Вихревые индукционные нагреватели ВИН: устройство, плюсы и минусы использования в отопительных системах. Критерии выбора лучшего вихревого теплогенератора

Вихревой теплогенератор позволяет получать тепло в результате преобразования энергий: одного ее рода в другой эквивалент. Производительность таких устройств крайне высока, в результате чего жидкость может нагреваться до 95 градусов. А это позволяет обеспечивать объекты разной величины и целевого назначения горячей водой и теплом с существенной экономией.

Область применения теплогенераторов

На сегодняшний день помимо проведения непрерывных разработок уже вводятся в эксплуатацию и тепла. В зависимости от условий рабочей среды могут применяться различные агрегаты для обогрева помещения или системной подачи горячей воды. В качестве одного из таких вариантов выступает вихревой теплогенератор.

Смотрим видео, принцип работы и область применения:

Основная задача подобных агрегатов заключается в нагреве воды. В результате высокой эффективности этого процесса можно направлять полученное тепло на отопление производственных, гражданских, сельскохозяйственных и частных объектов. При этом вихревой теплогенератор позволяет организовать полностью автономную систему отопления. Дополнительно к этому свойство данного устройства преобразовывать один вид энергии в другой может обеспечить любой объект горячей водой.

Основы функционирования

Достоверного и подтвержденного объяснения того, как работает вихревой теплогенератор, до сих пор нет. Известно лишь, что функционирует такой агрегат на основе процесса кавитации. При вращении воды посредством ротора происходит образование пузырьков, заполненных газообразной средой. По мере движения жидкости пузырьки «схлопываются», что, по мнению многих, как раз и является причиной нагрева воды. Прогретая жидкость подается в систему отопления. Приблизительная схема функционирования выглядит следующим образом:

Тем не менее, исследования не останавливались и сегодня вихревой теплогенератор представлен довольно большим количеством исполнений. Тот факт, что разработки продолжились, несмотря на отсутствие твердого основания для подобных процессов, объясняется высоким КПД, так как нагрев жидкости происходит с эффективностью 100%.

Ряд преимуществ и недостатков

Вихревой высокопроизводительный теплогенератор представлен большим количеством исполнений как раз благодаря тому, что подобные устройства характеризуются рядом значимых достоинств, среди которых:

Как и любой другой альтернативный источник тепла, вихревой кавитационный теплогенератор не пользуется широкой популярностью, несмотря на довольно высокую эффективность. Соответственно, один из главных недостатков – высокая стоимость, что отчасти обусловлено незначительным уровнем распространения подобной техники, несмотря на то, что сегодня производители предлагают различные модели.

Особенности моделей

Вихревой кавитационный теплогенератор существует в разных исполнениях. Сегодня наиболее распространены устройства, работающие на водяной основе, то есть, в качестве теплоносителя выступает жидкость.

Но есть возможность приобрести и твердотопливный агрегат, на выходе которого образуется газообразная смесь дымового газа и воздушной среды.

Теплогенератор твердотопливный высокопроизводительный вихревой отличается возможностью сжигания древесины высокой влажности (до 65%). Соответственно, при выборе учитывается назначение агрегата и предполагаемая нагрузка, так как существуют исполнения с разным уровнем тепловой мощности. В зависимости от того, какой по величине объект предполагается обслуживать, подбирается подходящее устройство.

В случае с твердотопливным оборудованием важно учесть скорость расхода топлива, размеры погрузочной камеры и вид загрузки топлива. Можно подбирать вихревой разнотипный теплогенератор по уровню тепловой мощности, а можно обратить внимание на пункт в сопроводительной документации о том, какой величины объем допускается прогревать. Немаловажным является вес, а также габаритные размеры оборудования.

Для крупных помещений и зданий предполагается использование массивных агрегатов, тогда как для частного жилья достаточно устройства мощностью 2,2 кВт и весом всего 40 кг.

Обзор моделей разных конструкций

Если планируется задействовать вихревой теплогенератор, то можно купить его по цене 62 000 руб., как, например, модель мощностью 2,2 кВт от производителя ЗАО «Индустриальные технологии 21». Это жидкостный агрегат, который может быть подключен к новой или уже действующей системе отопления. Агрегат обслуживает помещение объемом до 90 куб. м, его вес составляет 40 кг.

