Прогреть землю зимой. Оборудование и методы прогрева мерзлых грунтов при производстве земляных работ

При включений с помощью катодов участка грунта в электрическую цепь через него может быть пропущен нагревающий его ток напряжением 120, 220 и 380 в.

Электропроводность грунта зависит от его влажности (рис.3, а), состояния и температуры влаги, концентрации находятся в грунте растворов солей и кислот (рис. 3, б), строения и температуры грунта (рис. 3, в) и т. п.

Сложность строения грунта происходящих в нем физических явлений и изменений, связанных силовыми процессами, значительно усложняет теоретическую сторонy электропрогрева грунта, которая находится пока еще в стадии проработки.

Рис. 1. Установка горизонтальных (струнных) электродов на мерзлый грунт с засыпкой опилками
1 - мерзлой грунт; 2 - горизонтальные (струйные) электроды диаметром 12-16 мм; 3 - провода, подводящие ток; 4 - опилки, смоченные раствором соли; 5 - верхнее утепление (толь, деревянные щиты, маты и т. п.)

Рис. 2. Установка вертикальных (стержневых) электродов в мерзлый грунт с засыпкой опилками
1 - вертикальные электроды; 2 - провода, подводящие ток; 3 - опилки, смоченные раствором соли, 4-верхнее утепление (толь, деревянные шиты, маты и т. п.)

Оттаивание грунта выполняют при помощи горизонтальных (срунных) и вертикальных (стержневых и глубинных) электродов. При оттаивании горизонтальными электродами (рис. 1) поверхность отогреваемого участка грунта покрывают 15-25-см слоем, смоченных водным раствором соли (хлористого натрия,кальции, медного купороса и др.) имеющих назначение лишь приводить ток и отогреть верхний слой мерзлого грунта, так как последний даже при напряжении 380 в тока практически не пропускает.

При горизонтальных электродах тепло передается первоначально грунту лишь от нагревающегося слоя опилок. Только верхний незначительной толщины слой грунта, прилегающий к электродам, включается в электроцепь и является сопротивлением, в котором выделяется тепло.

Расстояние между рядами электродов, включенными в разные фазы, составляет 40-50 см при напряжении 220 в и 70-80 см при напряжении 380 в. Применение горизонтальных электродов целесообразно при отогревании промерзших оснований и небольшой (до 0,5-0,7 м) глубине промерзания, а также в случаях, когда вертикальные (стержневые) электроды не могут быть применены вследствие малой электропроводности грунта или невозможности забивки их в грунт.

При оттаивании вертикальными стержневыми электродами влажные опилки служат вначале побудителем к прогреву верхнего слоя грунта, который по мере оттаивания включается в электрическую цепь, после чего опилки только уменьшают теплопотери оттаиваемого грунта. Вместо опилок побудителем могут служить растворы солей, заливаемые в бороздки в грунте, пробитые зубилом между всеми электродами на глубину 6 см.

При укрытии поверхности отогреваемого грунта слоем сухих опилок, как показывает практика, устройство таких бороздок дает хорошие результаты.
Применение вертикальных электродов более эффективно при глубине мерзлого грунта более 0,7 м, а также при невозможности обеспечения должного контакта между горизонтальными электродами и грунтом. В твердые (глинистые и песчаные грунты с влажностью более 15-20%) электроды забивают на глубину 20-25 см, и затем погружают глубже по мере оттаивання грунта (примерно через каждые 4-5 час).

Расстояние между электродами назначается от 40 до 70 см в зависимости от напряжения тока, характера и температуры грунта. При оттаивании на глубину 1,5 м рекомендуется иметь два комплекта электродов - короткие и длинные; по оттаивании грунта на глубину коротких электродов они заменяются длинными. Отогрев грунта на глубину 2 м и более следует производить в несколько приемов, послойно с периодическим удалением оттаявших слоев при выключенном токе. В целях экономии электроэнергии и максимального использования мощности следует стремиться, чтобы к концу оттаивания средним температура грунта не превышала +5° и максимальная +20°, и прогрев следует вести участками, периодически выключая ток.

Рис. 3. Изменение удельного сопротивления грунта в зависимости
а - от влажности грунта из красной глины, б - от содержаний NaCi в глинистом грунте при 30% его влажности (по весу), 8 - от температуры грунта при влажности 18,6%

Установка для оттаивания грунта состоит из щитов и софитов (по 4-5 на каждый распределительный щит) для подключения электродов к сети.

