 – 100 мм.

Следующий недостаток – достаточно жесткие требования, предъявляемые к отклонению от перпендикулярности реза. Угол отклонения не должен быть больше 10 – 50 градусов и зависит это от толщины детали. Если случается выход за эти пределы, то возникает довольно существенное расширение реза, что в результате влечет за собой быстрый износ расходных материалов.

Кроме того, рабочее оборудование довольно сложное, что делает совершенно невозможным использование двух резаков одновременно, которые подключаются к одному аппарату.

Заключение

Принцип работы плазменной резки довольно прост. Кроме того, аппарат, который используется для этого, имеет большое количество преимуществ, в несколько раз превосходящие имеющиеся недостатки. Если его правильно эксплуатировать, то можно существенно сэкономить время и получить качественный результат.

Источником электропитания может быть:

  • трансформатор . Достоинством его является то, что он практически не чувствителен к перепадам напряжения электросети и позволяет резать заготовки большой толщины, а недостатком – значительный вес и низкий КПД;
  • инвертор . Единственным его недостатком является то, что он не позволяет резать заготовки большой толщины. Достоинств много:
    • при питании от него стабильно горит дуга;
    • КПД на 30 % выше, чем у трансформатора;
    • дешевле, экономичнее и легче трансформатора;
    • его удобно использовать в труднодоступных местах.

Плазмотрон

Плазмотрон – это плазменный резак, с помощью которого разрезается заготовка. Он является основным узлом плазмореза.

Конструкция плазмотрона состоит из следующих составляющих:

  • охладитель;
  • колпачок.

Компрессор

Компрессор в плазморезе требуется для подачи воздуха. Он должен обеспечивать тангенциальную (или вихревую) подачу сжатого воздуха, которая обеспечит расположение катодного пятна плазменной дуги строго по центру электрода. Если этого не будет обеспечено, то возможны неприятные последствия:

  • плазменная дуга будет гореть нестабильно;
  • могут образоваться одновременно две дуги;
  • плазмотрон может выйти из строя.

Принцип работы

Принцип действия плазмотрона заключается в следующем. Создаётся поток высокотемпературного ионизированного воздуха, электропроводность которого равна электропроводности разрезаемой заготовки (т.е. воздух перестаёт быть изолятором и становится проводником электрического тока).

Образуется электрическая дуга, которая локально разогревает обрабатываемую заготовку: металл плавится и появляется рез. Температура плазмы в этот момент достигает 25000 – 30000 °С. Появляющиеся на поверхности разрезаемой заготовки частички расплавленного металла будут сдуваться с нее потоком воздуха из сопла.

Технология

Технология плазменной резки металла вкратце может быть описана следующим образом. Плазменной обработке поддаются все виды металлов толщиой до 220 мм.

Эффект появляется после воспламенения плазмообразующего газа при образовании искры в контуре электрической дуги (между наконечником форсунки и неплавящимся электродом. От искры загорается поток газа, здесь же он ионизируется, превращаясь в управляемую плазму (с крайне высокой, 800 и даже 1500 м/с скоростью выхода).

В выходном отверстии, от сужения, происходит ускорение потока плазмообразующего носителя. Высокоскоростная плазменная струя позволяет получить температуру на выходе около 20 0000с. Узконаправленная струя в тысячи градусов буквально проплавляет материал в точечной области воздействия, нагрев вокруг места обработки незначительный.

Плазменно-дуговой способ используется с замыканием обрабатываемой поверхности в проводящий контур. Другой вид резки (плазменной струей) — работает при наличии стороннего (косвенного) образования высокотемпературного компонента в рабочей схеме плазмотрона. Нарезаемый металл не включен в проводящий контур

Резка плазменной струей

Раскрой заготовок плазменной струей применяется для обработки материалов, не проводящих электрический ток. При резке этим методом дуга горит между формирующим наконечником плазмотрона и электродом, а сам разрезаемый объект в электрической цепи не участвует. Для разрезания заготовки используется струя плазмы.