Смотрим видео о продукции компании «Индустриальные технологии 21»:

Если выбрать твердотопливное исполнение, то в данном случае рассматривается более производительное оборудование с тепловой мощностью от 250 до 700 кВт. Например, модели ТВВ-Р-250, ТВВ-Р-500, ТВВ-Р-700. Все они предполагают ручную загрузку топлива. Но более мощные исполнения потребляют больше топлива. Если модель 250 расходует 120 кг/час, то исполнение 700 потребляет около 340 кг/час. Существуют устройства намного более производительные тепловой мощностью 2 500 кВт. Если планируется использовать такие вихревые теплогенераторы, то их цена будет заметно выше.

Чем меньше габаритные размеры подобной техники, тем более простым будет ее эксплуатация. Например, существуют полностью автономные устройства с автоматическим управлением. При этом пользователю нет необходимости участвовать в процессе. А вот при использовании некоторых исполнений твердотопливных теплогенераторов без участия обученного оператора для загрузки топлива не обойтись, так как в данных агрегата предполагается ручная подача древесины.

Сегодня существуют разные исполнения подобной техники с полностью автоматизированным исполнением, включая и предустановленный температурный режим. Учитывая, что агрегаты такого рода полностью безопасны, как с точки зрения экологичности, так и с точки зрения пожарной безопасности, то нет необходимости их постоянного контроля.

Но для эффективной продолжительной работы рекомендуется периодически производить обслуживание, в особенности, агрегатов, которые работают с жидкостным теплоносителем.

Таким образом, для организации отопительной системы и горячего водоснабжения не всегда обязательно обращаться к стандартным решениям. На практике оказывается, что при использовании тепловых установок на базе вихревых теплогенераторов отмечается существенная экономия в сравнении с прочими видами отопительных систем.

В результате можно получить не просто высокопроизводительную технику, но еще и экономить при ее эксплуатации. Несмотря на довольно высокую стоимость подобных агрегатов, их дальнейшая эксплуатация полностью окупается, причем этого не придется ждать слишком долго, так как в некоторых случаях сроки окупаемости достигают 6 месяцев.

С каждым годом подорожание отопления заставляет искать более дешевые способы обогрева жилой площади в холодную пору года. Особенно это относится к тем домам и квартирам, которые имеют большую квадратуру. Одним из таких способов экономии является вихревой . Он имеет массу преимуществ, а также позволяет экономить на создании. Простота конструкции не затруднит его сбор даже у новичков. Далее рассмотрим преимущества такого способа отопления, а также попытаемся составить план-схему по сбору теплогенератора своими руками.

Теплогенератор – это специальный прибор, основная цель которого вырабатывать тепло, путем сжигания, загружаемого в него, топлива. При этом вырабатывается тепло, которое затрачивается на обогрев теплоносителя, который уже в свою очередь непосредственно выполняет функцию обогрева жилой площади.

Первые теплогенераторы появились на рынке еще в 1856 году, благодаря изобретению британского физика Роберта Бунзена, который в ходе ряда проведенных опытов заметил, что вырабатываемое при горении тепло можно направлять в любое русло.

С тех пор генераторы, конечно же, модифицировались и способны обогревать гораздо больше площади, нежели это было 250 лет назад.

Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды :

  1. Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
  2. Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
  3. Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
  4. – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.

Множество полезных изобретений осталось невостребованными. Это происходит из-за человеческой лени или из-за страха перед непонятным. Одним из таких открытий долгое время был вихревой теплогенератор. Сейчас на фоне тотальной экономии ресурсов, стремлению к использованию экологически чистых источников энергии, теплогенераторы стали применять на практике для отопления дома или офиса. Что же это такое? Прибор, который раньше разрабатывался только в лабораториях, или новое слово в теплоэнергетике.

Система отопления с вихревым теплогенератором

Принцип действия

Основой работы теплогенераторов является преобразование механической энергии в кинетическую, а затем – в тепловую.

Еще в начале ХХ столетия Жозеф Ранк обнаружил сепарацию вихревой струи воздуха на холодную и горячую фракции. В середине прошлого века немецкий изобретатель Хилшем модернизировал устройство вихревой трубы. Спустя немного времени, русский ученый А. Меркулов запустил в трубу Ранке вместо воздуха воду. На выходе температура воды значительно повысилась. Именно этот принцип лежит в основе работы всех теплогенераторов.

Проходя через водяной вихрь, вода образует множество воздушных пузырьков. Под воздействием давления жидкости пузырьки разрушаются. Вследствие этого освобождается какая-то часть энергии. Происходит нагрев воды. Этот процесс получил название кавитация. На принципе кавитации рассчитывается работа всех вихревых теплогенераторов. Генератор такого типа называется «кавитационный».

