Rješavanje logaritamskih nejednačina sa detaljnim rješenjem. Kompleksne logaritamske nejednakosti

Logaritamske nejednakosti

U prethodnim lekcijama smo se upoznali sa logaritamskim jednadžbama i sada znamo šta su i kako ih riješiti. Današnja lekcija će biti posvećena proučavanju logaritamskih nejednakosti. Koje su to nejednakosti i koja je razlika između rješavanja logaritamske jednadžbe i nejednakosti?

Logaritamske nejednakosti su nejednakosti koje imaju varijablu koja se pojavljuje ispod znaka logaritma ili u njegovoj osnovi.

Ili, također možemo reći da je logaritamska nejednačina nejednakost u kojoj će se njena nepoznata vrijednost, kao u logaritamskoj jednadžbi, pojaviti pod znakom logaritma.

Najjednostavnije logaritamske nejednakosti imaju sljedeći oblik:

gdje su f(x) i g(x) neki izrazi koji zavise od x.

Pogledajmo ovo koristeći ovaj primjer: f(x)=1+2x+x2, g(x)=3x−1.

Rješavanje logaritamskih nejednačina

Prije rješavanja logaritamskih nejednačina, vrijedi napomenuti da su kada su riješene slične eksponencijalnim nejednačinama, odnosno:

Prvo, kada prelazimo sa logaritma na izraze pod znakom logaritma, takođe treba da uporedimo bazu logaritma sa jedinicom;

Drugo, kada rješavamo logaritamsku nejednakost korištenjem promjene varijabli, moramo rješavati nejednakosti s obzirom na promjenu dok ne dobijemo najjednostavniju nejednakost.

Ali vi i ja smo razmatrali slične aspekte rješavanja logaritamskih nejednačina. Sada obratimo pažnju na prilično značajna razlika. Svi znamo da logaritamska funkcija ima ograničenu domenu definicije, pa kada prelazimo s logaritama na izraze pod predznakom logaritma, moramo uzeti u obzir domen prihvatljive vrijednosti(ODZ).

Odnosno, to treba uzeti u obzir prilikom odlučivanja logaritamska jednačina Ti i ja možemo prvo pronaći korijene jednadžbe, a zatim provjeriti ovo rješenje. Ali rješavanje logaritamske nejednakosti neće funkcionirati na ovaj način, budući da će prijeći s logaritama na izraze pod predznakom logaritma, biti potrebno zapisati ODZ nejednakosti.

Osim toga, vrijedi zapamtiti da se teorija nejednakosti sastoji od realnih brojeva, koji su pozitivni i negativni brojevi, kao i broj 0.

Na primjer, kada je broj “a” pozitivan, tada trebate koristiti sljedeću notaciju: a >0. U ovom slučaju, i zbir i proizvod ovih brojeva također će biti pozitivni.

Glavni princip za rješavanje nejednakosti je zamijeniti je jednostavnijom nejednakošću, ali glavno je da je ona ekvivalentna datoj. Nadalje, dobili smo i nejednakost i ponovo je zamijenili onom koja ima jednostavniji oblik, itd.

Kada rješavate nejednakosti s varijablom, morate pronaći sva njena rješenja. Ako dvije nejednačine imaju istu varijablu x, onda su takve nejednakosti ekvivalentne, pod uslovom da se njihova rješenja poklapaju.

Prilikom izvođenja zadataka na rješavanju logaritamskih nejednačina, morate imati na umu da kada je a > 1, tada se logaritamska funkcija povećava, a kada je 0< a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

Metode rješavanja logaritamskih nejednačina

Pogledajmo sada neke od metoda koje se koriste pri rješavanju logaritamskih nejednačina. Radi boljeg razumijevanja i asimilacije, pokušat ćemo ih razumjeti na konkretnim primjerima.

Svi znamo da najjednostavnija logaritamska nejednakost ima sljedeći oblik:

U ovoj nejednakosti, V – je jedan od sljedećih znakova nejednakosti:<,>, ≤ ili ≥.

Kada je osnova datog logaritma veća od jedan (a>1), čineći prijelaz sa logaritama na izraze pod predznakom logaritma, tada je u ovoj verziji znak nejednakosti sačuvan, a nejednakost će imati sljedeći oblik:

što je ekvivalentno ovom sistemu:


U slučaju kada je osnova logaritma Iznad nule I manje od jedan (0

Ovo je ekvivalentno ovom sistemu:


Pogledajmo još primjera rješavanja najjednostavnijih logaritamskih nejednačina prikazanih na slici ispod:



Primjeri rješavanja

Vježbajte. Pokušajmo riješiti ovu nejednakost:


Rješavanje raspona prihvatljivih vrijednosti.