Плазменно-дуговая резка

Подвергаются токопроводящие материалы. При выполнении резки этим методом дуга горит между разрезаемой заготовкой и электродом, её столб совмещен со струей плазмы. Последняя образуется за счет поступления газа, его нагрева и ионизации. Газ, продуваемый через сопло, обжимает дугу, придает ей проникающие свойства и обеспечивает интенсивное плазмообразование. Высокая температура газа создает высочайшую скорость истечения и увеличивает активное воздействие плазмы на плавящийся металл. Газ выдувает из зоны реза капли металла. Для активизации процесса используется дуга постоянного тока прямой полярности.

Плазменно-дуговая резка применяется при:

  • производстве деталей с прямолинейными и фигурными контурами;
  • вырезании отверстий или проемов в металле;
  • изготовлении заготовок для сварки, штамповки и механической обработки;
  • обработке кромок поковок;
  • резке труб, полос, прутков и профилей;
  • обработке литья.

Виды плазменной резки

В зависимости от среды, существуют три вида плазменной резки:

  • простой. Этот метод подразумевает использование только воздуха (или азота) и электрического тока;
  • с защитным газом. Применяются два вида газа: плазмообразующий и защитный, который сохраняет зону реза от влияний окружающей среды. В результате повышается качество реза;
  • с водой. В этом случае вода выполняет функцию, аналогичную защитному газу. Кроме того, она охлаждает компоненты плазмотрона и поглощает вредные выделения.

Основанная на указанных принципах плазменная резка обеспечивает не только высокопроизводительное производство, но и совершенно пожаробезопасное: применяемые в технологии материалы не огнеопасны.

Видео

Посмотрите ролики, где наглядно объясняется, как происходит плазменная резка:

Принцип работы воздушно-плазменной резки металла

Воздушно-плазменная резка: на чем основан принцип осуществления. Плазма, производящая резку, является разогретым газом с высоким значением электропроводности . Его еще называют ионизованным. Генерируется плазма специальным дуговым элементом. Принято называть этот способ резки плазменным.

Обычная дуга сжимается плазмотроном. Ионизованный газ вдувается в нее, с помощью чего она может генерировать горячий воздух. Она способна производить обработку, при помощи повышенной температуры.Металл разрезается, плавясь при этом.

Осуществление обработки металла происходит благодаря, как плазменной дуге, так и струе. В первом варианте на металлическое изделие оказывается прямое воздействие, во втором — косвенное. Наиболее распространенным и действенным является метод резки с помощью действия напрямую. Для материала, который не обладает электропроводностью (как правило это неметаллические изделия) применяют способ непрямого влияния. При любом из вариантов разрезаемый материал не теряет агрегатного состояния и его конструкция слабо подвергается деформации.

Принцип работы плазменного резака

Плазмотрон – это техническое устройство, которое образует электрический разряд между электродом (катодом) и поверхностью обрабатываемого изделия (анодом), это происходит в потоке газа который образует плазму.

Принцип работы устройства: для охлаждения применяется вода или газ, для получения плазмы используется плазмообразующий газ. Поток входящего в камеру газа подвергается нагреванию до высоких температур после чего ионизируется, тем самым приобретает свойства плазмы. Плазмообразующий газ и охлаждающий подаются в различные каналы плазматрона . При подаче питания между катодом и соплом образуется так называемый вспомогательный разряд, визуально её можно видеть как небольшой факел.

Основная (рабочая дуга) образуется при касании второстепенного разряда обрабатываемой поверхности, которая в данном случае выполняет роль анода (плюс). Стабилизация разряда может осуществляться магнитным полем, водой либо газом, зачастую стабилизирующий газ является и плазмообразующим. После этого можно проводить резку материала, нанесение покрытий, сварку, наплавку или даже добычу полезных ископаемых, путём разрушения горных пород.