Виды теплогенераторов

Все теплогенераторы делятся на два основных вида:

  1. Роторный. Теплогенератор, в котором вихревой поток создается при помощи ротора.
  2. Статический. В таких видах водяной вихрь создается при помощи специальных кавитационных трубок. Давление воды производит центробежный насос.

Каждый вид обладает своими преимуществами и недостатками, на которых следует остановиться подробнее.

Роторный теплогенератор

Статором в данном устройстве служит корпус центробежного насоса.

Роторы могут быть различные. В интернете представлено множество схем и инструкций по их выполнению. Теплогенераторы – скорее научный эксперимент, постоянно находящийся в процессе разработки.

Конструкция роторного генератора

Корпусом является пустотелый цилиндр. Расстояние между корпусом и вращающейся частью рассчитывается индивидуально (1.5-2 мм).

Нагревание среды происходит благодаря ее трению с корпусом и ротором. Помогают этому пузырьки, которые образуются за счет кавитации воды в ячейках ротора. Производительность таких устройств на 30% выше статических. Установки довольно шумные. Имеют повышенную изношенность деталей, за счет постоянного воздействия агрессивной среды. Требуется постоянный контроль: за состоянием сальников, уплотнителей и др. Это значительно усложняет и удорожает обслуживание. При их помощи редко монтируют отопление дома, им нашли немного другое применение – обогрев больших производственных помещений.

Модель промышленного кавитатора

Статический теплогенератор

Основной плюс данных установок в том, что в них ничего не вращается. Электроэнергия тратится только на работу насоса. Кавитация происходит при помощи естественных физических процессов в воде.

КПД таких установок иногда превышает 100%. Средой для генераторов может быть жидкость, сжатый газ, тосол, антифриз.

Разница между температурой входа и выхода может достигать 100⁰С. При работе на сжатом газе, его вдувают по касательной в вихревую камеру. В ней он ускоряется. При создании вихря, горячий воздух проходит сквозь коническую воронку, а холодный возвращается. Температура может достигать 200⁰С.

Достоинства:

  1. Может обеспечить большую разность температур на горячем и холодном концах, работать при низком давлении.
  2. КПД не ниже 90%.
  3. Никогда не перегревается.
  4. Пожаро,- и взрывобезопасен. Может использоваться во взрывоопасной среде.
  5. Обеспечивает быстрый и эффективный нагрев всей системы.
  6. Может использоваться как для обогрева, так и для охлаждения.

В настоящее время применяется недостаточно часто. Используют кавитационный теплогенератор, чтобы удешевить отопление дома или производственных помещений при наличии сжатого воздуха. Недостатком остается довольно высокая стоимость оборудования.

Теплогенератор Потапова

Популярным и более изученным является изобретение теплогенератора Потапова. Он считается статическим устройством.

Сила давления в системе создается центробежным насосом. Струя воды подается с большим напором в улитку. Жидкость начинает разогреваться благодаря вращению по изогнутому каналу. Она попадает в вихревую трубу. Метраж трубы должен быть больше ширины в десятки раз.

Схема устройства генератора

  1. Патрубок
  2. Улитка.
  3. Вихревая труба.
  4. Верхний тормоз.
  5. Выпрямитель воды.
  6. Соединительная муфта.
  7. Нижнее тормозное кольцо.
  8. Байпас.
  9. Отводная линия.

Вода проходит по расположенной вдоль стенок винтовой спирали. Дальше поставлено тормозное устройство для выведения части горячей воды. Струя немного разравнивается пластинами, прикрепленными к втулке. Внутри имеется пустое пространство, соединенное с еще одним тормозным устройством.

Вода с высокой температурой поднимается, а холодный вихревой поток жидкости спускается по внутреннему пространству. Холодный поток соприкасается с горячим через пластины на втулке и нагревается.

Теплая вода спускается к нижнему тормозному кольцу и еще подогревается благодаря кавитации. Подогретый поток от нижнего тормозного устройства проходит через байпас в отводящий патрубок.

Верхнее тормозное кольцо имеет проход, диаметр которого равен поперечнику вихревой трубы. Благодаря ему горячая вода может попасть в патрубок. Происходит смешивание горячего и теплого потока. Дальше вода используется по назначению. Обычно для обогрева помещений или бытовых нужд. Обрат присоединяется к насосу. Патрубок – к входу в систему отопления дома.