Pokušajmo sada pomnožiti njegovu desnu stranu sa:

Hajde da vidimo šta možemo da smislimo:



Sada, pređimo na pretvaranje podlogaritamskih izraza. Zbog činjenice da je osnova logaritma 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x - 8 > 16;
3x > 24;
x > 8.

A iz ovoga proizilazi da interval koji smo dobili u potpunosti pripada ODZ-u i da je rješenje takve nejednakosti.

Evo odgovora koji smo dobili:


Šta je potrebno za rješavanje logaritamskih nejednakosti?

Pokušajmo sada analizirati šta nam je potrebno za uspješno rješavanje logaritamskih nejednakosti?

Prvo, koncentrišite svu svoju pažnju i pokušajte da ne pogriješite prilikom izvođenja transformacija koje su date u ovoj nejednakosti. Takođe, treba imati na umu da je prilikom rješavanja ovakvih nejednačina potrebno izbjegavati proširenja i kontrakcije nejednačina, što može dovesti do gubitka ili sticanja stranih rješenja.

Drugo, kada rješavate logaritamske nejednakosti, morate naučiti logično razmišljati i razumjeti razliku između pojmova kao što su sistem nejednakosti i skup nejednakosti, tako da možete lako odabrati rješenja nejednakosti, vodeći se njenim DL.

Treće, da biste uspješno riješili takve nejednakosti, svako od vas mora savršeno poznavati sva svojstva elementarnih funkcija i jasno razumjeti njihovo značenje. Takve funkcije uključuju ne samo logaritamske, već i racionalne, stepene, trigonometrijske itd., jednom riječju, sve one koje ste učili tokom školske algebre.

Kao što vidite, nakon što ste proučili temu logaritamskih nejednakosti, nema ništa teško u rješavanju ovih nejednakosti, pod uvjetom da ste pažljivi i uporni u postizanju svojih ciljeva. Da biste izbjegli bilo kakve probleme u rješavanju nejednakosti, potrebno je što više vježbati, rješavajući različite zadatke i pritom zapamtiti osnovne metode rješavanja takvih nejednačina i njihovih sistema. Ako ne uspete da rešite logaritamske nejednakosti, trebalo bi da pažljivo analizirate svoje greške kako se ne biste vraćali na njih u budućnosti.

Zadaća

Da biste bolje razumjeli temu i konsolidirali obrađeni materijal, riješite sljedeće nejednakosti:


Među čitavom raznolikošću logaritamskih nejednakosti posebno se proučavaju nejednakosti sa promjenjivom bazom. Oni se rješavaju pomoću posebne formule, koja se iz nekog razloga rijetko uči u školi:

log k (x) f (x) ∨ log k (x) g (x) ⇒ (f (x) − g (x)) (k (x) − 1) ∨ 0

Umjesto “∨” polja za potvrdu možete staviti bilo koji znak nejednakosti: više ili manje. Glavna stvar je da su u obje nejednakosti predznaci isti.

Na ovaj način se oslobađamo logaritama i problem svodimo na racionalnu nejednakost. Potonje je mnogo lakše riješiti, ali pri odbacivanju logaritma mogu se pojaviti dodatni korijeni. Da biste ih odsjekli, dovoljno je pronaći raspon prihvatljivih vrijednosti. Ako ste zaboravili ODZ logaritma, toplo preporučujem da ga ponovite - pogledajte “Šta je logaritam”.

Sve što se odnosi na raspon prihvatljivih vrijednosti mora se posebno napisati i riješiti:

f(x) > 0; g(x) > 0; k(x) > 0; k(x) ≠ 1.

Ove četiri nejednakosti čine sistem i moraju biti zadovoljene istovremeno. Kada je raspon prihvatljivih vrijednosti pronađen, ostaje samo da ga presječemo rješenjem racionalne nejednakosti - i odgovor je spreman.

Zadatak. Riješite nejednačinu:

Prvo, napišimo ODZ logaritma:

Prve dvije nejednakosti su zadovoljene automatski, ali će posljednja morati biti ispisana. Pošto je kvadrat broja nula ako i samo ako je sam broj nula, imamo:

x 2 + 1 ≠ 1;
x2 ≠ 0;
x ≠ 0.

Ispada da su ODZ logaritma svi brojevi osim nule: x ∈ (−∞ 0)∪(0; +∞). Sada rješavamo glavnu nejednačinu:

Mi vršimo tranziciju od logaritamska nejednakost na racionalno. Izvorna nejednakost ima predznak “manje od”, što znači da rezultirajuća nejednakost također mora imati predznak “manje od”. Imamo:

(10 − (x 2 + 1)) · (x 2 + 1 − 1)< 0;
(9 − x 2) x 2< 0;
(3 − x) · (3 + x) · x 2< 0.

Nule ovog izraza su: x = 3; x = −3; x = 0. Štaviše, x = 0 je korijen drugog višestrukosti, što znači da se pri prolasku kroz njega predznak funkcije ne mijenja. Imamo:

Dobijamo x ∈ (−∞ −3)∪(3; +∞). Ovaj skup je u potpunosti sadržan u ODZ-u logaritma, što znači da je ovo odgovor.

Pretvaranje logaritamskih nejednakosti

Često je originalna nejednakost drugačija od gornje. Ovo se lako može ispraviti korištenjem standardnih pravila za rad s logaritmima - pogledajte “Osnovna svojstva logaritama”. naime:

  1. Bilo koji broj se može predstaviti kao logaritam sa datom bazom;
  2. Zbir i razlika logaritama sa istim bazama mogu se zamijeniti jednim logaritmom.

Zasebno, želio bih da vas podsjetim na raspon prihvatljivih vrijednosti. Budući da u izvornoj nejednakosti može biti nekoliko logaritama, potrebno je pronaći VA svakog od njih. dakle, opšta šema rješenja logaritamskih nejednakosti su sljedeća:

  1. Pronađite VA svakog logaritma uključenog u nejednakost;
  2. Nejednakost svesti na standardnu ​​koristeći formule za sabiranje i oduzimanje logaritama;
  3. Riješi rezultirajuću nejednačinu koristeći gornju shemu.

Zadatak. Riješite nejednačinu:

Nađimo domenu definicije (DO) prvog logaritma:

Rješavamo metodom intervala. Pronalaženje nula brojilaca:

3x − 2 = 0;
x = 2/3.

Zatim - nule imenioca:

x − 1 = 0;
x = 1.

Na koordinatnoj strelici označavamo nule i znakove:

Dobijamo x ∈ (−∞ 2/3)∪(1; +∞). Drugi logaritam će imati isti VA. Ako ne vjerujete, možete provjeriti. Sada transformiramo drugi logaritam tako da je baza dva:

Kao što vidite, trojke u osnovi i ispred logaritma su smanjene. Imamo dva logaritma sa istoj osnovi. Hajde da ih zbrojimo:

log 2 (x − 1) 2< 2;
log 2 (x − 1) 2< log 2 2 2 .

Dobili smo standardnu ​​logaritamsku nejednakost. Riješimo se logaritama pomoću formule. Budući da izvorna nejednakost sadrži znak “manje od”, rezultirajući racionalni izraz također mora biti manji od nule. Imamo:

(f (x) − g (x)) (k (x) − 1)< 0;
((x − 1) 2 − 2 2) (2 − 1)< 0;
x 2 − 2x + 1 − 4< 0;
x 2 − 2x − 3< 0;
(x − 3)(x + 1)< 0;
x ∈ (−1; 3).

Imamo dva seta:

  1. ODZ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Odgovor kandidata: x ∈ (−1; 3).

Ostaje presijecati ove skupove - dobijamo pravi odgovor:

Zanima nas presjek skupova, pa biramo intervale koji su zasjenjeni na obje strelice. Dobijamo x ∈ (−1; 2/3)∪(1; 3) - sve tačke su izbušene.

Nejednakost se naziva logaritamskom ako sadrži logaritamsku funkciju.

Metode za rješavanje logaritamskih nejednačina se ne razlikuju, osim po dvije stvari.

Prvo, kada se prelazi sa logaritamske nejednakosti na nejednakost podlogaritamskih funkcija, treba prati znak rezultirajuće nejednakosti. Poštuje sljedeće pravilo.

Ako je osnova logaritamske funkcije veća od $1$, tada se pri prelasku sa logaritamske nejednadžbe na nejednakost podlogaritamskih funkcija čuva znak nejednakosti, ali ako je manji od $1$, onda se mijenja u suprotno .

Drugo, rješenje bilo koje nejednakosti je interval, pa je stoga na kraju rješavanja nejednakosti podlogaritamskih funkcija potrebno kreirati sistem od dvije nejednakosti: prva nejednakost ovog sistema će biti nejednakost podlogaritamskih funkcija, a drugi će biti interval domene definicije logaritamskih funkcija uključenih u logaritamsku nejednakost.

Vježbajte.

Rešimo nejednačine:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

Osnova logaritma je $2>1$, tako da se predznak ne mijenja. Koristeći definiciju logaritma, dobijamo:

$x+3 \geq 2^(3),$

$x \in )