Условно конструкцию плазмотрона можно представить как несколько основных элементов:

  1. изолятор;
  2. электрод;
  3. сопло;
  4. механизм для подвода плазмообразующего газа;
  5. дуговая камера.

Конструкция и принцип работы плазмотрона с совмещенным соплом и каналом

Особенностью плазмотрона, использующего воздушно-плазменную резку является совмещение канала и сопла. Воздух проходит через канал сопла наружу. Принцип работы схож, при подаче электропитания промеж катодом и соплом образуется вспомогательный разряд. Воздух закрученный по спирали, стабилизирует и сжимает столб рабочего разряда. Он же предотвращает соприкосновение электрической дуги стенок соплового канала.

Типы плазмотронов

Плазмотроны можно условно разделить на три глобальных типа

  1. электродуговые;
  2. высокочастотные;
  3. комбинированные.

Устройства работающие на основе электрической дуги оснащены одним катодом, который подключен к источнику питания постоянного тока. Для охлаждения применяют воду, которая находится в охладительных каналах.

Можно выделить следующие виды электродуговых аппаратов

  • с прямой дугой;
  • косвенной дугой (плазмотроны косвенного действия);
  • с использованием электролитического электрода;
  • вращающимися электродами;
  • вращающейся дугой.

Автомат: принцип работы

Станок плазменной автоматической резки имеет:

  1. пульт управления,
  2. плазмотрон
  3. рабочий стол для заготовок.

Автомат для резки (Китай)
Источник фото: ru.made-in-china.com

На пульте управления происходит корректировка предварительно установленных программ, если резка отклоняется от установленных параметров. Для оперативного исправления в процессе работы и выбора оптимальных режимов резания.

Через установленный на рабочем столе лист, пропускается электрический ток. Между поверхностью листа и плазмотроном пробегает первичная электродуга. В которой сжатый воздух, разогревается до состояния плазмы. Первичная дуга скрывается в раскаленной ионизированной струе, которая и режет металла.

Резка начинается с середины или с края. Чем чаще происходит прерывание дуги и зажигание новой искры, тем меньше становится ресурс сопла и катода. Грамотный оператор автоматической резки выбирает режимы резания по таблице и отталкиваясь от конкретных условий (толщина металла, диаметр сопла). Благодаря чему можно добиться значительного сокращения расходов. По окончанию операции, автомат самостоятельно оповестит оператора, выключит и отведет плазмотрон от материала.

Какие газы используются, их особенности

Плазменная резка металла представляет собой процесс проплавления и удаления расплава за счет теплоты, получаемой от плазменной дуги. Скорость и качество резки определяются плазмообразующей средой. Также, плазмообразующая среда влияет на глубину газонасыщенного слоя и характер физико-химических процессов на кромках среза. При обработке алюминия, меди и сплавов, изготовленных на их основе, используются следующие плазмообразующие газы:

  • Сжатый воздух;
  • Кислород;
  • Азотно-кислородная смесь;
  • Азот;
  • Аргоно-водородная смесь.

ВАЖНО ! Для некоторых марок металла недопустимо применение определенных плазмообразующих смесей (к примеру, для резки титана нельзя использовать смеси, содержащие в составе азот или водород).

Все газы, используемые при выполнении плазменной обработки, условно делятся на защитные и плазмообразующие .

В целях бытового назначения (толщина до 50 мм, сила тока дуги – менее 200 А) применяется сжатый воздух, который может использоваться как защитный, так и плазмообразующий газ, а в более сложных условиях промышленного назначения применяются другие газовые смеси, которые содержат кислород, азот, аргон, гелий или водород.

Достоинства и недостатки плазменной резки

Обработка металлов аппаратами или станками плазменной резки дает в работе целый ряд преимуществ .