Чтобы установить теплогенератор Потапова, необходима диагональная разводка. Горячий теплоноситель нужно подавать в верхний ход батареи, а из нижнего будет выходить холодный.

Генератор Потапова собственными силами

Существует много промышленных моделей генератора. Для опытного мастера не составит труда изготовить вихревой теплогенератор своими руками :

  1. Вся система должна быть надежно закреплена. При помощи уголков изготавливают каркас. Можно использовать сварку или болтовое соединение. Главное, чтобы конструкция была прочной.
  2. На станине укрепляют электродвигатель. Его подбирают соответственно площади помещения, внешним условиям и имеющемуся напряжению.
  3. На раме крепится водяной насос. При его выборе учитывают:
  • насос необходим центробежный;
  • у двигателя хватит сил для его раскрутки;
  • насос должен выдерживать жидкость любой температуры.
  1. Насос присоединяется к двигателю.
  2. Из толстой трубы диаметром 100 мм изготавливается цилиндр длиной 500-600 мм.
  3. Из толстого плоского металла необходимо изготовить две крышки:
  • одна должна иметь отверстие под патрубок;
  • вторая под жиклер. На краю делается фаска. Получается форсунка.
  1. Крышки к цилиндру лучше крепить резьбовым соединением.
  2. Жиклер находится внутри. Его диаметр должен быть в два раза меньше ¼ части диаметра цилиндра.

Очень маленькое отверстие приведет к перегреву насоса и быстрому износу деталей.

  1. Патрубок со стороны форсунки подключается к подаче насоса. Второй подключают к верхней точке системы отопления. Остывшая вода из системы подключается к входу насоса.
  2. Вода под давлением насоса подается в форсунку. В камере теплогенератора ее температура увеличивается благодаря вихревым потокам. Потом она подается в отопление.

Схема кавитационного генератора

  1. Жиклер.
  2. Вал электродвигателя.
  3. Вихревая труба.
  4. Входящая форсунка.
  5. Отводящий патрубок.
  6. Гаситель вихрей.

Для регулирования температуры, за патрубком ставят задвижку. Чем меньше она открыта, тем дольше вода в кавитаторе, и тем выше ее температура.

При прохождении воды через жиклер, получается сильный напор. Он бьет в противоположную стену и за счет этого закручивается. Поместив в середину потока дополнительную преграду, можно добиться большей отдачи.

Гаситель вихрей

На этом основана работа гасителя вихрей:

  1. Изготавливается два кольца, ширина 4-5 см, диаметр немного меньше цилиндра.
  2. Из толстого металла вырезается 6 пластин длиной ¼ корпуса генератора. Ширина зависит от диаметра и подбирается индивидуально.
  3. Пластины закрепляются внутрь колец друг напротив друга.
  4. Гаситель вставляется напротив сопла.

Разработки генераторов продолжаются. Для увеличения производительности с гасителем можно экспериментировать.

В результате работы происходят теплопотери в атмосферу. Для их устранения можно изготовить теплоизоляцию. Сначала ее делают из металла, а поверх обшивают любым изолирующим материалом. Главное, чтобы он выдерживал температуру кипения.

Для облегчения введения в эксплуатацию и обслуживания генератора Потапова необходимо:

  • окрасить все металлические поверхности;
  • изготавливать все детали из толстого металла, так теплогенератор дольше прослужит;
  • во время сборки есть смысл изготовить несколько крышек с различным диаметром отверстий. Опытным путем подбирается оптимальный вариант для данной системы;
  • до подключения потребителей, закольцевав генератор, необходимо проверить его герметичность и работоспособность.

Гидродинамический контур

Для правильного монтажа вихревого теплогенератора необходим гидродинамический контур.

Схема подключения контура

Для его изготовления необходимы:

  • выходной манометр, для измерения давления на выходе из кавитатора;
  • термометры для измерения температуры до и после теплогенератора;
  • сбросной кран для удаления воздушных пробок;
  • краны на входе и выходе;
  • манометр на входе, для контроля давления насоса.

Гидродинамический контур упростит обслуживание и контроль за работой системы.

При наличии однофазной сети, можно использовать частотный преобразователь. Это позволит поднять скорость вращения насоса, подобрать правильную.