При применении глубинных электродов оттаивание мерзлого грунта производят снизу вверх к дневной его поверхности. Для этого электроды из круглой стали диаметром 12-19 мм (в зависимости от их длины и твердости грунта) в шахматном порядке забивают сквозь всю толщу мерзлого слоя на 15-20 см в талый грунт. В начале оттаивания электрический ток, проходящий в талом грунте, нагревает его и оттаивает расположенную непосредственно лад ним часть мерзлого слоя. Таким образом, тепловой поток, постепенно увеличиваясь по толщине снизу вверх, последовательно отогревает мерзлый грунт, причем почти все выделяемое током тепло используется для отаивания мерзлого слоя.
Такой способ оттаивания, помимо уменьшении теплопотерь, дает ряд других выгод.

Как известно, экскаваторы могут разрабатывать без предварительнoгo рыхления мерзлую корку грунта толщиной до 25-40 см, Что позволяет соответственно уменьшить глубину оттаиваемого грунта. Так как верхние слои грунта обычно являются наиболее сложными и энергоемкими, то разработка их в неоттаявшем состоянии снижает расход электроэнергии и ускоряет производство работ.

Применение более высокого напряжения дает возможность увеличивать расстояние между электродами. Последнее при напряжении 220 в принимают в 0,5 м, а при 380 в уже 0,7 м.
Нижний конец электрода заостряют, а в верхнем просверливают сквозное отверстие диаметром 3-4 мм, через которое пропускают Медный голый провод длиной 25-30 см; один конец провода приваривают к электроду, а другой присоединяют к электросети с последующим чередованием фаз.

При затруднительности забивки электродов предварительно проходят скважины диаметром, который на 1-2 мм меньше принятого диаметра электрода.
По опытным данным суглинки с влажностью 18% при глубине промерзания 1,5 м и напряжении тока 220 в оттаивают в течение примерно 16 час.
Отогреваемую площадку выделяют переносным ограждением и умножают предупредительными сигналами с категорическим запрещением входа на нее.
При применении любого способа отогрева грунта необходимо строго соблюдать правила, изложенные в специальной «Инструкции по применению электропрогрева в строительстве».

Оттаивание токами высокой частоты. Мерзлый грунт проницаем для токов высокой частоты, и отогревание его Происходит за счет тепла, выделяемого в грунте при помещении его и переменное электрическое поле высокой частоты.
Генератор высокой частоты состоит из повышающего трансформатора, выпрямителя, генераторных ламп, конденсаторов и колебательного контура. Передвижная установка монтируется в автоприцепе и питается от сети напряжением 220-380 в или от передвижной электрической станции.
Означенный способ возможен при небольшом объеме работ, разработке траншей и особенно при аварийных работах, когда срок их выполнения является решающим фактором.

Основной целью прогрева бетона является соблюдение правильных условий вывода влаги при проведении работ в зимнее время или при их ограниченных сроках. Принцип действия технологии заключается в поддержке внутри или вокруг толщи раствора повышенной температуры (в пределах 50-60 °С), методы реализации зависят от типа и размера конструкций, марки прочности смеси, бюджета и условий внешней среды. Для достижения нужного эффекта обогрев должен быть равномерным и экономически обоснованным, лучшие результаты наблюдаются при комбинировании.

Обзор методов обогрева

1. Электроды.

Простой и надежный способ электропрогрева, заключающийся в размещении арматуры или катанки толщиной в 0,8-1 см во влажном растворе, образуя с ним единый проводник. Выделение тепла происходит равномерно, зона воздействия достигает половины расстояния от одного электрода к другому. Рекомендуемый интервал между ними варьируется от 0,6 до 1 м. Для запуска работы цепи концы подключают к ИП с пониженным напряжением от 60 до 127 В, превышение этого диапазона возможно только при бетонировании неармированных систем.

Сфера применения включает конструкции с любым объемом, но максимальный эффект достигается при подогреве стен и колонн. Расход электроэнергии в этом случае значительный – 1 электрод требует не менее 45 А, число подключаемых стержней к понижающему трансформатору ограничено. По мере высыхания раствора подаваемое напряжение и затраты возрастают. При заливке ЖБИ технология прогрева электродами требует согласования со специалистами (составляется проект их размещения, исключающий контакт с металлическим каркасом). По окончании процесса стержни остаются внутри, повторная эксплуатация исключена.

2. Закладка проводов.

Суть метода заключается в расположении в толще раствора электрического провода (в отличие от электродов – изолированного), нагреваемого при пропускании тока и равномерно отдающего тепло. В качестве рабочих элементов используется один из следующих видов:

  • ПНСВ – изолированный поливинилхлоридом стальной кабель.
  • Саморегулирующие секционные разновидности: КДБС или ВЕТ.

Применение проводов считается самым эффективным при необходимости заливки перекрытий или фундамента зимой, они практически без потерь преобразуют электрическую энергию в тепловую и обеспечивают ее равномерное распределение.

ПНСВ обходится дешевле, при необходимости он закладывается по всей площади конструкции (длина ограничена только мощностью понижающего трансформатора), для данных целей подойдет сечение от 1,2 до 3 мм. К особенности технологии обогрева относят потребность в использовании установочных проводов с алюминиевой жилой на открытых участках. Подходящими характеристиками обладает кабель АПВ. Схема ПНСВ 1.2 исключает перехлесты, рекомендуемый шаг между соседними кольцами и линиями составляет 15 см.

Саморегулирующие секции (КДБС или ВЕТ) эффективны при обогреве зимой без возможностей задействования трансформатора или подачи 380 В. Их изоляция лучше, чем у ПНСВ, но стоят они дороже. Схема укладки провода в целом аналогична предыдущей, но его длина ограничена, она подбирается из учета размеров конструкции, разрезать его нельзя. При добавлении в нее устройства контроля за силой тока прогрев осуществляется более плавно и экономно. В целом, оба варианта считаются эффективными при бетонировании зимой, к недостаткам относят лишь сложность укладки и невозможность повторного применения.

3. Тепловые пушки.

Суть технологии заключается в повышении температуры воздуха с помощью электрических, газовых, дизельных и других обогревателей. Обрабатываемые элементы закрывают от холода брезентом, создание такого шатра позволяет достичь внутри условий от +35 до 70 °C. Обогрев осуществляется за счет внешнего источника, который без проблем переносится на другое место без потребности в расходе провода или специальной аппаратуры. Из-за сложностей с закрытием крупных объектов и воздействия только на внешние слои этот способ чаще используется при небольших объемах бетонирования или при резком падении температуры. Энергозатраты в сравнении с электродами или ПНСВ приемлемые, при задействовании дизельных пушек возможен обогрев на объектах без электроснабжения.

4. Термоматы.

Принцип действия этой технологии основан на покрытии свежезалитого раствора полиэтиленом и полотнами инфракрасной пленки во влагостойкой оболочке. Термоматы подключаются к обычной сети, величина энергопотребления варьируется в пределах 400-800 Вт/м2, при достижении границы в +55 °С они выключаются, что позволяет снизить затраты на электропрогрев бетона. Максимальный эффект от применения достигается зимой, в том числе при комбинировании с химическими добавками.

Риск замерзания влаги внутри ЖБИ исключается через 12 часов, процесс полностью автономный. В отличие от проводов ПНСВ термоматы без проблем контактируют с открытым воздухом и влагой, помимо бетонных конструкций они успешно используются для прогрева грунта.

При правильном уходе (отсутствие нахлестов, выполнение изгибов строго по отведенным линиям, защите полиэтиленом) ИК-пленки выдерживают не менее 1 года активной эксплуатации. Но при всех плюсах технология плохо подходит для обогрева массивных монолитов, воздействие матов локальное.

5. Греющая опалубка.

Принцип действия аналогичен с предыдущим: между двумя листами влагостойкой фанеры размещается инфракрасная пленка или изолированные асбестом провода, выделяющие тепло при подключении к сети. Этот способ обеспечивает прогрев в зимнее время на глубину до 60 мм, благодаря локальному воздействию исключен риск растрескивания или перенапряжения. По аналогии с матами эти нагревательные элементы имеют термозащиту (биметаллические датчики с автовозвратом). Сфера применения включает конструкции с любым наклоном, лучшие результаты наблюдаются при заливке монолитных объектов, в том числе при ограниченных сроках строительства, но простой технологию назвать нельзя. При бетонировании фундамента в греющую опалубку заливают раствор с температурой не ниже +15 °C, грунт нуждается в предварительном обогреве.

6. Индукционный метод.

Принцип действия основан на образовании тепловой энергии под воздействием вихревых токов, способ хорошо подходит для колонн, балок, опор и других вытянутых элементов. Индукционная обмотка размещается поверх металлической опалубки и создает электромагнитное поле, в свою очередь оказывающее влияние на арматурные стержни каркаса. Обогрев бетона осуществляется равномерно и качественно при среднем расходе энергии. Подойдет также для предварительной подготовки щитов опалубки зимой.

7. Пропаривание.

Промышленный вариант, для реализации этого способа требуется двухстенная опалубка, не только выдерживающая массу раствора, но и подводящая к поверхности горячий пар. Качество обработки более чем высокое, в отличие от остальных методов, при пропарке обеспечиваются максимально подходящие условия для гидратации цемента, а именно – влажная горячая среда. Но из-за сложности эта методика используется редко.

Сравнение преимуществ и ограничений технологий прогревания

Способ Оптимальная сфера применения Преимущества Недостатки, ограничения
Электродами Заливка вертикальных конструкций Быстрый монтаж и прогрев, достаточно размещения электрода в бетоне и подключения его к источнику переменного тока Значительные энергозатраты – от 1000 кВт на 3-5 м3
ПНСВ Фундаменты и перекрытия при бетонировании зимой Высокая эффективность, равномерность. Обогрев проводом позволяет достичь 70% прочности за несколько дней Потребность в понижающем трансформаторе и проводе для холодных концов
ВЕТ или КДБС То же, плюс работа от простой сети Высокая стоимость кабеля, ограничение в длине секций
Тепловыми излучателями Конструкции с небольшой толщиной Возможность контроля температуры, применение при резком похолодании, минимум проводов, относительно низкие энергозатраты Воздействие осуществляется локально, качественный обогрев происходит только во внешних слоях
Термоматами Грунт перед заливкой раствора, перекрытия Многократное применение, возможность контроля за температурой смести, достижение 30% марочной прочности в течении суток Высокая стоимость матов, наличие подделок
Греющей опалубкой Объекты быстрого возведения (совмещение с технологией скользящей опалубки) Обеспечение равномерного прогрева, возможность качественного замоноличивания стыков Типовые размеры, высокая цена, средний КПД
Индукционной обмоткой Колонны, ригели, балки, опоры Равномерность Не подходит для перекрытий и монолитов
Пропаривание Объекты промышленного строительства Хорошее качество прогрева Сложность, дороговизна

Страница 10 из 18

Разработка грунта, связанная с рытьем траншеи в зимних условиях, осложняется необходимостью предварительной подготовки и отогрева мороженого грунта. Глубина сезонного промерзания грунта определяется по данным метеорологических станций.
В городских условиях, при наличии большого количества действующих кабельных линий и других подземных коммуникаций применение ударных инструментов (отбойных молотков, ломов, клиньев и др.) невозможно из-за опасности механического повреждения действующих кабельных линий и других подземных коммуникаций.
Поэтому мерзлый грунт до начала работ по рытью траншеи в зоне действующих кабельных линий должен быть предварительно отогрет с тем, чтобы земляные работы вести лопатами без применения ударного инструмента.
Отогрев грунта может производиться электрическими рефлекторными печами, электрическими горизонтальными и вертикальными стальными электродами, электрическими трехфазными нагревателями, газовыми горелками, паровыми и водяными иглами, горячим песком, кострами и т. д. Способы отогрева грунта, при которых нагревательные иглы вводятся в мерзлый грунт путем бурения скважин либо их забивки, не получили применения, так как этот способ эффективен и применение его может быть оправдано экономически при глубине разрытия более 0,8 м, т. е. на глубине, которая для кабельных работ не используется. Отогрев грунта может также вестись токами высокой частоты, однако и этот способ пока не получил практического применения ввиду сложности оборудования и низкого коэффициента полезного действия установки. Независимо от принятого способа отогреваемая поверхность предварительно очищается от снега, льда и верхних покровов основания (асфальт, бетон).

Отогрев грунта электрическими токами промышленной частоты при помощи стальных электродов, уложенных горизонтально на мороженый грунт, заключается в создании цепи электрического тока, где отмораживаемый грунт используется как сопротивление.
Горизонтальные электроды из полосовой, угловой и любых других профилей стали длиной 2,5-3 м укладывают горизонтально на мерзлый грунт. Расстояние между рядами электродов, включаемых в разноименные фазы, должно быть 400 - 500 мм при напряжении 220 В и 700-800 мм при напряжении 380 В. Ввиду того что мерзлый грунт плохо проводит электрический ток, поверхность грунта засыпается слоем опилок, смоченных в водном растворе соли толщиной 150-200 мм. В начальный период включения электродов основное тепло передается в грунт от опилок, в которых под влиянием электрического тока возникает интенсивный разогрев. По мере разогрева грунта, повышения его проводимости и проходящего через грунт электрического тока интенсивность разогрева грунта повышается.
С целью уменьшения потерь тепла от рассеивания слой опилок уплотняют и накрывают деревянными щитами, матами, толем и пр.
Расход электрической энергии для отогрева грунта с помощью стальных электродов в большой степени определяется влажностью грунта и составляет от 42 до 60 кВт-ч на 1 м 3 мороженого грунта при длительности отогрева от 24 до 30 ч.
Работы по размораживанию грунта электрическим током должны производиться под надзором квалифицированного персонала, ответственного за соблюдение режима отогрева, обеспечения безопасности работ и исправности оборудования. Указанные требования и сложности их выполнения, естественно, ограничивают возможности применения этого способа. Лучшим и более безопасным методом является применение напряжения до 12 В.

Рис. 15. Конструкция трехфазных нагревателей для отогрева грунта

а - нагреватель; б - схема включения; 1 - стержень стальной диаметром 19 мм, 2 -труба стальная диаметром 25 мм, 3 -втулка стальная диаметром 19-25 мм, 4 - контакты медные сечением 200 мм 2 , 5 - полоска стальная 30X6 мм 2 .

Электрические трехфазные нагреватели позволяют произвести отогрев грунта при напряжении 10 В. Элемент нагревателя состоит из трех стальных стержней, каждый стержень вставлен в две стальные трубы, общая длина которых на 30 мм меньше длины стержня; концы стержня сварены с концами этих труб.
Пространство между стержнем и внутренней поверхностью каждой трубы засыпано кварцевым песком и для герметизации залито жидким стеклом (рис. 15)- Концы трех труб, расположенных в плоскости А-Л, соединены между собой приваренной к ним полоской стали, образуя нейтральную точку звезды нагревателя. Три конца труб, расположенных в плоскости Б-Б, при помощи закрепленных на них медных зажимов присоединяются через специальный понизительный трансформатор мощностью 15 кВ-А к электрической сети. Нагреватель укладывается непосредственно на грунт и засыпается талым песком толщиной 200 мм. Для уменьшения потерь тепла отогреваемый участок дополнительно укрывают сверху матами из стекловолокна.
Расход электрической энергии для отогрева 1 м 3 грунта при этом методе составляет 50-55 кВт-ч, а время отогрева 24 ч.

Электрическая рефлекторная печь. Как показал опыт ведения ремонтных работ в условиях городских сетей, наиболее удобным, транспортабельным и быстрым при одних и тех же условиях, определяемых степенью промерзания, характером отогреваемого грунта и качеством покрытия, является метод отогрева электрическими рефлекторными печами. В качестве нагревателя в печи применяется нихромовая или фехралевая проволока диаметром 3,5 мм, навитая спиралью на изолированную асбестом стальную трубу (рис. 16).
Рефлектор печи изготовляется из согнутого по оси в параболу с расстоянием от отражающего рефлектора до спирали (фокус) 60 мм алюминиевого, дюралюминиевого или стального хромированного листа толщиной 1 мм. Рефлектор отражает тепловую энергию печи, направляя ее на участок отогреваемого мороженого грунта. Для защиты рефлектора от механических повреждений печь закрывается стальным кожухом. Между кожухом и рефлектором имеется воздушный промежуток, что сокращает потери тепла от рассеивания.
Рефлекторная печь присоединяется к электрической сети напряжением 380/220/127 В.
При отогреве грунта собирается комплект из трех однофазных рефлекторных печей, которые соединяют в звезду или треугольник соответственно напряжению сети. Площадь отогрева одной печи составляет 0,4X1,5 м 2 ; мощность комплекта печей 18 кВт.


Рис. 16. Рефлекторная печь для отогрева мороженого грунта.
1 - нагревательный элемент, 2 - рефлектор, 3 - кожух; 4 - контактные зажимы
Расход электроэнергии для отогрева 1 м 3 мороженого грунта составляет примерно 50 кВт-ч при продолжительности отогрева от 6 до 10 ч.
При пользовании печами необходимо также обеспечить безопасные условия производства работ. Место отогрева должно быть ограждено, контактные зажимы для присоединения проводом закрыты, а спирали течи не должны касаться грунта.

Отогрев мороженого грунта огнем. Для этой цели используется как жидкое, так и газообразное топливо. В качестве жидкого топлива применяется солярное масло. Расход его составляет 4-5 кг на 1 м 3 отогретого грунта. Установка состоит из коробов и форсунок. При длине коробов 20-25 м установка за сутки дает возможность отогреть грунт на глубине 0,7-0,8 м.
Процесс подогрева длится 15-16 ч. В течение остального времени суток оттаивание грунта происходит за счет аккумулированного тепла его поверхностным слоем.
Более эффективным и экономическим топливом для отогрева грунта является газообразное.
Газовая горелка, применяемая для этой цели, представляет собой отрезок стальной трубки диаметром 18 мм со сплюснутым конусом. Полусферические короба изготовляют из листовой стали толщиной 1,5-2,5 мм. Для экономии (потерь тепла короба обсыпают теплоизоляционным слоем грунта толщиной до 100 мм. Стоимость отогрева грунта газовым топливом составляет в среднем 0,2-0,3 руб/м 3 .
Отогрев грунта кострами применяется при незначительном объеме работ (рытье котлованов и траншеи для вставки). Костер разводят после расчистки места от снега и льда. Для большей эффективности отогрева костер накрывают листами железа толщиной 1,5-2 мм. После того как грунт отогрет на глубину 200-250 мм, что устанавливается специальным стальным зондом, дают костру догореть, после чего выбирают лопатами оттаявший грунт. Затем на дне образовавшейся впадины вновь разводят костер, повторяя эту операцию до тех пор, пока мороженый грунт не будет выбран на всю глубину. В ходе работ по отогреву грунта необходимо следить за тем, чтобы вода от тающего снега и льда не заливала костер.
В процессе отогрева грунта действующие кабели могут быть повреждены в результате воздействия теплонагревателя. Как показал опыт, для надлежащей защиты действующих кабелей при отогреве грунта необходимо, чтобы между нагревателем и кабелем сохранялся слой земли толщиной не менее 200 мм в течение всего времени отогрева.

Значительная часть территории России расположена в зонах с продолжительной и суровой зимой. Однако строительство здесь ведется круглый год, в связи с чем примерно 20% общего объема земляных работ приходится выполнять при мерзлом состоянии грунта.

Для мерзлых грунтов характерным является значительное увеличение трудоемкости их разработки вследствие повышенной механической прочности. Кроме того, мерзлое состояние грунта усложняет технологию, ограничивает применение некоторых типов землеройных (экскаваторов) и землеройно-транспортных (бульдозеров, скреперов, фейдеров) машин, уменьшает производительность транспортных средств, способствует быстрому износу деталей машин, особенно их рабочих органов. В то же время временные выемки в мерзлом грунте можно разрабатывать без откосов.

В зависимости от конкретных местных условий разработку грунта в зимних условиях осуществляют следующими методами: 1) предохранением грунта от промерзания и последующей разработкой обычными методами, 2) разработкой грунта в мерзлом состоянии с предварительным рыхлением, 3) непосредственной разработкой мерзлого грунта, 4) оттаиванием фунта и его разработкой в талом состоянии.

Предохранение грунта от промерзания осуществляют рыхлением поверхностных слоев, укрытием поверхности различнымиутеплителями, пропиткой фунта солевыми растворами.

Рыхление грунта вспахиванием и боронованием производят на участке, предназначенном для разработки в зимних условиях. В результате верхний слой фунта приобретает рыхлую структуру с замкнутыми пустотами, заполненными воздухом, которая обладает достаточными термоизоляционными свойствами. Вспашку ведут факторными плугами или рыхлителями на глубину 20...35 см с последующим боронованием на глубину 15... 20 см в одном направлении (или в перекрестных направлениях), что повышает термоизоляционный эффект на 18...30%.

Укрытие поверхности грунта выполняют термоизоляционными материалами, желательно из дешевых местных материалов: древесных листьев, сухого мха, торфяной мелочи, соломенных матов, шлака, сфужек и опилок, укладываемых слоем 20...40 см непосредственно по фунту. Поверхностное утепление фунта применяют в основном для небольших по площади выемок.

Рыхление мерзлого грунта с последующей разработкой землеройными или землеройно-фанспортными машинами осуществляют механическим или взрывным методом.

Механическое рыхление базируется на резании, раскалывании или сколе слоя мерзлого грунта статическим или динамическим воздействием.

Статическое воздействие основано на воздействии непрерывного режущего усилия в мерзлом грунте специальным рабочим органом - зубом. Для этого применяют специальное оборудование, у которого непрерывное режущее усилие зуба создается за счет тягового усилия трактора-тягача. Машины этого типа производят послойную проходку мерзлого грунта, обеспечивая за каждую проходку глубину рыхления порядка 0,3...0,4 м. Рыхлят грунт параллельными (примерно через 0,5 м) проходками с последующими поперечными проходками под углом 60...90° к предыдущим. Производительность рыхлителя 15...20 м3/ч. В качестве статических рыхлителей применяют гидравлические экскаваторы с рабочим органом - зубом-рыхлителем.

Возможность послойной разработки мерзлого фунта делает статические рыхлители применимыми независимо от глубины промерзания.

Динамическое воздействие основано на создании ударных нафу-зок на открытой поверхности мерзлого фунта. Этим способом фунт разрушают молотами свободного падения (рыхление раскалыванием) либо молотами направленного действия (рыхление сколом). Молот свободного падения может иметь форму шара или клина массой до 5 т, подвешиваемого на канате к стреле экскаватора и сбрасываемого с высоты 5...8 м. Шары рекомендуется применять при рыхлении песчаных и супесчаных фунтов, а клинья - глинистых (при глубине промерзания 0,5...0,7 м).

В качестве молота направленного действия широко применяют дизель-молоты, используемые в качестве навесного оборудования к экскаватору или трактору. Дизель-молоты позволяют разрушать фунт на глубину до 1,3 м.

Рыхление взрывом эффективно при глубинах промерзания 0,4...1,5 м и более и при значительных объемах разработки мерзлого фунта. Его применяют преимущественно на незастроенных участках, а на застроенных офаниченно - с использованием укрытий и локализаторов взрыва (тяжелых прифузочных плит). При рыхлении на глубину до 1,5 м применяют шпуровой и щелевой методы, а при больших глубинах - скважинный или щелевой. Щели на расстоянии 0,9...1,2 м одна от другой нарезают щеленарезными машинами фрезерного типа или баровыми машинами. Из трех соседних щелей заряжается одна средняя, крайние и промежуточные щели служат для компенсации сдвига мерзлого фунта во время взрыва и для снижения сейсмического эффекта. Заряжают щели удлиненными или сосредоточенными зарядами, после чего их забивают песком. При взрывании мерзлый фунт полностью дробится, не повреждая стенок котлована или траншеи.

Непосредственная разработка мерзлого грунта (безпредварительного рыхления) ведется двумя методами: блочным и механическим.

Блочный метод основан на том, что монолитность мерзлого грунта нарушается с помощью разрезки его на блоки, которые затем удаляют экскаватором, строительным краном или трактором. Разрезку на блоки выполняют по взаимно перпендикулярным направлениям. При малой глубине промерзания (до 0,6 м) достаточно сделать только продольные прорезы. Глубина прорезаемых в мерзлом слое щелей должна составлять примерно 80% от глубины промерзания, так как ослабленный слой на границе мерзлой и талой зон не является препятствием для отрыва блоков от массива. Расстояние между нарезанными щелями зависит от размеров кромки ковша экскаватора (размеры блоков должны быть на 10...15% меньше ширины зева ковша экскаватора). Для отгрузки блоков применяют экскаваторы с ковшами вместимостью 0,5 м3 и выше, оборудованные преимущественно обратной лопатой, так как выгрузка блоков из ковша прямой лопатой сильно затруднена.

Механический метод основан на силовом (иногда в сочетании с ударным или вибрационным) воздействии на массив мерзлого грунта. Реализуется применением как обычных землеройных и землеройно-транспортных машин, так и машин, оборудованных специальными рабочими органами.

Обычные машины применяют при небольшой глубине промерзания фунта: экскаваторы прямая и обратная лопаты с ковшом вместимостью до 0,65 м3 - 0,25 м, то же, с ковшом вместимостью до 1,6 м3 - 0,4 м, экскаваторы-драглайны - до 0,15 м, бульдозеры и скреперы - 0,05...0,1 м.

Для расширения области применения в зимнее время одноковшовых экскаваторов начато применение специального оборудования: ковшей с виброударными активными зубьями и ковшей с захватно-клещевым устройством. За счет избыточного режущего усилия такие одноковшовые экскаваторы могут послойно разрабатывать массив мерзлого фунта, объединяя процессы рыхления и экскавации в единый.

Послойную разработку грунта осуществляют специализированной землеройно-фрезерной машиной, снимающей «стружку» толщиной до 0,3 м и шириной 2,6 м. Перемещение разработанного мерзлого грунта производят бульдозерным оборудованием, входящим в комплект машины.

Оттаивание мерзлого грунта осуществляют тепловыми способами, характеризующимися значительной трудоемкостью и энергоемкостью. Поэтому тепловые способы применяют только в тех случаях, когда другие эффективные методы недопустимы или неприемлемы, а именно: вблизи действующих подземных коммуникаций и кабелей, при необходимости оттаивания промерзшего основания, при аварийных и ремонтных работах, в стесненных условиях (особенно в условиях технического перевооружения и реконструкции предприятий).

Способы оттаивания мерзлого грунта классифицируют как по направлению распространения теплоты в грунте, так и по применяемому виду теплоносителя.

По направлению распространения теплоты в грунт можно выделить следующие три способа оттаивания грунта.

Способ оттаивания грунта сверху вниз неэффективен, так как источник теплоты размещается в зоне холодного воздуха, что вызывает большие потери теплоты. В то же время этот способ достаточно легко и просто осуществить, так как он требует минимальных подготовительных работ.

Способ оттаивания грунта снизу вверх требует минимального расхода энергии, так как оттаивание происходит под защитой льдоземляной корки и теплопотери при этом практически исключаются. Главный недостаток этого способа - необходимость выполнения трудоемких подготовительных операций, что ограничивает область его применения.

При оттаивании грунта по радиальному направлению теплота распространяется в фунте радиально от вертикально установленных профевающих элементов, пофуженных в фунт. Этот способ по своим экономическим показателям занимает промежуточное положение между двумя ранее описанными, а для своего осуществления требует также значительных подготовительных работ.

По виду теплоносителя различают следующие основные способы оттаивания мерзлых грунтов.

Огневой способ применяют для отрывки зимой небольших траншей. Для этого экономично использовать звеньевой агрегат, состоящий из рядаметаллических коробов в форме разрезанных по продольной оси усеченных конусов, из которых собирают сплошную галерею. Первый из коробов представляет собой камеру сгорания, в которой сжигают твердое или жидкое топливо. Вытяжная труба последнего короба обеспечивает тягу, благодаря которой продукты сгорания проходят вдоль галереи и прогревают расположенный под ней грунт. Для уменьшения теплопотерь галерею обсыпают слоем талого грунта или шлака. Полосу оттаявшего грунта засыпают опилками, а дальнейшее оттаивание вглубь продолжается за счет аккумулированной в грунте теплоты.

Способ электропрогрева основан на пропуске тока через разогреваемый материал, в результате чего он приобретает положительную температуру. Основными техническими средствами являются горизонтальные или вертикальные электроды.

При оттаивании грунта горизонтальными электродами по поверхности грунта укладывают электроды из полосовой или круглой стали, концы которых отгибают на 15...20 см для подключения к проводам. Поверхность отогреваемого участка покрывают слоем опилок толщиной 15...20 см, которые смачивают солевым раствором с концентрацией 0,2...0,5% с таким расчетом, чтобымасса раствора была не менее массы опилок. Вначале смоченные опилки являются токопроводящим элементом, так как замерзший грунт не является проводником. Под воздействием теплоты, генерируемой в слое опилок, оттаивает верхний слой грунта, который превращается в проводник тока от электрода к электроду. После этого под воздействием теплоты начинает оттаивать следующий слой грунта, а затем нижележащие слои. В дальнейшем опилочный слой защищает отогреваемый участок от потерь теплоты в атмосферу, для чего слой опилок покрывают толем или щитами. Этот способ применяют при глубине промерзания фунта до 0,7 м, расход электроэнергии на отогрев 1 м3 грунта колеблется от 150 до 300 МДж, температура в опилках не превышает 8О...9О°С.

Оттаивание грунта вертикальными электродами осуществляют с применением стержней из арматурной стали с заостренными нижними концами. При глубине промерзания 0,7 м их забивают в грунт в шахматном порядке на глубину 20...25 см, а по мере оттаивания верхних слоев грунта погружают на большую глубину. При оттаивании сверху вниз необходимо систематически убирать снег и устраивать опилочную засыпку, увлажненную солевым раствором. Режим прогрева при стержневых электродах такой же, как и при полосовых, причем во время отключения электроэнергии электроды следует последовательно заглублять по мере прогрева грунта до 1,3...1,5 м. После отключения электроэнергии в течение 1...2 дн глубина оттаивания продолжает увеличиваться за счет аккумулированной в грунте теплоты под защитой опилочного слоя. Расход энергии при этом способе несколько ниже, чем при способе горизонтальных электродов.

Применяя прогрев снизу вверх, до начала прогрева необходимо бурить скважины, расположенные в шахматном порядке, на глубину, превышающую на 15...20 см толщину мерзлого фунта. Расход энергии при отофеве фунта снизу вверх существенно снижается, составляя 50...150 МДж на 1 м3, а применять слой опилок не требуется.

При заглублении стержневых электродов в подстилающий талый фунт и одновременном устройстве на дневной поверхности опилочной засыпки, пропитанной солевым раствором, оттаивание происходит как в направлении сверху вниз, так и снизу вверх. При этом фудоемкость подготовительных работ значительно выше, чем в первых двух вариантах. Применяют этот способ лишь в исключительных случаях, когда необходимо эксфенно осуществить оттаивание фунта.

Паровое оттаивание основано на впуске пара в фунт, для чего применяют специальные технические средства - паровые иглы, представляющие собой металлическую фубу длиной до2 м, диаметром 25...50 мм. На нижнюю часть трубы насажен наконечник с отверстиями диаметром 2...3 мм. Иглы соединяют с паропроводом гибкими резиновыми шлангами с кранами. Иглы заглубляют в скважины, предварительно пробуриваемые на глубину, равную 70% глубины оттаивания. Скважины закрывают защитными колпаками, снабженными сальниками для пропуска паровой иглы. Пар подают под давлением 0,06...0,07 МПа. После установки аккумулированных колпаков прогреваемую поверхность покрывают слоем термоизолирующего материала (например, опилок). Иглы располагают в шахматном порядке с расстоянием между центрами 1...1,5 м. Расход пара на 1 м3 фунта составляет 50...100 кг. Этот метод требует расхода теплоты примерно в 2 раза больше, чем метод глубинных электродов.