  1. По сравнению с кислородной горелкой, плазморез обладает более высокой мощностью , и соответственно, производительностью , и по данному параметру уступает только лазерным установкам промышленного масштаба.
  2. Плазменная резка выгодна с экономической точки зрения при толщине металла до 60 мм. Для резки материалов с толщиной более 60 мм рекомендуется использовать кислородную резку.
  3. Современные плазморезы отличаются высокоточной и качественной обработкой металлов. Срез получается «чистый», с минимальной шириной, благодаря чему, практически не требует дополнительной шлифовки.
  4. Также, плазменно-дуговая обработка характеризуется универсальностью применения, безопасностью и низким уровнем загрязнения окружающей среды.

Из недостатков можно отметить скромную толщину среза (до 100 мм), а также невозможность одновременной работы двух плазморезов и соблюдение жестких требований к отклонениям от перпендикулярности среза.

Возможности плазменной резки

Сфера применения плазменной резки очень разнообразна, благодаря своей универсальности и диапазону обрабатываемых металлов и металлических сплавов. Автоматизированная и ручная плазменная резка материалов широко применяется на предприятиях и во многих отраслях промышленности для выполнения обработки:

Оставить свой отзыв

На сегодняшний день трудно представить тяжелую промышленность без использования сварки и резки металла. На большинстве промышленных предприятий, занимающихся обработкой металлических изделий, используется особый способ резки — плазменный.

Плазменная резка — это процесс обработки материалов, при котором режущим элементом является струя плазмы.

Немногие знают, как осуществляется плазменная резка металла своими руками и каковы основные этапы данного процесса. Чаще всего толщина обрабатываемых изделий составляет менее 20 см. Именно для резки металла такой толщины и применяются плазменные аппараты.

Характеристика резки изделий с помощью плазмы

Те, кто для разделения металла применяет кислородный резак, знают, что плазменная резка во многом отличается от этого метода. Здесь вместо режущего газа используется струя плазмы. Как и при обычной сварке, при плазменной резке используется электрическая дуга. Она зажигается непосредственно между поверхностью предмета и электродом. Подаваемый газ при этом становится плазмой. Интересен тот факт, что температура последней может достигать нескольких десятков тысяч градусов (от 5 до 30 тысяч). При этом скорость струи нередко достигает 1500 м/с. Плазменная резка металла подходит для изделий толщиной до 20 см. Что же касается подаваемого в сопло газа, то он бывает нескольких типов: активный и неактивный.

К первой категории относится кислород и воздушная смесь, ко второй — азот, водород, а также некоторые инертные газы, например, аргон. Выбор того или иного газа зависит от металла. Если это черный металл, то рекомендуется применять активные газы. Неактивные подходят больше для цветных металлов (алюминия, меди) и их сплавов. Ручная плазменная резка бывает поверхностной и разделительной. Последняя используется гораздо чаще. Нужно знать, что подобный способ резки металла является наиболее автоматизированным. Плазменная резка включает в себя использование специальных автоматических (программируемых) станков.

Вернуться к оглавлению

Положительные и отрицательные стороны

Плазменная резка имеет свои положительные и негативные стороны. К преимуществам, во-первых, относится возможность использования оборудования для резки любого металла. Достигается это благодаря повышенной температуре в рабочей зоне. Во-вторых, немаловажным аспектом является высокая скорость работы. Это обеспечивает наилучшую продуктивность. В-третьих, плазменная резка отлично подходит для вырезания изделий различной геометрической формы. Простым газовым методом этого добиться невозможно. В-четвертых, большое значение имеет то, что подобная резка металла является точной и быстрой. Здесь в значительной степени снижается вероятность получения некачественных изделий, так как работа автоматизирована.

В-пятых, всем известно, что простая кислородная резка может представлять опасность для человека и окружающих. Плазменная резка наименее опасна. В-шестых, подобная работа может проводиться как на открытом воздухе, так и под водой. Важно и то, что затраты на 1 м материала намного меньше, в силу всего этого плазменная резка все чаще применяется на крупных промышленных объектах. Что же касается отрицательных сторон этого процесса, то оборудование является довольно дорогим, поэтому такая методика редко используется в домашних условиях.

Вернуться к оглавлению

Какой аппарат выбрать

Плазменная резка металла начинается с подготовки оборудования. Для этого потребуется выбрать качественный аппарат. Выделяют 2 типа оборудования: инверторное и трансформаторное. Инверторы знакомы многим, так как с их помощью осуществляется сварочное дело. Они пришли на смену трансформаторам. Инверторные агрегаты имеют небольшие габариты, они компактны, эстетичны и потребляют меньше энергии. При приобретении оборудования нужно обращать внимание на такие характеристики, как длительность работы в активном режиме и мощность. Недостаток такого агрегата в том, что он довольно чувствителен к скачкам напряжения в сети.

Оборудование для резки по типу трансформаторов наиболее надежное и долговечное. Особенностью трансформаторов является то, что при высокой мощности их можно применять для автоматизированной резки. Ручной метод тоже применяется. Если резку металла предполагается проводить в частной мастерской или на промышленных объектах, то целесообразнее приобретать аппарат трансформаторного типа. Он также широко распространен при изготовлении автомобилей. Нужно помнить, что любая плазменная резка — дорогое удовольствие.

Аппарат будет стоить недешево. Важным критерием при выборе оборудования является максимальная толщина резки. Для цветных металлов (меди) она всегда меньше. Если в техническом паспорте указана максимальная толщина 10 мм, то данный показатель относится к нецветным металлам.

Вернуться к оглавлению

Особенности ручной дуговой плазменной резки

Для резки изделий из металла нередко используется ручной метод. Особенность его в том, что не требуется высокой квалификации, чтобы разрезать изделие. Работу может выполнить любой человек, зная все основные этапы процесса. Приобретя плазменный резак, можно разрезать не только металл, но и плитку, древесину и другие материалы. Плазменная резка ручным способом начинается с осмотра оборудования, сопла, электродов. Сопло и электроды должны быть надежно закреплены. Чтобы сэкономить материалы, целесообразно зажигать дугу как можно реже. Чтобы аппарат начал работать, в него требуется подать сжатый воздух.

С этой целью можно использовать баллоны, которые заполнены воздухом, компрессор или подключить оборудование к центральному трубопроводу (если резка проводится в промышленных условиях). Наиболее надежные аппараты оснащены специальным регулирующим устройством, с помощью которого поступающий воздух распределяется в аппарате.

Следующий этап — настройка оборудования. Для этого требуется правильно подобрать силу тока. Предпочтительно начать резать на сильном токе. При этом делается несколько пробных разрезов. Неправильно подобранный режим может привести к перегреванию металла и его разбрызгиванию. При оптимальном режиме горения дуги линия разреза должна быть ровной, а металл не должен деформироваться.

Если требуется резать листовой материал, то сопло горелки размещают близко к поверхности металла. Для этого включается кнопка питания на аппарате. Вскоре после этого должна загореться дежурная дуга, а после нее режущая. Дуга должна быть направлена под углом 90° к металлу. Горелка передвигается сверху вниз. Если автоматическая плазменная резка отличается высокой скоростью, то при ручном методе горелку нужно двигать медленно. В конце работы целесообразно ненадолго остановить продвижение горелки, чтобы завершить резку.

Вернуться к оглавлению

Резка различных металлов

Резка того или иного металла может иметь свои особенности. На сегодняшний день чаще применяется резка листового материала. Обычно он представлен сталью. Нередко приходится осуществлять резку алюминия. Если сварка этого металла затруднена ввиду образования на его поверхности защитной пленки в виде оксида алюминия, резка алюминия осуществляется вполне просто. Здесь важно помнить, что воздух и активные газы использовать не нужно.

Плазменная резка алюминия выполняется с использованием аргона или азота.

Аргон и азот являются химически менее активными элементами, поэтому в процессе резки и нагревания металла на нем не формируется оксидная пленка. Еще одним распространенным материалом является сталь. В данной ситуации резка проводится без использования защитных газов. Воздушно-дуговая плазменная резка отлично подходит для изделий из нержавеющей стали. Это наиболее доступный способ резки.

Вернуться к оглавлению

Резка плазменной струей

В отличие от дугового метода, при резке плазменной струей металл не участвует в формировании электрической цепи. Сама же электрическая дуга имеется, но она формируется непосредственно между внутренней частью сопла и электродом. Такая электрическая дуга необходима для того, чтобы сформировалась плазма. Это дает возможность резать материалы, которые не проводят электрический ток. Плазма в данной ситуации является высокоскоростной. Чаще всего этот метод применяется с целью разделения листового материала. Что касается использования электродов, то для плазменной резки подходят электроды на основе различных сплавов вольфрама.

Необходимо помнить, что для проведения резки материалов с помощью потока плазмы, нужно иметь в наличии необходимые инструменты и материалы. Они включают в себя аппарат для резки, источник электрического тока, спецодежду, обувь, маску, рукавицы, молоток, зубило, металлическую щетку. Нередко для осуществления подобной работы аппарат для плазменной резки делается своими руками. По мощности он может не уступать заводскому.

Ручная плазменная резка является незаменимым универсальным методом обработки металлов своими руками. Устаревшие громоздкие газовые резаки уже не идут в сравнения с постоянно совершенствующимися, мобильными и доступными аппаратами для плазменной резки. С их помощью обучение методики высокоскоростной резки металлов не требует нескольких лет, а становится доступным после практических занятий.

Технология выполнения ручной плазменной резки металла

Ручная резка плазмой и обучение технологии обработки металла зависит от вида конкретного оборудования, а именно типа плазмотрона.

Особенности агрегатов плазменной резки

Плазменный резак косвенного действия. Используется для не металлических материалов, и он основан на получении реза непосредственной струей плазмы, выходящей из сопла под большим давлением. Это специфическая техника, которая не является востребованной для применения вне производства.

Плазменный резак прямого действия. Металлическая деталь подключается к электрической сети и является непосредственным участником образования сварочной дуги в потоке газа. Все металла руками работает на данном принципе.

Самой востребованной и экономически выгодной обработкой металла руками является применение воздушно-плазменной резки. Такой способ раскроя металла стал уже традиционным для ручной обработки, так как позволяет в разы сократить время выполнения реза и не требует наличия специальных навыков работы с режущими газами.

Использование воздуха в качестве плазмо-обрабатывающего газа имеет свои преимущества (экономия на расходном газе) и недостатки (габаритный, тяжелый аппарат). Недостатки вызваны наличием - источника питания. Современный дизайн ручных установок для плазменного раскроя направлен на удобное использование инверторов, поэтому они имеют несколько ручек, подъемных ремней, колесики для передвижения и корпус из легкого материала.

Конструкция оборудования для ручной резки

Главным элементом конструкции является плазменный резак (плазмотрон), который в свою очередь состоит из нескольких частей:

  • Форсунка.
  • Катод.
  • Сопло с защитным клапаном.
  • Роликовый упор.
  • Головка резака.
  • Кабель-шланг.

Их вид влияет на работу всей режущей установки.

Плазменная резка руками напрямую зависит от вида сопла, используемого в плазмотроне. Определяющей его характеристикой является диаметр, который влияет на:

  1. скорость формирования режущей дуги и всего процесса обработки металла;
  2. количество пропускаемого газа (воздуха);
  3. ширину получаемого реза;
  4. чистоту получаемого реза, гладкость кромок;
  5. скорость охлаждения расплавленного металла.

Сопло относится к часто заменяемым деталям аппарата ручной резки и поэтому его вид можно подобрать самостоятельно. Для улучшения общих характеристик работы режущей системы можно увеличить длину сопла, но не более чем в полтора раза.

Инструкция выполнения ручной плазменной резки

  1. Установка аппарата. Инвертор плазменной резки должен размещаться на свободном пространстве, чтобы со всех сторон к нему был доступ воздуха.
  2. Сборка аппарата. Подключение всех кабелей проводится строго по инструкции аппарата с соблюдением техники безопасности.
  3. Подключение аппарата в сеть. Подобное оборудование подключается к сети с напряжением в 220 - 230 В. Перепады напряжения в сети не должны сказаться на выходной мощности резака.
  4. Выбор материала. Все аппараты для ручной резки имеют ограниченную мощность и предназначены для раскроя металла находящегося в определенном диапазоне толщин. За счет уменьшения силы тока можно добиться качественного реза и для меньшей толщины, но не желательно применять аппарат для толщин, выходящих из рекомендованных рамок.
  5. Образование дежурной дуги. При включении аппарата возникает электрическая дуга длиной не более 40 мм и с током в ней не более 65 - 70 А.
  6. Образование режущей дуги. При касании к подключенной к аппарату металлической поверхности ток увеличивается в разы, повышается расход воздуха и в несколько раз увеличивается температура режущего факела. При этом дежурная дуга автоматически отключается.
  7. Непрерывное время работы. Оборудование для ручной плазменной резки рассчитано не более чем на 30 минутную непрерывную работу, после чего ему необходимо время для остывания.

Для бытового применения ручных аппаратов раскроя использование сжатого воздуха является достаточным. Защитные газы и газо-воздушные смеси необходимы для более сложной обработки металла большой толщины, они являются востребованными на производстве.

Критерии выбора аппарата для ручной плазменной резки

При подборе аппарата следует обратить внимание на несколько важных вопросов:

  1. Сфера применения. Обучение технологии плазменной обработки металла или использование для металла только одного вида требует аппаратов с разной силой тока. Так же чем толще обрабатываемый металл, тем больше должна быть рабочая сила тока.
  2. Возможность простой и плавной регулировки параметров аппарата. Наличие ступенчатой регулировки усложнит процесс подбора и настройки рабочей силы тока для разных металлов.
  3. Условия эксплуатации. Класс электрозащиты, пожаробезопасности, а так же возможность работы в условиях пониженных температур имеют значения.
  4. Тип аппарата. Наличие встроенного компрессора для получения рабочего сжатого воздуха не является обязательным для каждого аппарата. Многие полупрофессиональные модели имеют отдельный мобильный блок компрессора. Такие модели являются более долговечными и рассчитаны на постоянное интенсивное использование.
  5. Экономичность. Стоит обратить внимание не только на показатели энергопотребления, но и расход воздуха, который не должен превышать количество, производимое самим аппаратом за одну минуту.

Для обработки различных металла своими руками целесообразней использовать инвертор плазменной резки. Он наиболее эффективен для работы с коррозионностойкими нержавеющими сталями (толщиной 4 - 6 см), с чугуном, с титаном и с мягкими металлами (алюминий, медь). В настоящее время цена подобного оборудования является приемлемой, а модельный ряд от разных производителей ориентирован на любого покупателя.

Преимущества использования ручной плазменной резки

Основными преимуществами плазменной резки являются:

  • Компактность оборудования.
  • Небольшой уровень энергозатрат;
  • Надежность получения реза различных металлов.
  • Высокий КПД.
  • Высокоскоростная обработка металла.
  • Независимость от перепадов напряжения в сети.
  • Наличие принудительного воздушного охлаждения и защиты от перегрева.
  • Простой запуск устройства.

Универсальность подобных аппаратов позволяет работать с различными металлами и при этом не перегревать зону термического влияния резака, что исключает возникновения дефектов.