Вихревой теплогенератор применяется для отопления дома и подачи горячей воды. Имеет ряд преимуществ перед другими обогревателями:

  • установка теплогенератора не требует разрешительных документов;
  • кавитатор работает в автономном режиме и не требует постоянного контроля;
  • является экологически чистым источником энергии, не имеет вредных выбросов в атмосферу;
  • полная пожаро,- и взрывобезопасность;
  • меньший расход электричества. Неоспоримая экономичность, КПД приближается к 100%;
  • вода в системе не образует накипи, не требуется дополнительная водоподготовка;
  • может использоваться как для отопления, так и для подачи горячей воды;
  • занимает мало места и легко монтируется в любую сеть.

С учетом всего этого, кавитационный генератор становится более востребованным на рынке. Такое оборудование с успехом применяют для отопления жилых и офисных помещений.

Когда заходит речь об отопительных системах и приборах для обогрева жилого дома, то сразу возникает множество мнений.

Одни утверждают, что лучше газового отопления ничего не существует, другие доказывают эффективность , третьи – никак не нарадуются . Несомненно, все виды отопления имеют свои преимущества, но мы хотели бы обратить внимание на обогрев жилища электричеством.

Главным преимуществом такого вида обогрева является удобство эксплуатации: ведь не нужно заготавливать топливо и постоянно очищать оборудование от продуктов сгорания. Некоторые скептики, читая эти строки, резонно могут заметить: а как же быть с постоянным подорожанием электроэнергии? Куда же тогда девается эффективность электрического оборудования для отопления?

Смело можно ответить: в последнее время набирает популярности вихревый индукционный нагреватель, который создан на основе передовых современных технологий. Стоит также отметить, что расходы на этот вид электрического отопления значительно сокращены. (Об особенностях индукционного отопления читайте ).

Поэтому, в этой статье мы подробно расскажем, что собой представляет вихревый индукционный нагреватель (сокращенно – ВИН), а также опишем все его преимущества и недостатки.

Конструкция

Вихревый индукционный обогреватель представляет собой прибор, в котором для подогрева теплоносителя используется энергия электромагнитного поля.

Иначе говоря, ВИН преобразует этот вид энергии в тепловую.

Этот вид индукционного котла состоит из следующих конструктивных частей:

  1. Нагревательный элемент, как правило, представлен в виде металлической трубы, которая помещается в электромагнитное поле.
  2. Индуктор, который является генератором электромагнитного поля. Обычно он представлен в виде цилиндра, состоящего из витков медной проволоки.
  3. Генератор переменного тока. Этот узел отвечает за преобразование обычной электроэнергии в высокочастотный ток.

Принцип работы ВИН

Принцип индукционного нагрева Алгоритм функционирования вихревого индукционного нагревателя заключается в следующих последовательных действиях:

  • генератор образует высокочастотный ток и подает его на индуктор;
  • индуктор, принимая этот ток, создает возле цилиндрической катушки электромагнитное поле;
  • нагревательный элемент, который находится внутри катушки из медной проволоки, разогревается с помощью вихревых токов, которые созданы электромагнитным полем;
  • теплоноситель, который находится внутри нагревательного элемента, одновременно с ним разогревается, и непосредственно подается к радиаторам отопления.

Важный факт: весь процесс работы ВИН происходит практически без энергетических потерь.

Преимущества и недостатки

Согласно отзывам владельцев ВИН, использование нагревателя этого вида имеет целый ряд достоинств, к которым можно отнести следующие важные моменты:

Для большей убедительности преимуществ этого вида котлоагрегата, приведем для примера технические характеристики нагревателя модели ВИН-15:

Трудно не согласиться, что это достаточно позитивные характеристики котла этой модели.

К основным негативным моментам использования вихревого индукционного нагревателя можно отнести следующее:

  • электромагнитное поле разогревает не только теплообменник, но и все окружающие предметы, в том числе и человеческие ткани;
  • Важный момент: человеку не стоит долго находиться возле индукционного нагревателя!

  • если в поле действия электромагнитного поля окажется ферромагнитное изделие, то это неминуемо будет приводить к перегреву котла из-за дополнительного намагничивания;
  • высокий уровень теплоотдачи создает риск детонации ВИН от перегрева.

Совет специалиста: чтобы не допустить детонации, можно дополнительно установить датчик давления.

Как видим, недостатков индукционного котла гораздо меньше, чем преимуществ. Их вполне можно сократить, если придерживаться вышеуказанных рекомендаций. В этой статье мы подробно изложили все аспекты использования вихревого индукционного нагревателя. Надеемся, что наша информация поможет вам при установке ВИН в вашем доме.

Смотрите видео, в котором показаны особенности работы вихревого индукционного нагревателя ВИН, а также отзывы об этом оборудовании: